// High level library for handling the terminal screen. // // The screen library allows the interactive reader to write its output to screen efficiently by // keeping an internal representation of the current screen contents and trying to find the most // efficient way for transforming that to the desired screen content. // // IWYU pragma: no_include #include "config.h" #include #include #include #include #include #include #include #include #if HAVE_CURSES_H #include #elif HAVE_NCURSES_H #include #elif HAVE_NCURSES_CURSES_H #include #endif #if HAVE_TERM_H #include #elif HAVE_NCURSES_TERM_H #include #endif #include #include #include #include "common.h" #include "env.h" #include "fallback.h" // IWYU pragma: keep #include "flog.h" #include "highlight.h" #include "output.h" #include "pager.h" #include "screen.h" /// The number of characters to indent new blocks. #define INDENT_STEP 4u /// The initial screen width. #define SCREEN_WIDTH_UNINITIALIZED -1 /// A helper value for an invalid location. #define INVALID_LOCATION (screen_data_t::cursor_t(-1, -1)) static void invalidate_soft_wrap(screen_t *scr); /// RAII class to begin and end buffering around stdoutput(). class scoped_buffer_t { screen_t &screen_; public: scoped_buffer_t(screen_t &s) : screen_(s) { screen_.outp().beginBuffering(); } ~scoped_buffer_t() { screen_.outp().endBuffering(); } }; // Singleton of the cached escape sequences seen in prompts and similar strings. // Note this is deliberately exported so that init_curses can clear it. layout_cache_t cached_layouts; /// Tests if the specified narrow character sequence is present at the specified position of the /// specified wide character string. All of \c seq must match, but str may be longer than seq. static size_t try_sequence(const char *seq, const wchar_t *str) { for (size_t i = 0;; i++) { if (!seq[i]) return i; if (seq[i] != str[i]) return 0; } DIE("unexpectedly fell off end of try_sequence()"); return 0; // this should never be executed } /// Returns the number of columns left until the next tab stop, given the current cursor postion. static size_t next_tab_stop(size_t current_line_width) { // Assume tab stops every 8 characters if undefined. size_t tab_width = init_tabs > 0 ? (size_t)init_tabs : 8; return ((current_line_width / tab_width) + 1) * tab_width; } /// Like fish_wcwidth, but returns 0 for control characters instead of -1. static int fish_wcwidth_min_0(wchar_t widechar) { return std::max(0, fish_wcwidth(widechar)); } /// Whether we permit soft wrapping. If so, in some cases we don't explicitly move to the second /// physical line on a wrapped logical line; instead we just output it. static bool allow_soft_wrap() { // Should we be looking at eat_newline_glitch as well? return auto_right_margin; } /// Does this look like the escape sequence for setting a screen name? static bool is_screen_name_escape_seq(const wchar_t *code, size_t *resulting_length) { if (code[1] != L'k') { return false; } const wchar_t *const screen_name_end_sentinel = L"\x1B\\"; const wchar_t *screen_name_end = std::wcsstr(&code[2], screen_name_end_sentinel); if (screen_name_end == NULL) { // Consider just k to be the code. *resulting_length = 2; } else { const wchar_t *escape_sequence_end = screen_name_end + std::wcslen(screen_name_end_sentinel); *resulting_length = escape_sequence_end - code; } return true; } /// Operating System Command (OSC) escape codes, used by iTerm2 and others: /// ESC followed by ], terminated by either BEL or escape + backslash. /// See https://invisible-island.net/xterm/ctlseqs/ctlseqs.html /// and https://iterm2.com/documentation-escape-codes.html . static bool is_osc_escape_seq(const wchar_t *code, size_t *resulting_length) { bool found = false; if (code[1] == ']') { // Start at 2 to skip over ]. size_t cursor = 2; for (; code[cursor] != L'\0'; cursor++) { // Consume a sequence of characters up to \ or . if (code[cursor] == '\x07' || (code[cursor] == '\\' && code[cursor - 1] == '\x1B')) { found = true; break; } } if (found) { *resulting_length = cursor + 1; } } return found; } /// Generic VT100 three byte sequence: CSI followed by something in the range @ through _. static bool is_three_byte_escape_seq(const wchar_t *code, size_t *resulting_length) { bool found = false; if (code[1] == L'[' && (code[2] >= L'@' && code[2] <= L'_')) { *resulting_length = 3; found = true; } return found; } /// Generic VT100 two byte sequence: followed by something in the range @ through _. static bool is_two_byte_escape_seq(const wchar_t *code, size_t *resulting_length) { bool found = false; if (code[1] >= L'@' && code[1] <= L'_') { *resulting_length = 2; found = true; } return found; } /// Generic VT100 CSI-style sequence. , followed by zero or more ASCII characters NOT in /// the range [@,_], followed by one character in that range. static bool is_csi_style_escape_seq(const wchar_t *code, size_t *resulting_length) { if (code[1] != L'[') { return false; } // Start at 2 to skip over [ size_t cursor = 2; for (; code[cursor] != L'\0'; cursor++) { // Consume a sequence of ASCII characters not in the range [@, ~]. wchar_t widechar = code[cursor]; // If we're not in ASCII, just stop. if (widechar > 127) break; // If we're the end character, then consume it and then stop. if (widechar >= L'@' && widechar <= L'~') { cursor++; break; } } // cursor now indexes just beyond the end of the sequence (or at the terminating zero). *resulting_length = cursor; return true; } /// Detect whether the escape sequence sets foreground/background color. Note that 24-bit color /// sequences are detected by `is_csi_style_escape_seq()` if they use the ANSI X3.64 pattern for /// such sequences. This function only handles those escape sequences for setting color that rely on /// the terminfo definition and which might use a different pattern. static bool is_color_escape_seq(const wchar_t *code, size_t *resulting_length) { if (!cur_term) return false; // Detect these terminfo color escapes with parameter value up to max_colors, all of which // don't move the cursor. const char *const esc[] = { set_a_foreground, set_a_background, set_foreground, set_background, }; for (size_t p = 0; p < sizeof esc / sizeof *esc; p++) { if (!esc[p]) continue; for (int k = 0; k < max_colors; k++) { size_t esc_seq_len = try_sequence(tparm((char *)esc[p], k), code); if (esc_seq_len) { *resulting_length = esc_seq_len; return true; } } } return false; } /// Detect whether the escape sequence sets one of the terminal attributes that affects how text is /// displayed other than the color. static bool is_visual_escape_seq(const wchar_t *code, size_t *resulting_length) { if (!cur_term) return false; const char *const esc2[] = { enter_bold_mode, exit_attribute_mode, enter_underline_mode, exit_underline_mode, enter_standout_mode, exit_standout_mode, enter_blink_mode, enter_protected_mode, enter_italics_mode, exit_italics_mode, enter_reverse_mode, enter_shadow_mode, exit_shadow_mode, enter_standout_mode, exit_standout_mode, enter_secure_mode, enter_dim_mode, enter_blink_mode, enter_alt_charset_mode, exit_alt_charset_mode}; for (size_t p = 0; p < sizeof esc2 / sizeof *esc2; p++) { if (!esc2[p]) continue; // Test both padded and unpadded version, just to be safe. Most versions of tparm don't // actually seem to do anything these days. size_t esc_seq_len = std::max(try_sequence(tparm((char *)esc2[p]), code), try_sequence(esc2[p], code)); if (esc_seq_len) { *resulting_length = esc_seq_len; return true; } } return false; } /// Returns the number of characters in the escape code starting at 'code'. We only handle sequences /// that begin with \x1B. If it doesn't we return zero. We also return zero if we don't recognize /// the escape sequence based on querying terminfo and other heuristics. size_t escape_code_length(const wchar_t *code) { assert(code != NULL); if (*code != L'\x1B') return 0; size_t esc_seq_len = cached_layouts.find_escape_code(code); if (esc_seq_len) return esc_seq_len; bool found = is_color_escape_seq(code, &esc_seq_len); if (!found) found = is_visual_escape_seq(code, &esc_seq_len); if (!found) found = is_screen_name_escape_seq(code, &esc_seq_len); if (!found) found = is_osc_escape_seq(code, &esc_seq_len); if (!found) found = is_three_byte_escape_seq(code, &esc_seq_len); if (!found) found = is_csi_style_escape_seq(code, &esc_seq_len); if (!found) found = is_two_byte_escape_seq(code, &esc_seq_len); if (found) cached_layouts.add_escape_code(wcstring(code, esc_seq_len)); return esc_seq_len; } maybe_t layout_cache_t::find_prompt_layout(const wcstring &input) { auto start = prompt_cache_.begin(); auto end = prompt_cache_.end(); for (auto iter = start; iter != end; ++iter) { if (iter->first == input) { // Found it. Move it to the front if not already there. if (iter != start) prompt_cache_.splice(start, prompt_cache_, iter); return iter->second; } } return none(); } void layout_cache_t::add_prompt_layout(wcstring input, prompt_layout_t layout) { assert(!find_prompt_layout(input) && "Should not have a prompt layout for this input"); prompt_cache_.emplace_front(std::move(input), std::move(layout)); if (prompt_cache_.size() > prompt_cache_max_size) { prompt_cache_.pop_back(); } } /// Calculate layout information for the given prompt. Does some clever magic to detect common /// escape sequences that may be embedded in a prompt, such as those to set visual attributes. /// escape sequences that may be embeded in a prompt, such as those to set visual attributes. static prompt_layout_t calc_prompt_layout(const wcstring &prompt_str, layout_cache_t &cache) { if (auto cached_layout = cache.find_prompt_layout(prompt_str)) { return *cached_layout; } prompt_layout_t prompt_layout = {1, 0, 0}; size_t current_line_width = 0; const wchar_t *prompt = prompt_str.c_str(); for (size_t j = 0; prompt[j]; j++) { if (prompt[j] == L'\x1B') { // This is the start of an escape code. Skip over it if it's at least one char long. size_t len = escape_code_length(&prompt[j]); if (len > 0) j += len - 1; } else if (prompt[j] == L'\t') { current_line_width = next_tab_stop(current_line_width); } else if (prompt[j] == L'\n' || prompt[j] == L'\f') { // PCA: At least one prompt uses \f\r as a newline. It's unclear to me what this is // meant to do, but terminals seem to treat it as a newline so we do the same. current_line_width = 0; prompt_layout.line_count += 1; } else if (prompt[j] == L'\r') { current_line_width = 0; } else { // Ordinary char. Add its width with care to ignore control chars which have width -1. current_line_width += fish_wcwidth_min_0(prompt[j]); if (current_line_width > prompt_layout.max_line_width) { prompt_layout.max_line_width = current_line_width; } } } prompt_layout.last_line_width = current_line_width; cache.add_prompt_layout(prompt, prompt_layout); return prompt_layout; } static size_t calc_prompt_lines(const wcstring &prompt) { // Hack for the common case where there's no newline at all. I don't know if a newline can // appear in an escape sequence, so if we detect a newline we have to defer to // calc_prompt_width_and_lines. size_t result = 1; if (prompt.find(L'\n') != wcstring::npos || prompt.find(L'\f') != wcstring::npos) { result = calc_prompt_layout(prompt, cached_layouts).line_count; } return result; } /// Stat stdout and stderr and save result. This should be done before calling a function that may /// cause output. void s_save_status(screen_t *s) { fstat(1, &s->prev_buff_1); fstat(2, &s->prev_buff_2); } /// Stat stdout and stderr and compare result to previous result in reader_save_status. Repaint if /// modification time has changed. /// /// Unfortunately, for some reason this call seems to give a lot of false positives, at least under /// Linux. static void s_check_status(screen_t *s) { fflush(stdout); fflush(stderr); if (!has_working_tty_timestamps) { // We can't reliably determine if the terminal has been written to behind our back so we // just assume that hasn't happened and hope for the best. This is important for multi-line // prompts to work correctly. return; } fstat(1, &s->post_buff_1); fstat(2, &s->post_buff_2); bool changed = (s->prev_buff_1.st_mtime != s->post_buff_1.st_mtime) || (s->prev_buff_2.st_mtime != s->post_buff_2.st_mtime); #if defined HAVE_STRUCT_STAT_ST_MTIMESPEC_TV_NSEC changed = changed || s->prev_buff_1.st_mtimespec.tv_nsec != s->post_buff_1.st_mtimespec.tv_nsec || s->prev_buff_2.st_mtimespec.tv_nsec != s->post_buff_2.st_mtimespec.tv_nsec; #elif defined HAVE_STRUCT_STAT_ST_MTIM_TV_NSEC changed = changed || s->prev_buff_1.st_mtim.tv_nsec != s->post_buff_1.st_mtim.tv_nsec || s->prev_buff_2.st_mtim.tv_nsec != s->post_buff_2.st_mtim.tv_nsec; #endif if (changed) { // Ok, someone has been messing with our screen. We will want to repaint. However, we do not // know where the cursor is. It is our best bet that we are still on the same line, so we // move to the beginning of the line, reset the modelled screen contents, and then set the // modeled cursor y-pos to its earlier value. int prev_line = s->actual.cursor.y; write_loop(STDOUT_FILENO, "\r", 1); s_reset(s, screen_reset_current_line_and_prompt); s->actual.cursor.y = prev_line; } } /// Appends a character to the end of the line that the output cursor is on. This function /// automatically handles linebreaks and lines longer than the screen width. static void s_desired_append_char(screen_t *s, wchar_t b, highlight_spec_t c, int indent, size_t prompt_width, size_t bwidth) { int line_no = s->desired.cursor.y; if (b == L'\n') { // Current line is definitely hard wrapped. // Create the next line. s->desired.create_line(s->desired.cursor.y + 1); s->desired.line(s->desired.cursor.y).is_soft_wrapped = false; int line_no = ++s->desired.cursor.y; s->desired.cursor.x = 0; size_t indentation = prompt_width + indent * INDENT_STEP; line_t &line = s->desired.line(line_no); line.indentation = indentation; for (size_t i = 0; i < indentation; i++) { s_desired_append_char(s, L' ', highlight_spec_t{}, indent, prompt_width, 1); } } else if (b == L'\r') { line_t ¤t = s->desired.line(line_no); current.clear(); s->desired.cursor.x = 0; } else { int screen_width = common_get_width(); int cw = bwidth; s->desired.create_line(line_no); // Check if we are at the end of the line. If so, continue on the next line. if ((s->desired.cursor.x + cw) > screen_width) { // Current line is soft wrapped (assuming we support it). s->desired.line(s->desired.cursor.y).is_soft_wrapped = true; line_no = (int)s->desired.line_count(); s->desired.add_line(); s->desired.cursor.y++; s->desired.cursor.x = 0; } line_t &line = s->desired.line(line_no); line.append(b, c); s->desired.cursor.x += cw; // Maybe wrap the cursor to the next line, even if the line itself did not wrap. This // avoids wonkiness in the last column. if (s->desired.cursor.x >= screen_width) { line.is_soft_wrapped = true; s->desired.cursor.x = 0; s->desired.cursor.y++; } } } /// Write the bytes needed to move screen cursor to the specified position to the specified buffer. /// The actual_cursor field of the specified screen_t will be updated. /// /// \param s the screen to operate on /// \param new_x the new x position /// \param new_y the new y position static void s_move(screen_t *s, int new_x, int new_y) { if (s->actual.cursor.x == new_x && s->actual.cursor.y == new_y) return; const scoped_buffer_t buffering(*s); // If we are at the end of our window, then either the cursor stuck to the edge or it didn't. We // don't know! We can fix it up though. if (s->actual.cursor.x == common_get_width()) { // Either issue a cr to go back to the beginning of this line, or a nl to go to the // beginning of the next one, depending on what we think is more efficient. if (new_y <= s->actual.cursor.y) { s->outp().push_back('\r'); } else { s->outp().push_back('\n'); s->actual.cursor.y++; } // Either way we're not in the first column. s->actual.cursor.x = 0; } int i; int x_steps, y_steps; const char *str; auto &outp = s->outp(); y_steps = new_y - s->actual.cursor.y; if (y_steps < 0) { str = cursor_up; } else if (y_steps > 0) { str = cursor_down; if ((shell_modes.c_oflag & ONLCR) != 0 && std::strcmp(str, "\n") == 0) { // See GitHub issue #4505. // Most consoles use a simple newline as the cursor down escape. // If ONLCR is enabled (which it normally is) this will of course // also move the cursor to the beginning of the line. // We could do: // if (std::strcmp(cursor_up, "\x1B[A") == 0) str = "\x1B[B"; // else ... but that doesn't work for unknown reasons. s->actual.cursor.x = 0; } } for (i = 0; i < abs(y_steps); i++) { writembs(outp, str); } x_steps = new_x - s->actual.cursor.x; if (x_steps && new_x == 0) { outp.push_back('\r'); x_steps = 0; } const char *multi_str = NULL; if (x_steps < 0) { str = cursor_left; multi_str = parm_left_cursor; } else { str = cursor_right; multi_str = parm_right_cursor; } // Use the bulk ('multi') output for cursor movement if it is supported and it would be shorter // Note that this is required to avoid some visual glitches in iTerm (issue #1448). bool use_multi = multi_str != NULL && multi_str[0] != '\0' && abs(x_steps) * std::strlen(str) > std::strlen(multi_str); if (use_multi && cur_term) { char *multi_param = tparm((char *)multi_str, abs(x_steps)); writembs(outp, multi_param); } else { for (i = 0; i < abs(x_steps); i++) { writembs(outp, str); } } s->actual.cursor.x = new_x; s->actual.cursor.y = new_y; } /// Set the pen color for the terminal. static void s_set_color(screen_t *s, const environment_t &vars, highlight_spec_t c) { UNUSED(s); UNUSED(vars); s->outp().set_color(highlight_get_color(c, false), highlight_get_color(c, true)); } /// Convert a wide character to a multibyte string and append it to the buffer. static void s_write_char(screen_t *s, wchar_t c, size_t width) { scoped_buffer_t outp(*s); s->actual.cursor.x += width; s->outp().writech(c); if (s->actual.cursor.x == s->actual_width && allow_soft_wrap()) { s->soft_wrap_location.x = 0; s->soft_wrap_location.y = s->actual.cursor.y + 1; // Note that our cursor position may be a lie: Apple Terminal makes the right cursor stick // to the margin, while Ubuntu makes it "go off the end" (but still doesn't wrap). We rely // on s_move to fix this up. } else { invalidate_soft_wrap(s); } } /// Send the specified string through tputs and append the output to the screen's outputter. static void s_write_mbs(screen_t *screen, const char *s) { writembs(screen->outp(), s); } /// Convert a wide string to a multibyte string and append it to the buffer. static void s_write_str(screen_t *screen, const wchar_t *s) { screen->outp().writestr(s); } /// Returns the length of the "shared prefix" of the two lines, which is the run of matching text /// and colors. If the prefix ends on a combining character, do not include the previous character /// in the prefix. static size_t line_shared_prefix(const line_t &a, const line_t &b) { size_t idx, max = std::min(a.size(), b.size()); for (idx = 0; idx < max; idx++) { wchar_t ac = a.char_at(idx), bc = b.char_at(idx); // We're done if the text or colors are different. if (ac != bc || a.color_at(idx) != b.color_at(idx)) { if (idx > 0) { const line_t *c = nullptr; // Possible combining mark, go back until we hit _two_ printable characters or idx // of 0. if (fish_wcwidth(a.char_at(idx)) < 1) { c = &a; } else if (fish_wcwidth(b.char_at(idx)) < 1) { c = &b; } if (c) { while (idx > 1 && (fish_wcwidth(c->char_at(idx - 1)) < 1 || fish_wcwidth(c->char_at(idx)) < 1)) idx--; if (idx == 1 && fish_wcwidth(c->char_at(idx)) < 1) idx = 0; } } break; } } return idx; } // We are about to output one or more characters onto the screen at the given x, y. If we are at the // end of previous line, and the previous line is marked as soft wrapping, then tweak the screen so // we believe we are already in the target position. This lets the terminal take care of wrapping, // which means that if you copy and paste the text, it won't have an embedded newline. static bool perform_any_impending_soft_wrap(screen_t *scr, int x, int y) { if (x == scr->soft_wrap_location.x && y == scr->soft_wrap_location.y) { //!OCLINT // We can soft wrap; but do we want to? if (scr->desired.line(y - 1).is_soft_wrapped && allow_soft_wrap()) { // Yes. Just update the actual cursor; that will cause us to elide emitting the commands // to move here, so we will just output on "one big line" (which the terminal soft // wraps. scr->actual.cursor = scr->soft_wrap_location; } } return false; } /// Make sure we don't soft wrap. static void invalidate_soft_wrap(screen_t *scr) { scr->soft_wrap_location = INVALID_LOCATION; } /// Update the screen to match the desired output. static void s_update(screen_t *scr, const wcstring &left_prompt, const wcstring &right_prompt) { const environment_t &vars = env_stack_t::principal(); const scoped_buffer_t buffering(*scr); const size_t left_prompt_width = calc_prompt_layout(left_prompt, cached_layouts).last_line_width; const size_t right_prompt_width = calc_prompt_layout(right_prompt, cached_layouts).last_line_width; int screen_width = common_get_width(); // Figure out how many following lines we need to clear (probably 0). size_t actual_lines_before_reset = scr->actual_lines_before_reset; scr->actual_lines_before_reset = 0; bool need_clear_lines = scr->need_clear_lines; bool need_clear_screen = scr->need_clear_screen; bool has_cleared_screen = false; if (scr->actual_width != screen_width) { // Ensure we don't issue a clear screen for the very first output, to avoid issue #402. if (scr->actual_width != SCREEN_WIDTH_UNINITIALIZED) { need_clear_screen = true; s_move(scr, 0, 0); s_reset(scr, screen_reset_current_line_contents); need_clear_lines = need_clear_lines || scr->need_clear_lines; need_clear_screen = need_clear_screen || scr->need_clear_screen; } scr->actual_width = screen_width; } scr->need_clear_lines = false; scr->need_clear_screen = false; // Determine how many lines have stuff on them; we need to clear lines with stuff that we don't // want. const size_t lines_with_stuff = std::max(actual_lines_before_reset, scr->actual.line_count()); if (left_prompt != scr->actual_left_prompt) { s_move(scr, 0, 0); s_write_str(scr, left_prompt.c_str()); scr->actual_left_prompt = left_prompt; scr->actual.cursor.x = (int)left_prompt_width; } for (size_t i = 0; i < scr->desired.line_count(); i++) { const line_t &o_line = scr->desired.line(i); line_t &s_line = scr->actual.create_line(i); size_t start_pos = i == 0 ? left_prompt_width : 0; int current_width = 0; bool has_cleared_line = false; // If this is the last line, maybe we should clear the screen. const bool should_clear_screen_this_line = need_clear_screen && i + 1 == scr->desired.line_count() && clr_eos != NULL; // Note that skip_remaining is a width, not a character count. size_t skip_remaining = start_pos; const size_t shared_prefix = line_shared_prefix(o_line, s_line); size_t skip_prefix = shared_prefix; if (shared_prefix < o_line.indentation) { if (o_line.indentation > s_line.indentation && !has_cleared_screen && clr_eol && clr_eos) { s_set_color(scr, vars, highlight_spec_t{}); s_move(scr, 0, (int)i); s_write_mbs(scr, should_clear_screen_this_line ? clr_eos : clr_eol); has_cleared_screen = should_clear_screen_this_line; has_cleared_line = true; } skip_prefix = o_line.indentation; } // Compute how much we should skip. At a minimum we skip over the prompt. But also skip // over the shared prefix of what we want to output now, and what we output before, to // avoid repeatedly outputting it. if (skip_prefix > 0) { size_t skip_width = shared_prefix < skip_prefix ? skip_prefix : fish_wcswidth(&o_line.text.at(0), shared_prefix); if (skip_width > skip_remaining) skip_remaining = skip_width; } if (!should_clear_screen_this_line) { // If we're soft wrapped, and if we're going to change the first character of the next // line, don't skip over the last two characters so that we maintain soft-wrapping. if (o_line.is_soft_wrapped && i + 1 < scr->desired.line_count()) { bool next_line_will_change = true; if (i + 1 < scr->actual.line_count()) { //!OCLINT if (line_shared_prefix(scr->desired.line(i + 1), scr->actual.line(i + 1)) > 0) { next_line_will_change = false; } } if (next_line_will_change) { skip_remaining = std::min(skip_remaining, (size_t)(scr->actual_width - 2)); } } } // Skip over skip_remaining width worth of characters. size_t j = 0; for (; j < o_line.size(); j++) { size_t width = fish_wcwidth_min_0(o_line.char_at(j)); if (skip_remaining < width) break; skip_remaining -= width; current_width += width; } // Skip over zero-width characters (e.g. combining marks at the end of the prompt). for (; j < o_line.size(); j++) { int width = fish_wcwidth_min_0(o_line.char_at(j)); if (width > 0) break; } // Now actually output stuff. for (;; j++) { bool done = j >= o_line.size(); // Clear the screen if we have not done so yet. // If we are about to output into the last column, clear the screen first. If we clear // the screen after we output into the last column, it can erase the last character due // to the sticky right cursor. If we clear the screen too early, we can defeat soft // wrapping. if (should_clear_screen_this_line && !has_cleared_screen && (done || j + 1 == (size_t)screen_width)) { s_move(scr, current_width, (int)i); s_write_mbs(scr, clr_eos); has_cleared_screen = true; } if (done) break; perform_any_impending_soft_wrap(scr, current_width, (int)i); s_move(scr, current_width, (int)i); s_set_color(scr, vars, o_line.color_at(j)); auto width = fish_wcwidth_min_0(o_line.char_at(j)); s_write_char(scr, o_line.char_at(j), width); current_width += width; } bool clear_remainder = false; // Clear the remainder of the line if we need to clear and if we didn't write to the end of // the line. If we did write to the end of the line, the "sticky right edge" (as part of // auto_right_margin) means that we'll be clearing the last character we wrote! if (has_cleared_screen || has_cleared_line) { // Already cleared everything. clear_remainder = false; } else if (need_clear_lines && current_width < screen_width) { clear_remainder = true; } else if (right_prompt_width < scr->last_right_prompt_width) { clear_remainder = true; } else { // This wcswidth shows up strong in the profile. // Only do it if the previous line could conceivably be wider. // That means if it is a prefix of the current one we can skip it. if (s_line.text.size() != shared_prefix) { int prev_width = fish_wcswidth(&s_line.text.at(0), s_line.text.size()); clear_remainder = prev_width > current_width; } } if (clear_remainder && clr_eol) { s_set_color(scr, vars, highlight_spec_t{}); s_move(scr, current_width, (int)i); s_write_mbs(scr, clr_eol); } // Output any rprompt if this is the first line. if (i == 0 && right_prompt_width > 0) { //!OCLINT(Use early exit/continue) s_move(scr, (int)(screen_width - right_prompt_width), (int)i); s_set_color(scr, vars, highlight_spec_t{}); s_write_str(scr, right_prompt.c_str()); scr->actual.cursor.x += right_prompt_width; // We output in the last column. Some terms (Linux) push the cursor further right, past // the window. Others make it "stick." Since we don't really know which is which, issue // a cr so it goes back to the left. // // However, if the user is resizing the window smaller, then it's possible the cursor // wrapped. If so, then a cr will go to the beginning of the following line! So instead // issue a bunch of "move left" commands to get back onto the line, and then jump to the // front of it. s_move(scr, scr->actual.cursor.x - (int)right_prompt_width, scr->actual.cursor.y); s_write_str(scr, L"\r"); scr->actual.cursor.x = 0; } } // Clear remaining lines (if any) if we haven't cleared the screen. if (!has_cleared_screen && scr->desired.line_count() < lines_with_stuff && clr_eol) { s_set_color(scr, vars, highlight_spec_t{}); for (size_t i = scr->desired.line_count(); i < lines_with_stuff; i++) { s_move(scr, 0, (int)i); s_write_mbs(scr, clr_eol); } } s_move(scr, scr->desired.cursor.x, scr->desired.cursor.y); s_set_color(scr, vars, highlight_spec_t{}); // We have now synced our actual screen against our desired screen. Note that this is a big // assignment! scr->actual = scr->desired; scr->last_right_prompt_width = right_prompt_width; } /// Returns true if we are using a dumb terminal. static bool is_dumb() { if (!cur_term) return true; return !cursor_up || !cursor_down || !cursor_left || !cursor_right; } struct screen_layout_t { // The left prompt that we're going to use. wcstring left_prompt; // How much space to leave for it. size_t left_prompt_space; // The right prompt. wcstring right_prompt; // The autosuggestion. wcstring autosuggestion; // Whether the prompts get their own line or not. bool prompts_get_own_line; }; // Given a vector whose indexes are offsets and whose values are the widths of the string if // truncated at that offset, return the offset that fits in the given width. Returns // width_by_offset.size() - 1 if they all fit. The first value in width_by_offset is assumed to be // 0. static size_t truncation_offset_for_width(const std::vector &width_by_offset, size_t max_width) { assert(!width_by_offset.empty() && width_by_offset.at(0) == 0); size_t i; for (i = 1; i < width_by_offset.size(); i++) { if (width_by_offset.at(i) > max_width) break; } // i is the first index that did not fit; i-1 is therefore the last that did. return i - 1; } static screen_layout_t compute_layout(screen_t *s, size_t screen_width, const wcstring &left_prompt_str, const wcstring &right_prompt_str, const wcstring &commandline, const wcstring &autosuggestion_str) { UNUSED(s); screen_layout_t result = {}; // Start by ensuring that the prompts themselves can fit. const wchar_t *left_prompt = left_prompt_str.c_str(); const wchar_t *right_prompt = right_prompt_str.c_str(); const wchar_t *autosuggestion = autosuggestion_str.c_str(); prompt_layout_t left_prompt_layout = calc_prompt_layout(left_prompt_str, cached_layouts); prompt_layout_t right_prompt_layout = calc_prompt_layout(right_prompt_str, cached_layouts); size_t left_prompt_width = left_prompt_layout.last_line_width; size_t right_prompt_width = right_prompt_layout.last_line_width; if (left_prompt_layout.max_line_width > screen_width) { // If we have a multi-line prompt, see if the longest line fits; if not neuter the whole // left prompt. left_prompt = L"> "; left_prompt_width = 2; } if (left_prompt_width + right_prompt_width >= screen_width) { // Nix right_prompt. right_prompt = L""; right_prompt_width = 0; } if (left_prompt_width + right_prompt_width >= screen_width) { // Still doesn't fit, neuter left_prompt. left_prompt = L"> "; left_prompt_width = 2; } // Now we should definitely fit. assert(left_prompt_width + right_prompt_width < screen_width); // Get the width of the first line, and if there is more than one line. bool multiline = false; size_t first_line_width = 0; for (size_t i = 0; i < commandline.size(); i++) { wchar_t c = commandline.at(i); if (c == L'\n') { multiline = true; break; } else { first_line_width += fish_wcwidth_min_0(c); } } const size_t first_command_line_width = first_line_width; // If we have more than one line, ensure we have no autosuggestion. size_t autosuggest_total_width = 0; std::vector autosuggest_truncated_widths; if (multiline) { autosuggestion = L""; } else { autosuggest_truncated_widths.reserve(1 + autosuggestion_str.size()); for (size_t i = 0; autosuggestion[i] != L'\0'; i++) { autosuggest_truncated_widths.push_back(autosuggest_total_width); autosuggest_total_width += fish_wcwidth_min_0(autosuggestion[i]); } } // Here are the layouts we try in turn: // // 1. Left prompt visible, right prompt visible, command line visible, autosuggestion visible. // // 2. Left prompt visible, right prompt visible, command line visible, autosuggestion truncated // (possibly to zero). // // 3. Left prompt visible, right prompt hidden, command line visible, autosuggestion hidden. // // 4. Newline separator (left prompt visible, right prompt hidden, command line visible, // autosuggestion visible). // // A remark about layout #4: if we've pushed the command line to a new line, why can't we draw // the right prompt? The issue is resizing: if you resize the window smaller, then the right // prompt will wrap to the next line. This means that we can't go back to the line that we were // on, and things turn to chaos very quickly. size_t calculated_width; bool done = false; // Case 1 if (!done) { calculated_width = left_prompt_width + right_prompt_width + first_command_line_width + autosuggest_total_width; if (calculated_width < screen_width) { result.left_prompt = left_prompt; result.left_prompt_space = left_prompt_width; result.right_prompt = right_prompt; result.autosuggestion = autosuggestion; done = true; } } // Case 2. Note that we require strict inequality so that there's always at least one space // between the left edge and the rprompt. if (!done) { calculated_width = left_prompt_width + right_prompt_width + first_command_line_width; if (calculated_width < screen_width) { result.left_prompt = left_prompt; result.left_prompt_space = left_prompt_width; result.right_prompt = right_prompt; // Need at least two characters to show an autosuggestion. size_t available_autosuggest_space = screen_width - (left_prompt_width + right_prompt_width + first_command_line_width); if (autosuggest_total_width > 0 && available_autosuggest_space > 2) { size_t truncation_offset = truncation_offset_for_width( autosuggest_truncated_widths, available_autosuggest_space - 2); result.autosuggestion = wcstring(autosuggestion, truncation_offset); result.autosuggestion.push_back(get_ellipsis_char()); } done = true; } } // Case 3 if (!done) { calculated_width = left_prompt_width + first_command_line_width; if (calculated_width < screen_width) { result.left_prompt = left_prompt; result.left_prompt_space = left_prompt_width; done = true; } } // Case 4 if (!done) { result.left_prompt = left_prompt; result.left_prompt_space = left_prompt_width; // See remark about for why we can't use the right prompt here result.right_prompt = // right_prompt. If the command wraps, and the prompt is not short, place the command on its // own line. A short prompt is 33% or less of the terminal's width. const size_t prompt_percent_width = (100 * left_prompt_width) / screen_width; if (left_prompt_width + first_command_line_width + 1 > screen_width && prompt_percent_width > 33) { result.prompts_get_own_line = true; } } return result; } void s_write(screen_t *s, const wcstring &left_prompt, const wcstring &right_prompt, const wcstring &commandline, size_t explicit_len, const std::vector &colors, const std::vector &indent, size_t cursor_pos, const page_rendering_t &pager, bool cursor_is_within_pager) { screen_data_t::cursor_t cursor_arr; // Turn the command line into the explicit portion and the autosuggestion. const wcstring explicit_command_line = commandline.substr(0, explicit_len); const wcstring autosuggestion = commandline.substr(explicit_len); // If we are using a dumb terminal, don't try any fancy stuff, just print out the text. // right_prompt not supported. if (is_dumb()) { const std::string prompt_narrow = wcs2string(left_prompt); const std::string command_line_narrow = wcs2string(explicit_command_line); write_loop(STDOUT_FILENO, "\r", 1); write_loop(STDOUT_FILENO, prompt_narrow.c_str(), prompt_narrow.size()); write_loop(STDOUT_FILENO, command_line_narrow.c_str(), command_line_narrow.size()); return; } s_check_status(s); const size_t screen_width = common_get_width(); // Completely ignore impossibly small screens. if (screen_width < 4) { return; } // Compute a layout. const screen_layout_t layout = compute_layout(s, screen_width, left_prompt, right_prompt, explicit_command_line, autosuggestion); // Determine whether, if we have an autosuggestion, it was truncated. s->autosuggestion_is_truncated = !autosuggestion.empty() && autosuggestion != layout.autosuggestion; // Clear the desired screen. s->desired.resize(0); s->desired.cursor.x = s->desired.cursor.y = 0; // Append spaces for the left prompt. for (size_t i = 0; i < layout.left_prompt_space; i++) { s_desired_append_char(s, L' ', highlight_spec_t{}, 0, layout.left_prompt_space, 1); } // If overflowing, give the prompt its own line to improve the situation. size_t first_line_prompt_space = layout.left_prompt_space; if (layout.prompts_get_own_line) { s_desired_append_char(s, L'\n', highlight_spec_t{}, 0, 0, 0); first_line_prompt_space = 0; } // Reconstruct the command line. wcstring effective_commandline = explicit_command_line + layout.autosuggestion; // Output the command line. size_t i; for (i = 0; i < effective_commandline.size(); i++) { // Grab the current cursor's x,y position if this character matches the cursor's offset. if (!cursor_is_within_pager && i == cursor_pos) { cursor_arr = s->desired.cursor; } s_desired_append_char(s, effective_commandline.at(i), colors[i], indent[i], first_line_prompt_space, fish_wcwidth_min_0(effective_commandline.at(i))); } // Cursor may have been at the end too. if (!cursor_is_within_pager && i == cursor_pos) { cursor_arr = s->desired.cursor; } // Now that we've output everything, set the cursor to the position that we saved in the loop // above. s->desired.cursor = cursor_arr; if (cursor_is_within_pager) { s->desired.cursor.x = (int)cursor_pos; s->desired.cursor.y = (int)s->desired.line_count(); } // Append pager_data (none if empty). s->desired.append_lines(pager.screen_data); s_update(s, layout.left_prompt, layout.right_prompt); s_save_status(s); } void s_reset(screen_t *s, screen_reset_mode_t mode) { assert(s && "Null screen"); bool abandon_line = false, repaint_prompt = false, clear_to_eos = false; switch (mode) { case screen_reset_current_line_contents: { break; } case screen_reset_current_line_and_prompt: { repaint_prompt = true; break; } case screen_reset_abandon_line: { abandon_line = true; repaint_prompt = true; break; } case screen_reset_abandon_line_and_clear_to_end_of_screen: { abandon_line = true; repaint_prompt = true; clear_to_eos = true; break; } } // If we're abandoning the line, we must also be repainting the prompt. assert(!abandon_line || repaint_prompt); // If we are not abandoning the line, we need to remember how many lines we had output to, so we // can clear the remaining lines in the next call to s_update. This prevents leaving junk // underneath the cursor when resizing a window wider such that it reduces our desired line // count. if (!abandon_line) { s->actual_lines_before_reset = std::max(s->actual_lines_before_reset, s->actual.line_count()); } if (repaint_prompt && !abandon_line) { // If the prompt is multi-line, we need to move up to the prompt's initial line. We do this // by lying to ourselves and claiming that we're really below what we consider "line 0" // (which is the last line of the prompt). This will cause us to move up to try to get back // to line 0, but really we're getting back to the initial line of the prompt. const size_t prompt_line_count = calc_prompt_lines(s->actual_left_prompt); assert(prompt_line_count >= 1); s->actual.cursor.y += (prompt_line_count - 1); } else if (abandon_line) { s->actual.cursor.y = 0; } if (repaint_prompt) s->actual_left_prompt.clear(); s->actual.resize(0); s->need_clear_lines = true; s->need_clear_screen = s->need_clear_screen || clear_to_eos; if (abandon_line) { // Do the PROMPT_SP hack. int screen_width = common_get_width(); wcstring abandon_line_string; abandon_line_string.reserve(screen_width + 32); // should be enough // Don't need to check for fish_wcwidth errors; this is done when setting up // omitted_newline_char in common.cpp. int non_space_width = get_omitted_newline_width(); // We do `>` rather than `>=` because the code below might require one extra space. if (screen_width > non_space_width) { bool justgrey = true; if (cur_term && enter_dim_mode) { std::string dim = tparm((char *)enter_dim_mode); if (!dim.empty()) { // Use dim if they have it, so the color will be based on their actual normal // color and the background of the termianl. abandon_line_string.append(str2wcstring(dim)); justgrey = false; } } if (cur_term && justgrey && set_a_foreground) { if (max_colors >= 238) { // draw the string in a particular grey abandon_line_string.append(str2wcstring(tparm((char *)set_a_foreground, 237))); } else if (max_colors >= 9) { // bright black (the ninth color, looks grey) abandon_line_string.append(str2wcstring(tparm((char *)set_a_foreground, 8))); } else if (max_colors >= 2 && enter_bold_mode) { // we might still get that color by setting black and going bold for bright abandon_line_string.append(str2wcstring(tparm((char *)enter_bold_mode))); abandon_line_string.append(str2wcstring(tparm((char *)set_a_foreground, 0))); } } abandon_line_string.append(get_omitted_newline_str()); if (cur_term && exit_attribute_mode) { abandon_line_string.append(str2wcstring( tparm((char *)exit_attribute_mode))); // normal text ANSI escape sequence } int newline_glitch_width = term_has_xn ? 0 : 1; abandon_line_string.append(screen_width - non_space_width - newline_glitch_width, L' '); } abandon_line_string.push_back(L'\r'); abandon_line_string.append(get_omitted_newline_str()); // Now we are certainly on a new line. But we may have dropped the omitted newline char on // it. So append enough spaces to overwrite the omitted newline char, and then clear all the // spaces from the new line. abandon_line_string.append(non_space_width, L' '); abandon_line_string.push_back(L'\r'); // Clear entire line. Zsh doesn't do this. Fish added this with commit 4417a6ee: If you have // a prompt preceded by a new line, you'll get a line full of spaces instead of an empty // line above your prompt. This doesn't make a difference in normal usage, but copying and // pasting your terminal log becomes a pain. This commit clears that line, making it an // actual empty line. if (!is_dumb() && clr_eol) { abandon_line_string.append(str2wcstring(clr_eol)); } const std::string narrow_abandon_line_string = wcs2string(abandon_line_string); write_loop(STDOUT_FILENO, narrow_abandon_line_string.c_str(), narrow_abandon_line_string.size()); s->actual.cursor.x = 0; } if (!abandon_line) { // This should prevent resetting the cursor position during the next repaint. write_loop(STDOUT_FILENO, "\r", 1); s->actual.cursor.x = 0; } fstat(1, &s->prev_buff_1); fstat(2, &s->prev_buff_2); } void screen_force_clear_to_end() { if (clr_eos) { writembs(outputter_t::stdoutput(), clr_eos); } } screen_t::screen_t() : outp_(outputter_t::stdoutput()), desired(), actual(), actual_left_prompt(), last_right_prompt_width(), actual_width(SCREEN_WIDTH_UNINITIALIZED), soft_wrap_location(INVALID_LOCATION), autosuggestion_is_truncated(false), need_clear_lines(false), need_clear_screen(false), actual_lines_before_reset(0), prev_buff_1(), prev_buff_2(), post_buff_1(), post_buff_2() {}