// Utilities for io redirection. #include "config.h" // IWYU pragma: keep #include "io.h" #include #include #include #include #include #include #include "common.h" #include "exec.h" #include "fallback.h" // IWYU pragma: keep #include "iothread.h" #include "redirection.h" #include "wutil.h" // IWYU pragma: keep io_data_t::~io_data_t() = default; void io_close_t::print() const { std::fwprintf(stderr, L"close %d\n", fd); } void io_fd_t::print() const { std::fwprintf(stderr, L"FD map %d -> %d\n", old_fd, fd); } void io_file_t::print() const { std::fwprintf(stderr, L"file (%ls)\n", filename.c_str()); } void io_pipe_t::print() const { std::fwprintf(stderr, L"pipe {%d} (input: %s)\n", pipe_fd(), is_input_ ? "yes" : "no"); } void io_bufferfill_t::print() const { std::fwprintf(stderr, L"bufferfill {%d}\n", write_fd_.fd()); } void io_buffer_t::append_from_stream(const output_stream_t &stream) { const separated_buffer_t &input = stream.buffer(); if (input.elements().empty()) return; scoped_lock locker(append_lock_); if (buffer_.discarded()) return; if (input.discarded()) { buffer_.set_discard(); return; } buffer_.append_wide_buffer(input); } void io_buffer_t::run_background_fillthread(autoclose_fd_t readfd) { // Here we are running the background fillthread, executing in a background thread. // Our plan is: // 1. poll via select() until the fd is readable. // 2. Acquire the append lock. // 3. read until EAGAIN (would block), appending // 4. release the lock // The purpose of holding the lock around the read calls is to ensure that data from background // processes isn't weirdly interspersed with data directly transferred (from a builtin to a // buffer). const int fd = readfd.fd(); // 100 msec poll rate. Note that in most cases, the write end of the pipe will be closed so // select() will return; the polling is important only for weird cases like a background process // launched in a command substitution. const long poll_timeout_usec = 100000; struct timeval tv = {}; tv.tv_usec = poll_timeout_usec; bool shutdown = false; while (!shutdown) { bool readable = false; // Poll if our fd is readable. // Do this even if the shutdown flag is set. It's important we wait for the fd at least // once. For short-lived processes, it's possible for the process to execute, produce output // (fits in the pipe buffer) and be reaped before we are even scheduled. So always wait at // least once on the fd. Note that doesn't mean we will wait for the full poll duration; // typically what will happen is our pipe will be widowed and so this will return quickly. // It's only for weird cases (e.g. a background process launched inside a command // substitution) that we'll wait out the entire poll time. fd_set fds; FD_ZERO(&fds); FD_SET(fd, &fds); int ret = select(fd + 1, &fds, nullptr, nullptr, &tv); // select(2) is allowed to (and does) update `tv` to indicate how much time was left, so we // need to restore the desired value each time. tv.tv_usec = poll_timeout_usec; readable = ret > 0; if (ret < 0 && errno != EINTR) { // Surprising error. wperror(L"select"); return; } // Only check the shutdown flag if we timed out. // It's important that if select() indicated we were readable, that we call select() again // allowing it to time out. Note the typical case is that the fd will be closed, in which // case select will return immediately. if (!readable) { shutdown = this->shutdown_fillthread_; } if (readable || shutdown) { // Now either our fd is readable, or we have set the shutdown flag. // Either way acquire the lock and read until we reach EOF, or EAGAIN / EINTR. scoped_lock locker(append_lock_); ssize_t ret; do { errno = 0; char buff[4096]; ret = read(fd, buff, sizeof buff); if (ret > 0) { buffer_.append(&buff[0], &buff[ret]); } else if (ret == 0) { shutdown = true; } else if (ret == -1 && errno == 0) { // No specific error. We assume we just return, // since that's what we do in read_blocked. return; } else if (errno != EINTR && errno != EAGAIN) { wperror(L"read"); return; } } while (ret > 0); } } assert(shutdown && "Should only exit loop if shutdown flag is set"); } void io_buffer_t::begin_background_fillthread(autoclose_fd_t fd) { ASSERT_IS_MAIN_THREAD(); assert(!fillthread_ && "Already have a fillthread"); // We want our background thread to own the fd but it's not easy to move into a std::function. // Use a shared_ptr. auto fdref = move_to_sharedptr(std::move(fd)); // Our function to read until the receiver is closed. // It's OK to capture 'this' by value because 'this' owns the background thread and joins it // before dtor. std::function func = [this, fdref]() { this->run_background_fillthread(std::move(*fdref)); }; pthread_t fillthread{}; if (!make_pthread(&fillthread, std::move(func))) { wperror(L"make_pthread"); } fillthread_ = fillthread; } void io_buffer_t::complete_background_fillthread() { ASSERT_IS_MAIN_THREAD(); assert(fillthread_ && "Should have a fillthread"); shutdown_fillthread_ = true; void *ignored = nullptr; int err = pthread_join(*fillthread_, &ignored); DIE_ON_FAILURE(err); fillthread_.reset(); } shared_ptr io_bufferfill_t::create(const io_chain_t &conflicts, size_t buffer_limit) { // Construct our pipes. auto pipes = make_autoclose_pipes(conflicts); if (!pipes) { return nullptr; } // Our buffer will read from the read end of the pipe. This end must be non-blocking. This is // because our fillthread needs to poll to decide if it should shut down, and also accept input // from direct buffer transfers. if (make_fd_nonblocking(pipes->read.fd())) { debug(1, PIPE_ERROR); wperror(L"fcntl"); return nullptr; } // Our fillthread gets the read end of the pipe; out_pipe gets the write end. auto buffer = std::make_shared(buffer_limit); buffer->begin_background_fillthread(std::move(pipes->read)); return std::make_shared(std::move(pipes->write), buffer); } std::shared_ptr io_bufferfill_t::finish(std::shared_ptr &&filler) { // The io filler is passed in. This typically holds the only instance of the write side of the // pipe used by the buffer's fillthread (except for that side held by other processes). Get the // buffer out of the bufferfill and clear the shared_ptr; this will typically widow the pipe. // Then allow the buffer to finish. assert(filler && "Null pointer in finish"); auto buffer = filler->buffer(); filler.reset(); buffer->complete_background_fillthread(); return buffer; } io_pipe_t::~io_pipe_t() = default; io_bufferfill_t::~io_bufferfill_t() = default; io_buffer_t::~io_buffer_t() { assert(!fillthread_ && "io_buffer_t destroyed with outstanding fillthread"); } void io_chain_t::remove(const shared_ptr &element) { // See if you can guess why std::find doesn't work here. for (io_chain_t::iterator iter = this->begin(); iter != this->end(); ++iter) { if (*iter == element) { this->erase(iter); break; } } } void io_chain_t::push_back(io_data_ref_t element) { // Ensure we never push back NULL. assert(element.get() != nullptr); std::vector::push_back(std::move(element)); } void io_chain_t::append(const io_chain_t &chain) { assert(&chain != this && "Cannot append self to self"); this->insert(this->end(), chain.begin(), chain.end()); } #if 0 // This isn't used so the lint tools were complaining about its presence. I'm keeping it in the // source because it could be useful for debugging. void io_print(const io_chain_t &chain) { if (chain.empty()) { std::fwprintf(stderr, L"Empty chain %p\n", &chain); return; } std::fwprintf(stderr, L"Chain %p (%ld items):\n", &chain, (long)chain.size()); for (size_t i=0; i < chain.size(); i++) { const shared_ptr &io = chain.at(i); if (io.get() == nullptr) { std::fwprintf(stderr, L"\t(null)\n"); } else { std::fwprintf(stderr, L"\t%lu: fd:%d, ", (unsigned long)i, io->fd); io->print(); } } } #endif int move_fd_to_unused(int fd, const io_chain_t &io_chain, bool cloexec) { if (fd < 0 || io_chain.io_for_fd(fd).get() == nullptr) { return fd; } // We have fd >= 0, and it's a conflict. dup it and recurse. Note that we recurse before // anything is closed; this forces the kernel to give us a new one (or report fd exhaustion). int new_fd = fd; int tmp_fd; do { tmp_fd = dup(fd); } while (tmp_fd < 0 && errno == EINTR); assert(tmp_fd != fd); if (tmp_fd < 0) { // Likely fd exhaustion. new_fd = -1; } else { // Ok, we have a new candidate fd. Recurse. If we get a valid fd, either it's the same as // what we gave it, or it's a new fd and what we gave it has been closed. If we get a // negative value, the fd also has been closed. if (cloexec) set_cloexec(tmp_fd); new_fd = move_fd_to_unused(tmp_fd, io_chain); } // We're either returning a new fd or an error. In both cases, we promise to close the old one. assert(new_fd != fd); int saved_errno = errno; exec_close(fd); errno = saved_errno; return new_fd; } static bool pipe_avoid_conflicts_with_io_chain(int fds[2], const io_chain_t &ios) { bool success = true; for (int i = 0; i < 2; i++) { fds[i] = move_fd_to_unused(fds[i], ios); if (fds[i] < 0) { success = false; break; } } // If any fd failed, close all valid fds. if (!success) { int saved_errno = errno; for (int i = 0; i < 2; i++) { if (fds[i] >= 0) { exec_close(fds[i]); fds[i] = -1; } } errno = saved_errno; } return success; } maybe_t make_autoclose_pipes(const io_chain_t &ios) { int pipes[2] = {-1, -1}; if (pipe(pipes) < 0) { debug(1, PIPE_ERROR); wperror(L"pipe"); return none(); } set_cloexec(pipes[0]); set_cloexec(pipes[1]); if (!pipe_avoid_conflicts_with_io_chain(pipes, ios)) { // The pipes are closed on failure here. return none(); } autoclose_pipes_t result; result.read = autoclose_fd_t(pipes[0]); result.write = autoclose_fd_t(pipes[1]); return {std::move(result)}; } shared_ptr io_chain_t::io_for_fd(int fd) const { for (auto iter = rbegin(); iter != rend(); ++iter) { const auto &data = *iter; if (data->fd == fd) { return data; } } return nullptr; }