//! Provides the "linkage" between an ast and actual execution structures (job_t, etc.).
use crate::ast::{
self, BlockStatementHeaderVariant, Keyword, Leaf, List, Node, StatementVariant, Token,
};
use crate::builtins;
use crate::builtins::shared::{
builtin_exists, truncate_at_nul, BUILTIN_ERR_VARNAME, STATUS_CMD_ERROR, STATUS_CMD_OK,
STATUS_CMD_UNKNOWN, STATUS_EXPAND_ERROR, STATUS_ILLEGAL_CMD, STATUS_INVALID_ARGS,
STATUS_NOT_EXECUTABLE, STATUS_UNMATCHED_WILDCARD,
};
use crate::common::{
escape, scoped_push_replacer, should_suppress_stderr_for_tests, valid_var_name, ScopeGuard,
ScopeGuarding,
};
use crate::complete::CompletionList;
use crate::env::{EnvMode, EnvStackSetResult, EnvVar, EnvVarFlags, Environment, Statuses};
use crate::event::{self, Event};
use crate::exec::exec_job;
use crate::expand::{
expand_one, expand_string, expand_to_command_and_args, ExpandFlags, ExpandResultCode,
};
use crate::flog::FLOG;
use crate::function;
use crate::io::{IoChain, IoStreams, OutputStream, StringOutputStream};
use crate::job_group::JobGroup;
use crate::operation_context::OperationContext;
use crate::parse_constants::{
parse_error_offset_source_start, ParseError, ParseErrorCode, ParseErrorList, ParseKeyword,
ParseTokenType, StatementDecoration, CALL_STACK_LIMIT_EXCEEDED_ERR_MSG,
ERROR_NO_BRACE_GROUPING, ERROR_TIME_BACKGROUND, FAILED_EXPANSION_VARIABLE_NAME_ERR_MSG,
ILLEGAL_FD_ERR_MSG, INFINITE_FUNC_RECURSION_ERR_MSG, WILDCARD_ERR_MSG,
};
use crate::parse_tree::{NodeRef, ParsedSourceRef};
use crate::parse_util::parse_util_unescape_wildcards;
use crate::parser::{Block, BlockId, BlockType, LoopStatus, Parser, ProfileItem};
use crate::path::{path_as_implicit_cd, path_try_get_path};
use crate::pointer::ConstPointer;
use crate::proc::{
get_job_control_mode, job_reap, no_exec, ConcreteAssignment, Job, JobControl, JobProperties,
JobRef, Process, ProcessList, ProcessType,
};
use crate::reader::fish_is_unwinding_for_exit;
use crate::redirection::{RedirectionMode, RedirectionSpec, RedirectionSpecList};
use crate::signal::Signal;
use crate::timer::push_timer;
use crate::tokenizer::{variable_assignment_equals_pos, PipeOrRedir};
use crate::trace::{trace_if_enabled, trace_if_enabled_with_args};
use crate::wchar::{wstr, WString, L};
use crate::wchar_ext::WExt;
use crate::wildcard::wildcard_match;
use crate::wutil::{wgettext, wgettext_maybe_fmt};
use libc::{c_int, ENOTDIR, EXIT_SUCCESS, STDERR_FILENO, STDOUT_FILENO};
use std::cell::RefCell;
use std::io::ErrorKind;
use std::rc::Rc;
use std::sync::atomic::Ordering;
/// An eval_result represents evaluation errors including wildcards which failed to match, syntax
/// errors, or other expansion errors. It also tracks when evaluation was skipped due to signal
/// cancellation. Note it does not track the exit status of commands.
#[derive(Eq, PartialEq)]
pub enum EndExecutionReason {
/// Evaluation was successfull.
ok,
/// Evaluation was skipped due to control flow (break or return).
control_flow,
/// Evaluation was cancelled, e.g. because of a signal or exit.
cancelled,
/// A parse error or failed expansion (but not an error exit status from a command).
error,
}
#[derive(Default)]
pub struct ParseExecutionContext {
pstree: RefCell>,
// If set, one of our processes received a cancellation signal (INT or QUIT) so we are
// unwinding.
cancel_signal: RefCell >,
// The currently executing job node, used to indicate the line number.
// todo!("use NonNull instead of ConstPointer?");
executing_job_node: RefCell >>,
// Cached line number information.
cached_lineno: RefCell,
/// The block IO chain.
/// For example, in `begin; foo ; end < file.txt` this would have the 'file.txt' IO.
block_io: RefCell,
}
#[derive(Default)]
struct CachedLineno {
offset: usize,
count: usize,
}
impl ParseExecutionContext {
pub fn swap(left: &Self, right: Self) -> Self {
left.pstree.swap(&right.pstree);
left.cancel_signal.swap(&right.cancel_signal);
left.executing_job_node.swap(&right.executing_job_node);
left.cached_lineno.swap(&right.cached_lineno);
left.block_io.swap(&right.block_io);
right
}
}
// Report an error, setting $status to \p status. Always returns
// 'end_execution_reason_t::error'.
macro_rules! report_error {
( $self:ident, $ctx:expr, $status:expr, $node:expr, $fmt:expr $(, $arg:expr )* $(,)? ) => {
report_error_formatted!($self, $ctx, $status, $node, wgettext_maybe_fmt!($fmt $(, $arg )*))
};
}
macro_rules! report_error_formatted {
( $self:ident, $ctx:expr, $status:expr, $node:expr, $text:expr $(,)? ) => {{
let r = $node.source_range();
// Create an error.
let mut error = ParseError::default();
error.source_start = r.start();
error.source_length = r.length();
error.code = ParseErrorCode::syntax; // hackish
error.text = $text;
$self.report_errors($ctx, $status, &vec![error])
}};
}
impl<'a> ParseExecutionContext {
/// Construct a context in preparation for evaluating a node in a tree, with the given block_io.
/// The execution context may access the parser and parent job group (if any) through ctx.
pub fn new(pstree: ParsedSourceRef, block_io: IoChain) -> Self {
Self {
pstree: RefCell::new(Some(pstree)),
cancel_signal: RefCell::default(),
executing_job_node: RefCell::default(),
cached_lineno: RefCell::default(),
block_io: RefCell::new(block_io),
}
}
pub fn pstree(&self) -> ParsedSourceRef {
// todo!("don't clone but expose a Ref<'_, ParsedSourceRef> or similar")
self.pstree.borrow().as_ref().unwrap().clone()
}
/// Returns the current line number, indexed from 1. Updates cached line ranges.
pub fn get_current_line_number(&self) -> Option {
let line_offset = self.line_offset_of_executing_node()?;
// The offset is 0 based; the number is 1 based.
Some(line_offset + 1)
}
/// Returns the source offset, or -1.
pub fn get_current_source_offset(&self) -> Option {
self.executing_job_node
.borrow()
.and_then(|job| job.try_source_range())
.map(|range| range.start())
}
/// Returns the source string.
pub fn get_source(&self) -> WString {
// todo!("don't clone");
self.pstree().src.clone()
}
pub fn eval_node(
&self,
ctx: &OperationContext<'_>,
node: &dyn Node,
associated_block: Option,
) -> EndExecutionReason {
match node.typ() {
ast::Type::statement => {
self.eval_statement(ctx, node.as_statement().unwrap(), associated_block)
}
ast::Type::job_list => {
self.eval_job_list(ctx, node.as_job_list().unwrap(), associated_block.unwrap())
}
_ => unreachable!(),
}
}
/// Start executing at the given node. Returns 0 if there was no error, 1 if there was an
/// error.
fn eval_statement(
&self,
ctx: &OperationContext<'_>,
statement: &'a ast::Statement,
associated_block: Option,
) -> EndExecutionReason {
// Note we only expect block-style statements here. No not statements.
let contents = &statement.contents;
match &**contents {
StatementVariant::BlockStatement(block) => {
self.run_block_statement(ctx, block, associated_block)
}
StatementVariant::IfStatement(ifstat) => {
self.run_if_statement(ctx, ifstat, associated_block)
}
StatementVariant::SwitchStatement(switchstat) => {
self.run_switch_statement(ctx, switchstat)
}
StatementVariant::DecoratedStatement(_)
| StatementVariant::NotStatement(_)
| StatementVariant::None => panic!(),
}
}
fn eval_job_list(
&self,
ctx: &OperationContext<'_>,
job_list: &'a ast::JobList,
associated_block: BlockId,
) -> EndExecutionReason {
// Check for infinite recursion: a function which immediately calls itself..
let mut func_name = WString::new();
if let Some(infinite_recursive_node) =
self.infinite_recursive_statement_in_job_list(ctx, job_list, &mut func_name)
{
// We have an infinite recursion.
return report_error!(
self,
ctx,
STATUS_CMD_ERROR.unwrap(),
infinite_recursive_node,
INFINITE_FUNC_RECURSION_ERR_MSG,
func_name
);
}
// Check for stack overflow in case of function calls (regular stack overflow) or string
// substitution blocks, which can be recursively called with eval (issue #9302).
let block_type = {
let blocks = ctx.parser().blocks();
blocks.get(associated_block).unwrap().typ()
};
if (block_type == BlockType::top && ctx.parser().function_stack_is_overflowing())
|| (block_type == BlockType::subst && ctx.parser().is_eval_depth_exceeded())
{
return report_error!(
self,
ctx,
STATUS_CMD_ERROR.unwrap(),
job_list,
CALL_STACK_LIMIT_EXCEEDED_ERR_MSG
);
}
self.run_job_list(ctx, job_list, Some(associated_block))
}
// Check to see if we should end execution.
// \return the eval result to end with, or none() to continue on.
// This will never return end_execution_reason_t::ok.
fn check_end_execution(&self, ctx: &OperationContext<'_>) -> Option {
// If one of our jobs ended with SIGINT, we stop execution.
// Likewise if fish itself got a SIGINT, or if something ran exit, etc.
if self.cancel_signal.borrow().is_some()
|| ctx.check_cancel()
|| fish_is_unwinding_for_exit()
{
return Some(EndExecutionReason::cancelled);
}
let parser = ctx.parser();
let ld = &parser.libdata().pods;
if ld.exit_current_script {
return Some(EndExecutionReason::cancelled);
}
if ld.returning {
return Some(EndExecutionReason::control_flow);
}
if ld.loop_status != LoopStatus::normals {
return Some(EndExecutionReason::control_flow);
}
None
}
fn report_errors(
&self,
ctx: &OperationContext<'_>,
status: c_int,
error_list: &ParseErrorList,
) -> EndExecutionReason {
if !ctx.check_cancel() {
if error_list.is_empty() {
FLOG!(error, "Error reported but no error text found.");
}
// Get a backtrace.
let backtrace_and_desc = ctx.parser().get_backtrace(&self.pstree().src, error_list);
// Print it.
if !should_suppress_stderr_for_tests() {
eprintf!("%s", backtrace_and_desc);
}
// Mark status.
ctx.parser().set_last_statuses(Statuses::just(status));
}
EndExecutionReason::error
}
/// Command not found support.
fn handle_command_not_found(
&self,
ctx: &OperationContext<'_>,
cmd: &wstr,
statement: &ast::DecoratedStatement,
err: std::io::Error,
) -> EndExecutionReason {
// We couldn't find the specified command. This is a non-fatal error. We want to set the exit
// status to 127, which is the standard number used by other shells like bash and zsh.
if err.kind() != ErrorKind::NotFound {
// TODO: We currently handle all errors here the same,
// but this mainly applies to EACCES. We could also feasibly get:
// ELOOP
// ENAMETOOLONG
if err.raw_os_error() == Some(ENOTDIR) {
// If the original command did not include a "/", assume we found it via $PATH.
let src = self.node_source(&statement.command);
if !src.contains('/') {
return report_error!(
self,
ctx,
STATUS_NOT_EXECUTABLE.unwrap(),
&statement.command,
concat!(
"Unknown command. A component of '%ls' is not a ",
"directory. Check your $PATH."
),
cmd
);
} else {
return report_error!(
self,
ctx,
STATUS_NOT_EXECUTABLE.unwrap(),
&statement.command,
"Unknown command. A component of '%ls' is not a directory.",
cmd
);
}
}
return report_error!(
self,
ctx,
STATUS_NOT_EXECUTABLE.unwrap(),
&statement.command,
"Unknown command. '%ls' exists but is not an executable file.",
cmd
);
}
// Handle unrecognized commands with standard command not found handler that can make better
// error messages.
let mut event_args = vec![];
{
let args = Self::get_argument_nodes_no_redirs(&statement.args_or_redirs);
let arg_result =
self.expand_arguments_from_nodes(ctx, &args, &mut event_args, Globspec::failglob);
if arg_result != EndExecutionReason::ok {
return arg_result;
}
event_args.insert(0, cmd.to_owned());
}
let mut error = WString::new();
// Redirect to stderr
let mut io = IoChain::new();
let mut list = RedirectionSpecList::new();
list.push(RedirectionSpec::new(
STDOUT_FILENO,
RedirectionMode::fd,
L!("2").to_owned(),
));
io.append_from_specs(&list, L!(""));
if function::exists(L!("fish_command_not_found"), ctx.parser()) {
let mut buffer = L!("fish_command_not_found").to_owned();
for arg in &event_args {
buffer.push(' ');
buffer.push_utfstr(&escape(arg));
}
let parser = ctx.parser();
let prev_statuses = parser.get_last_statuses();
let event = Event::generic(L!("fish_command_not_found").to_owned());
let b = parser.push_block(Block::event_block(event));
parser.eval(&buffer, &io);
parser.pop_block(b);
parser.set_last_statuses(prev_statuses);
} else {
// If we have no handler, just print it as a normal error.
error = wgettext!("Unknown command:").to_owned();
if !event_args.is_empty() {
error.push(' ');
error.push_utfstr(&escape(&event_args[0]));
}
}
if cmd.as_char_slice().first() == Some(&'{' /*}*/) {
error.push_utfstr(&wgettext!(ERROR_NO_BRACE_GROUPING));
}
// Here we want to report an error (so it shows a backtrace).
// If the handler printed text, that's already shown, so error will be empty.
report_error_formatted!(
self,
ctx,
STATUS_CMD_UNKNOWN.unwrap(),
&statement.command,
error
)
}
// Utilities
fn node_source(&self, node: &dyn ast::Node) -> WString {
// todo!("maybe don't copy")
node.source(&self.pstree().src).to_owned()
}
fn infinite_recursive_statement_in_job_list<'b>(
&self,
ctx: &OperationContext<'_>,
jobs: &'b ast::JobList,
out_func_name: &mut WString,
) -> Option<&'b ast::DecoratedStatement> {
// This is a bit fragile. It is a test to see if we are inside of function call, but
// not inside a block in that function call. If, in the future, the rules for what
// block scopes are pushed on function invocation changes, then this check will break.
let parser = ctx.parser();
let parent = {
match (parser.block_at_index(0), parser.block_at_index(1)) {
(Some(current), Some(parent))
if current.typ() == BlockType::top && parent.is_function_call() =>
{
parent
}
_ => return None, // Not within function call.
}
};
// Get the function name of the immediate block.
let forbidden_function_name = &parent.function_name;
// Get the first job in the job list.
let jc = &jobs.get(0)?;
let job = &jc.job;
// Helper to return if a statement is infinitely recursive in this function.
let statement_recurses = |stat: &'b ast::Statement| -> Option<&'b ast::DecoratedStatement> {
// Ignore non-decorated statements like `if`, etc.
let StatementVariant::DecoratedStatement(dc) = &*stat.contents else {
return None;
};
// Ignore statements with decorations like 'builtin' or 'command', since those
// are not infinite recursion. In particular that is what enables 'wrapper functions'.
if dc.decoration() != StatementDecoration::none {
return None;
}
// Check the command.
let mut cmd = self.node_source(&dc.command);
let forbidden = !cmd.is_empty()
&& expand_one(
&mut cmd,
ExpandFlags::SKIP_CMDSUBST | ExpandFlags::SKIP_VARIABLES,
ctx,
None,
)
&& &cmd == forbidden_function_name;
if forbidden {
Some(dc)
} else {
None
}
};
// Check main statement.
let infinite_recursive_statement = statement_recurses(&jc.job.statement)
// Check piped remainder.
.or_else(|| {
for c in &job.continuation {
let s = statement_recurses(&c.statement);
if s.is_some() {
return s;
}
}
None
});
if infinite_recursive_statement.is_some() {
*out_func_name = forbidden_function_name.to_owned();
}
// may be none
infinite_recursive_statement
}
// Expand a command which may contain variables, producing an expand command and possibly
// arguments. Prints an error message on error.
fn expand_command(
&self,
ctx: &OperationContext<'_>,
statement: &ast::DecoratedStatement,
out_cmd: &mut WString,
out_args: &mut Vec,
) -> EndExecutionReason {
// Here we're expanding a command, for example $HOME/bin/stuff or $randomthing. The first
// completion becomes the command itself, everything after becomes arguments. Command
// substitutions are not supported.
let mut errors = ParseErrorList::new();
// Get the unexpanded command string. We expect to always get it here.
// todo!("remove clone")
let unexp_cmd = self.node_source(&statement.command);
let pos_of_command_token = statement.command.range().unwrap().start();
// Expand the string to produce completions, and report errors.
let expand_err = expand_to_command_and_args(
&unexp_cmd,
ctx,
out_cmd,
Some(out_args),
Some(&mut errors),
false,
);
if expand_err == ExpandResultCode::error {
// Issue #5812 - the expansions were done on the command token,
// excluding prefixes such as " " or "if ".
// This means that the error positions are relative to the beginning
// of the token; we need to make them relative to the original source.
parse_error_offset_source_start(&mut errors, pos_of_command_token);
return self.report_errors(ctx, STATUS_ILLEGAL_CMD.unwrap(), &errors);
} else if expand_err == ExpandResultCode::wildcard_no_match {
return report_error!(
self,
ctx,
STATUS_UNMATCHED_WILDCARD.unwrap(),
statement,
WILDCARD_ERR_MSG,
&self.node_source(statement)
);
}
assert!(expand_err == ExpandResultCode::ok);
// Complain if the resulting expansion was empty, or expanded to an empty string.
// For no-exec it's okay, as we can't really perform the expansion.
if out_cmd.is_empty() && !no_exec() {
return report_error!(
self,
ctx,
STATUS_ILLEGAL_CMD.unwrap(),
&statement.command,
"The expanded command was empty."
);
}
EndExecutionReason::ok
}
/// Indicates whether a job is a simple block (one block, no redirections).
fn job_is_simple_block(&self, job: &ast::JobPipeline) -> bool {
// Must be no pipes.
if !job.continuation.is_empty() {
return false;
}
// Helper to check if an argument_or_redirection_list_t has no redirections.
let no_redirs =
|list: &ast::ArgumentOrRedirectionList| !list.iter().any(|val| val.is_redirection());
// Check if we're a block statement with redirections. We do it this obnoxious way to preserve
// type safety (in case we add more specific statement types).
match &*job.statement.contents {
StatementVariant::BlockStatement(stmt) => no_redirs(&stmt.args_or_redirs),
StatementVariant::SwitchStatement(stmt) => no_redirs(&stmt.args_or_redirs),
StatementVariant::IfStatement(stmt) => no_redirs(&stmt.args_or_redirs),
StatementVariant::NotStatement(_) | StatementVariant::DecoratedStatement(_) => {
// not block statements
false
}
StatementVariant::None => panic!(),
}
}
fn process_type_for_command(
&self,
ctx: &OperationContext<'_>,
statement: &ast::DecoratedStatement,
cmd: &wstr,
) -> ProcessType {
// Determine the process type, which depends on the statement decoration (command, builtin,
// etc).
match statement.decoration() {
StatementDecoration::exec => ProcessType::exec,
StatementDecoration::command => ProcessType::external,
StatementDecoration::builtin => ProcessType::builtin,
StatementDecoration::none => {
if function::exists(cmd, ctx.parser()) {
ProcessType::function
} else if builtin_exists(cmd) {
ProcessType::builtin
} else {
ProcessType::external
}
}
}
}
fn apply_variable_assignments(
&self,
ctx: &OperationContext<'_>,
mut proc: Option<&mut Process>,
variable_assignment_list: &ast::VariableAssignmentList,
block: &mut Option,
) -> EndExecutionReason {
if variable_assignment_list.is_empty() {
return EndExecutionReason::ok;
}
*block = Some(ctx.parser().push_block(Block::variable_assignment_block()));
for variable_assignment in variable_assignment_list {
let source = self.node_source(&**variable_assignment);
let equals_pos = variable_assignment_equals_pos(&source).unwrap();
let variable_name = &source[..equals_pos];
let expression = &source[equals_pos + 1..];
let mut expression_expanded = vec![];
let mut errors = ParseErrorList::new();
// TODO this is mostly copied from expand_arguments_from_nodes, maybe extract to function
let expand_ret = expand_string(
expression.to_owned(),
&mut expression_expanded,
ExpandFlags::default(),
ctx,
Some(&mut errors),
);
parse_error_offset_source_start(
&mut errors,
variable_assignment.range().unwrap().start() + equals_pos + 1,
);
match expand_ret.result {
ExpandResultCode::error => {
return self.report_errors(ctx, expand_ret.status, &errors);
}
ExpandResultCode::cancel => {
return EndExecutionReason::cancelled;
}
ExpandResultCode::wildcard_no_match // nullglob (equivalent to set)
| ExpandResultCode::ok => {}
}
let vals: Vec<_> = expression_expanded
.into_iter()
.map(|comp| comp.completion)
.collect();
if let Some(proc) = &mut proc {
proc.variable_assignments.push(ConcreteAssignment::new(
variable_name.to_owned(),
vals.clone(),
));
}
ctx.parser()
.set_var_and_fire(variable_name, EnvMode::LOCAL | EnvMode::EXPORT, vals);
}
EndExecutionReason::ok
}
// These create process_t structures from statements.
fn populate_job_process(
&self,
ctx: &OperationContext<'_>,
job: &mut Job,
proc: &mut Process,
statement: &ast::Statement,
variable_assignments: &ast::VariableAssignmentList,
) -> EndExecutionReason {
// Get the "specific statement" which is boolean / block / if / switch / decorated.
let specific_statement = &statement.contents;
let mut block = None;
let result =
self.apply_variable_assignments(ctx, Some(proc), variable_assignments, &mut block);
let _scope = ScopeGuard::new((), |()| {
if let Some(block) = block {
ctx.parser().pop_block(block);
}
});
if result != EndExecutionReason::ok {
return result;
}
match &**specific_statement {
StatementVariant::NotStatement(not_statement) => {
self.populate_not_process(ctx, job, proc, not_statement)
}
StatementVariant::BlockStatement(_)
| StatementVariant::IfStatement(_)
| StatementVariant::SwitchStatement(_) => {
self.populate_block_process(ctx, proc, statement, specific_statement)
}
StatementVariant::DecoratedStatement(decorated_statement) => {
self.populate_plain_process(ctx, proc, decorated_statement)
}
StatementVariant::None => panic!(),
}
}
fn populate_not_process(
&self,
ctx: &OperationContext<'_>,
job: &mut Job,
proc: &mut Process,
not_statement: &ast::NotStatement,
) -> EndExecutionReason {
{
let mut flags = job.mut_flags();
flags.negate = !flags.negate;
}
self.populate_job_process(
ctx,
job,
proc,
¬_statement.contents,
¬_statement.variables,
)
}
/// Creates a 'normal' (non-block) process.
fn populate_plain_process(
&self,
ctx: &OperationContext<'_>,
proc: &mut Process,
statement: &ast::DecoratedStatement,
) -> EndExecutionReason {
// We may decide that a command should be an implicit cd.
let mut use_implicit_cd = false;
// Get the command and any arguments due to expanding the command.
let mut cmd = WString::new();
let mut args_from_cmd_expansion = vec![];
let ret = self.expand_command(ctx, statement, &mut cmd, &mut args_from_cmd_expansion);
if ret != EndExecutionReason::ok {
return ret;
}
// For no-exec, having an empty command is okay. We can't do anything more with it tho.
if no_exec() {
return EndExecutionReason::ok;
}
assert!(
!cmd.is_empty(),
"expand_command should not produce an empty command",
);
// Determine the process type.
let mut process_type = self.process_type_for_command(ctx, statement, &cmd);
let external_cmd = if [ProcessType::external, ProcessType::exec].contains(&process_type) {
let parser = ctx.parser();
// Determine the actual command. This may be an implicit cd.
let external_cmd = path_try_get_path(&cmd, parser.vars());
let has_command = external_cmd.err.is_none();
let mut path = WString::new();
if has_command {
path = external_cmd.path;
} else {
// If the specified command does not exist, and is undecorated, try using an implicit cd.
if statement.decoration() == StatementDecoration::none {
// Implicit cd requires an empty argument and redirection list.
if statement.args_or_redirs.is_empty() {
// Ok, no arguments or redirections; check to see if the command is a directory.
use_implicit_cd = path_as_implicit_cd(
&cmd,
&parser.vars().get_pwd_slash(),
parser.vars(),
)
.is_some();
}
}
if !use_implicit_cd {
return self.handle_command_not_found(
ctx,
if external_cmd.path.is_empty() {
&cmd
} else {
&external_cmd.path
},
statement,
std::io::Error::from_raw_os_error(external_cmd.err.unwrap().into()),
);
}
};
path
} else {
WString::new()
};
// Produce the full argument list and the set of IO redirections.
let mut cmd_args = vec![];
let mut redirections = RedirectionSpecList::new();
if use_implicit_cd {
// Implicit cd is simple.
cmd_args = vec![L!("cd").to_owned(), cmd];
// If we have defined a wrapper around cd, use it, otherwise use the cd builtin.
process_type = if function::exists(L!("cd"), ctx.parser()) {
ProcessType::function
} else {
ProcessType::builtin
};
} else {
// Not implicit cd.
let glob_behavior = if [L!("set"), L!("count"), L!("path")].contains(&&cmd[..]) {
Globspec::nullglob
} else {
Globspec::failglob
};
// Form the list of arguments. The command is the first argument, followed by any arguments
// from expanding the command, followed by the argument nodes themselves. E.g. if the
// command is '$gco foo' and $gco is git checkout.
cmd_args.push(cmd);
cmd_args.extend_from_slice(&args_from_cmd_expansion);
let arg_nodes = Self::get_argument_nodes_no_redirs(&statement.args_or_redirs);
let arg_result =
self.expand_arguments_from_nodes(ctx, &arg_nodes, &mut cmd_args, glob_behavior);
if arg_result != EndExecutionReason::ok {
return arg_result;
}
// The set of IO redirections that we construct for the process.
let reason =
self.determine_redirections(ctx, &statement.args_or_redirs, &mut redirections);
if reason != EndExecutionReason::ok {
return reason;
}
}
// Populate the process.
proc.typ = process_type;
proc.set_argv(cmd_args);
proc.set_redirection_specs(redirections);
proc.actual_cmd = external_cmd;
EndExecutionReason::ok
}
fn populate_block_process(
&self,
ctx: &OperationContext<'_>,
proc: &mut Process,
statement: &ast::Statement,
specific_statement: &ast::StatementVariant,
) -> EndExecutionReason {
// We handle block statements by creating process_type_t::block_node, that will bounce back to
// us when it's time to execute them.
// Get the argument or redirections list.
// TODO: args_or_redirs should be available without resolving the statement type.
let args_or_redirs = match specific_statement {
StatementVariant::BlockStatement(block_statement) => &block_statement.args_or_redirs,
StatementVariant::IfStatement(if_statement) => &if_statement.args_or_redirs,
StatementVariant::SwitchStatement(switch_statement) => &switch_statement.args_or_redirs,
_ => panic!("Unexpected block node type"),
};
let mut redirections = RedirectionSpecList::new();
let reason = self.determine_redirections(ctx, args_or_redirs, &mut redirections);
if reason == EndExecutionReason::ok {
proc.typ = ProcessType::block_node;
proc.block_node_source = Some(self.pstree());
proc.internal_block_node = Some(statement.into());
proc.set_redirection_specs(redirections);
}
reason
}
// These encapsulate the actual logic of various (block) statements.
fn run_block_statement(
&self,
ctx: &OperationContext<'_>,
statement: &'a ast::BlockStatement,
associated_block: Option,
) -> EndExecutionReason {
let bh = &statement.header;
let contents = &statement.jobs;
match &**bh {
BlockStatementHeaderVariant::ForHeader(fh) => self.run_for_statement(ctx, fh, contents),
BlockStatementHeaderVariant::WhileHeader(wh) => {
self.run_while_statement(ctx, wh, contents, associated_block)
}
BlockStatementHeaderVariant::FunctionHeader(fh) => {
self.run_function_statement(ctx, statement, fh)
}
BlockStatementHeaderVariant::BeginHeader(_bh) => {
self.run_begin_statement(ctx, contents)
}
BlockStatementHeaderVariant::None => panic!(),
}
}
fn run_for_statement(
&self,
ctx: &OperationContext<'_>,
header: &'a ast::ForHeader,
block_contents: &'a ast::JobList,
) -> EndExecutionReason {
// Get the variable name: `for var_name in ...`. We expand the variable name. It better result
// in just one.
let mut for_var_name = self.node_source(&header.var_name);
if !expand_one(&mut for_var_name, ExpandFlags::default(), ctx, None) {
return report_error!(
self,
ctx,
STATUS_EXPAND_ERROR.unwrap(),
&header.var_name,
FAILED_EXPANSION_VARIABLE_NAME_ERR_MSG,
for_var_name
);
}
if !valid_var_name(&for_var_name) {
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
header.var_name,
BUILTIN_ERR_VARNAME,
"for",
for_var_name
);
}
// Get the contents to iterate over.
let mut arguments = vec![];
let arg_nodes = Self::get_argument_nodes(&header.args);
let ret =
self.expand_arguments_from_nodes(ctx, &arg_nodes, &mut arguments, Globspec::nullglob);
if ret != EndExecutionReason::ok {
return ret;
}
let var = ctx.parser().vars().get(&for_var_name);
if EnvVar::flags_for(&for_var_name).contains(EnvVarFlags::READ_ONLY) {
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
header.var_name,
"%ls: %ls: cannot overwrite read-only variable",
"for",
for_var_name
);
}
let retval = ctx.parser().vars().set(
&for_var_name,
EnvMode::LOCAL | EnvMode::USER,
var.map_or(vec![], |var| var.as_list().to_owned()),
);
assert!(retval == EnvStackSetResult::ENV_OK);
trace_if_enabled_with_args(ctx.parser(), L!("for"), &arguments);
let fb = ctx.parser().push_block(Block::for_block());
// We fire the same event over and over again, just construct it once.
let evt = Event::variable_set(for_var_name.clone());
// Now drive the for loop.
let mut ret = EndExecutionReason::ok;
for val in arguments {
if let Some(reason) = self.check_end_execution(ctx) {
ret = reason;
break;
}
let retval = ctx
.parser()
.vars()
.set(&for_var_name, EnvMode::USER, vec![val]);
assert!(
retval == EnvStackSetResult::ENV_OK,
"for loop variable should have been successfully set"
);
event::fire(ctx.parser(), evt.clone());
ctx.parser().libdata_mut().pods.loop_status = LoopStatus::normals;
self.run_job_list(ctx, block_contents, Some(fb));
if self.check_end_execution(ctx) == Some(EndExecutionReason::control_flow) {
// Handle break or continue.
let do_break = ctx.parser().libdata().pods.loop_status == LoopStatus::breaks;
ctx.parser().libdata_mut().pods.loop_status = LoopStatus::normals;
if do_break {
break;
}
}
}
ctx.parser().pop_block(fb);
trace_if_enabled(ctx.parser(), L!("end for"));
ret
}
fn run_if_statement(
&self,
ctx: &OperationContext<'_>,
statement: &'a ast::IfStatement,
associated_block: Option,
) -> EndExecutionReason {
let mut result = EndExecutionReason::ok;
// We have a sequence of if clauses, with a final else, resulting in a single job list that we
// execute.
let mut job_list_to_execute = None;
let mut if_clause = &statement.if_clause;
// Index of the *next* elseif_clause to test.
let elseif_clauses = &statement.elseif_clauses;
let mut next_elseif_idx = 0;
// We start with the 'if'.
trace_if_enabled(ctx.parser(), L!("if"));
loop {
if let Some(ret) = self.check_end_execution(ctx) {
result = ret;
break;
}
// An if condition has a job and a "tail" of andor jobs, e.g. "foo ; and bar; or baz".
// Check the condition and the tail. We treat end_execution_reason_t::error here as failure,
// in accordance with historic behavior.
let mut cond_ret =
self.run_job_conjunction(ctx, &if_clause.condition, associated_block);
if cond_ret == EndExecutionReason::ok {
cond_ret = self.run_andor_job_list(ctx, &if_clause.andor_tail, associated_block);
}
let take_branch = cond_ret == EndExecutionReason::ok
&& ctx.parser().get_last_status() == EXIT_SUCCESS;
if take_branch {
// Condition succeeded.
job_list_to_execute = Some(&if_clause.body);
break;
}
// See if we have an elseif.
next_elseif_idx += 1;
if let Some(elseif_clause) = elseif_clauses.get(next_elseif_idx - 1) {
trace_if_enabled(ctx.parser(), L!("else if"));
if_clause = &elseif_clause.if_clause;
} else {
break;
}
}
if job_list_to_execute.is_none() {
// our ifs and elseifs failed.
// Check our else body.
if let Some(else_clause) = statement.else_clause.as_ref() {
trace_if_enabled(ctx.parser(), L!("else"));
job_list_to_execute = Some(&else_clause.body);
}
}
match job_list_to_execute {
None => {
// 'if' condition failed, no else clause, return 0, we're done.
// No job list means no successful conditions, so return 0 (issue #1443).
ctx.parser()
.set_last_statuses(Statuses::just(STATUS_CMD_OK.unwrap()));
}
Some(job_list_to_execute) => {
// Execute the job list we got.
let ib = ctx.parser().push_block(Block::if_block());
self.run_job_list(ctx, job_list_to_execute, Some(ib));
if let Some(ret) = self.check_end_execution(ctx) {
result = ret;
}
ctx.parser().pop_block(ib);
}
}
trace_if_enabled(ctx.parser(), L!("end if"));
// It's possible there's a last-minute cancellation (issue #1297).
if let Some(ret) = self.check_end_execution(ctx) {
result = ret;
}
// Otherwise, take the exit status of the job list. Reversal of issue #1061.
result
}
fn run_switch_statement(
&self,
ctx: &OperationContext<'_>,
statement: &'a ast::SwitchStatement,
) -> EndExecutionReason {
// Get the switch variable.
let switch_value = self.node_source(&statement.argument);
// Expand it. We need to offset any errors by the position of the string.
let mut switch_values_expanded = vec![];
let mut errors = ParseErrorList::new();
let expand_ret = expand_string(
switch_value,
&mut switch_values_expanded,
ExpandFlags::default(),
ctx,
Some(&mut errors),
);
parse_error_offset_source_start(&mut errors, statement.argument.range().unwrap().start());
match expand_ret.result {
ExpandResultCode::error => {
return self.report_errors(ctx, expand_ret.status, &errors);
}
ExpandResultCode::cancel => {
return EndExecutionReason::cancelled;
}
ExpandResultCode::wildcard_no_match => {
return report_error!(
self,
ctx,
STATUS_UNMATCHED_WILDCARD.unwrap(),
&statement.argument,
WILDCARD_ERR_MSG,
&self.node_source(&statement.argument)
);
}
ExpandResultCode::ok => {
if switch_values_expanded.len() > 1 {
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
&statement.argument,
"switch: Expected at most one argument, got %lu\n",
switch_values_expanded.len()
);
}
}
}
// If we expanded to nothing, match the empty string.
assert!(
switch_values_expanded.len() <= 1,
"Should have at most one expansion"
);
let switch_value_expanded = if switch_values_expanded.is_empty() {
WString::new()
} else {
switch_values_expanded.remove(0).completion
};
let mut result = EndExecutionReason::ok;
trace_if_enabled_with_args(ctx.parser(), L!("switch"), &[&switch_value_expanded]);
let sb = ctx.parser().push_block(Block::switch_block());
// Expand case statements.
let mut matching_case_item = None;
for case_item in &statement.cases {
if let Some(ret) = self.check_end_execution(ctx) {
result = ret;
break;
}
// Expand arguments. A case item list may have a wildcard that fails to expand to
// anything. We also report case errors, but don't stop execution; i.e. a case item that
// contains an unexpandable process will report and then fail to match.
let arg_nodes = Self::get_argument_nodes(&case_item.arguments);
let mut case_args = vec![];
let case_result = self.expand_arguments_from_nodes(
ctx,
&arg_nodes,
&mut case_args,
Globspec::failglob,
);
if case_result == EndExecutionReason::ok {
for arg in case_args {
// Unescape wildcards so they can be expanded again.
let unescaped_arg = parse_util_unescape_wildcards(&arg);
if wildcard_match(&switch_value_expanded, &unescaped_arg, false) {
// If this matched, we're done.
matching_case_item = Some(case_item);
break;
}
}
}
if matching_case_item.is_some() {
break;
}
}
if let Some(case_item) = matching_case_item {
// Success, evaluate the job list.
assert!(result == EndExecutionReason::ok, "Expected success");
result = self.run_job_list(ctx, &case_item.body, Some(sb));
}
ctx.parser().pop_block(sb);
trace_if_enabled(ctx.parser(), L!("end switch"));
result
}
fn run_while_statement(
&self,
ctx: &OperationContext<'_>,
header: &'a ast::WhileHeader,
contents: &'a ast::JobList,
associated_block: Option,
) -> EndExecutionReason {
let mut ret = EndExecutionReason::ok;
// "The exit status of the while loop shall be the exit status of the last compound-list-2
// executed, or zero if none was executed."
// Here are more detailed requirements:
// - If we execute the loop body zero times, or the loop body is empty, the status is success.
// - An empty loop body is treated as true, both in the loop condition and after loop exit.
// - The exit status of the last command is visible in the loop condition. (i.e. do not set the
// exit status to true BEFORE executing the loop condition).
// We achieve this by restoring the status if the loop condition fails, plus a special
// affordance for the first condition.
let mut first_cond_check = true;
trace_if_enabled(ctx.parser(), L!("while"));
// Run while the condition is true.
loop {
// Save off the exit status if it came from the loop body. We'll restore it if the condition
// is false.
let cond_saved_status = if first_cond_check {
Statuses::just(EXIT_SUCCESS)
} else {
ctx.parser().get_last_statuses()
};
first_cond_check = false;
// Check the condition.
let mut cond_ret = self.run_job_conjunction(ctx, &header.condition, associated_block);
if cond_ret == EndExecutionReason::ok {
cond_ret = self.run_andor_job_list(ctx, &header.andor_tail, associated_block);
}
// If the loop condition failed to execute, then exit the loop without modifying the exit
// status. If the loop condition executed with a failure status, restore the status and then
// exit the loop.
if cond_ret != EndExecutionReason::ok {
break;
} else if ctx.parser().get_last_status() != EXIT_SUCCESS {
ctx.parser().set_last_statuses(cond_saved_status);
break;
}
// Check cancellation.
if let Some(reason) = self.check_end_execution(ctx) {
ret = reason;
break;
}
// Push a while block and then check its cancellation reason.
ctx.parser().libdata_mut().pods.loop_status = LoopStatus::normals;
let wb = ctx.parser().push_block(Block::while_block());
self.run_job_list(ctx, contents, Some(wb));
let cancel_reason = self.check_end_execution(ctx);
ctx.parser().pop_block(wb);
if cancel_reason == Some(EndExecutionReason::control_flow) {
// Handle break or continue.
let do_break = ctx.parser().libdata().pods.loop_status == LoopStatus::breaks;
ctx.parser().libdata_mut().pods.loop_status = LoopStatus::normals;
if do_break {
break;
} else {
continue;
}
}
// no_exec means that fish was invoked with -n or --no-execute. If set, we allow the loop to
// not-execute once so its contents can be checked, and then break.
if no_exec() {
break;
}
}
trace_if_enabled(ctx.parser(), L!("end while"));
ret
}
// Define a function.
fn run_function_statement(
&self,
ctx: &OperationContext<'_>,
statement: &ast::BlockStatement,
header: &ast::FunctionHeader,
) -> EndExecutionReason {
// Get arguments.
let mut arguments = vec![];
let mut arg_nodes = Self::get_argument_nodes(&header.args);
arg_nodes.insert(0, &header.first_arg);
let result =
self.expand_arguments_from_nodes(ctx, &arg_nodes, &mut arguments, Globspec::failglob);
if result != EndExecutionReason::ok {
return result;
}
trace_if_enabled_with_args(ctx.parser(), L!("function"), &arguments);
let mut outs = OutputStream::Null;
let mut errs = OutputStream::String(StringOutputStream::new());
let mut streams = IoStreams::new(&mut outs, &mut errs);
let mut shim_arguments: Vec<&wstr> = arguments
.iter()
.map(|s| truncate_at_nul(s.as_ref()))
.collect();
let err_code = builtins::function::function(
ctx.parser(),
&mut streams,
&mut shim_arguments,
NodeRef::new(self.pstree(), statement as *const ast::BlockStatement),
);
let err_code = err_code.unwrap();
ctx.parser().libdata_mut().pods.status_count += 1;
ctx.parser().set_last_statuses(Statuses::just(err_code));
let errtext = errs.contents();
if !errtext.is_empty() {
report_error!(self, ctx, err_code, header, "%ls", errtext);
}
result
}
fn run_begin_statement(
&self,
ctx: &OperationContext<'_>,
contents: &'a ast::JobList,
) -> EndExecutionReason {
// Basic begin/end block. Push a scope block, run jobs, pop it
trace_if_enabled(ctx.parser(), L!("begin"));
let sb = ctx
.parser()
.push_block(Block::scope_block(BlockType::begin));
let ret = self.run_job_list(ctx, contents, Some(sb));
ctx.parser().pop_block(sb);
trace_if_enabled(ctx.parser(), L!("end begin"));
ret
}
fn get_argument_nodes(args: &ast::ArgumentList) -> AstArgsList<'_> {
let mut result = AstArgsList::new();
for arg in args {
result.push(&**arg);
}
result
}
fn get_argument_nodes_no_redirs(args: &ast::ArgumentOrRedirectionList) -> AstArgsList<'_> {
let mut result = AstArgsList::new();
for arg in args {
if arg.is_argument() {
result.push(arg.argument());
}
}
result
}
fn expand_arguments_from_nodes(
&self,
ctx: &OperationContext<'_>,
argument_nodes: &AstArgsList<'_>,
out_arguments: &mut Vec,
glob_behavior: Globspec,
) -> EndExecutionReason {
// Get all argument nodes underneath the statement. We guess we'll have that many arguments (but
// may have more or fewer, if there are wildcards involved).
out_arguments.reserve(argument_nodes.len());
for arg_node in argument_nodes {
// Expect all arguments to have source.
assert!(arg_node.has_source(), "Argument should have source");
// Expand this string.
let mut errors = ParseErrorList::new();
let mut arg_expanded = CompletionList::new();
let expand_ret = expand_string(
self.node_source(*arg_node),
&mut arg_expanded,
ExpandFlags::default(),
ctx,
Some(&mut errors),
);
parse_error_offset_source_start(&mut errors, arg_node.range().unwrap().start());
match expand_ret.result {
ExpandResultCode::error => {
return self.report_errors(ctx, expand_ret.status, &errors);
}
ExpandResultCode::cancel => {
return EndExecutionReason::cancelled;
}
ExpandResultCode::wildcard_no_match => {
if glob_behavior == Globspec::failglob {
// For no_exec, ignore the error - this might work at runtime.
if no_exec() {
return EndExecutionReason::ok;
}
// Report the unmatched wildcard error and stop processing.
return report_error!(
self,
ctx,
STATUS_UNMATCHED_WILDCARD.unwrap(),
arg_node,
WILDCARD_ERR_MSG,
&self.node_source(*arg_node)
);
}
}
ExpandResultCode::ok => {}
}
// Now copy over any expanded arguments. Use std::move() to avoid extra allocations; this
// is called very frequently.
if let Some(additional) =
(out_arguments.len() + arg_expanded.len()).checked_sub(out_arguments.capacity())
{
out_arguments.reserve(additional);
}
for new_arg in arg_expanded {
out_arguments.push(new_arg.completion);
}
}
// We may have received a cancellation during this expansion.
if let Some(ret) = self.check_end_execution(ctx) {
return ret;
}
EndExecutionReason::ok
}
// Determines the list of redirections for a node.
fn determine_redirections(
&self,
ctx: &OperationContext<'_>,
list: &ast::ArgumentOrRedirectionList,
out_redirections: &mut RedirectionSpecList,
) -> EndExecutionReason {
// Get all redirection nodes underneath the statement.
for arg_or_redir in list {
if !arg_or_redir.is_redirection() {
continue;
}
let redir_node = arg_or_redir.redirection();
let oper = match PipeOrRedir::try_from(&self.node_source(&redir_node.oper)[..]) {
Ok(oper) if oper.is_valid() => oper,
_ => {
// TODO: figure out if this can ever happen. If so, improve this error message.
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
redir_node,
"Invalid redirection: %ls",
&self.node_source(redir_node)
);
}
};
// PCA: I can't justify this skip_variables flag. It was like this when I got here.
let mut target = self.node_source(&redir_node.target);
let target_expanded = expand_one(
&mut target,
if no_exec() {
ExpandFlags::SKIP_VARIABLES
} else {
ExpandFlags::default()
},
ctx,
None,
);
if !target_expanded || target.is_empty() {
// TODO: Improve this error message.
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
redir_node,
"Invalid redirection target: %ls",
target
);
}
// Make a redirection spec from the redirect token.
assert!(oper.is_valid(), "expected to have a valid redirection");
let spec = RedirectionSpec::new(oper.fd, oper.mode, target);
// Validate this spec.
if spec.mode == RedirectionMode::fd
&& !spec.is_close()
&& spec.get_target_as_fd().is_none()
{
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
redir_node,
"Requested redirection to '%ls', which is not a valid file descriptor",
&spec.target
);
}
out_redirections.push(spec);
if oper.stderr_merge {
// This was a redirect like &> which also modifies stderr.
// Also redirect stderr to stdout.
out_redirections.push(get_stderr_merge());
}
}
EndExecutionReason::ok
}
fn run_1_job(
&self,
ctx: &OperationContext<'_>,
job_node: &'a ast::JobPipeline,
associated_block: Option,
) -> EndExecutionReason {
if let Some(ret) = self.check_end_execution(ctx) {
return ret;
}
// We definitely do not want to execute anything if we're told we're --no-execute!
if no_exec() {
return EndExecutionReason::ok;
}
// Increment the eval_level for the duration of this command.
let _saved_eval_level = scoped_push_replacer(
|new_value| ctx.parser().eval_level.swap(new_value, Ordering::Relaxed),
ctx.parser().eval_level.load(Ordering::Relaxed) + 1,
);
// Save the node index.
let _saved_node = scoped_push_replacer(
|new_value| std::mem::replace(&mut self.executing_job_node.borrow_mut(), new_value),
Some(ConstPointer::from(job_node)),
);
// Profiling support.
let profile_item_id = ctx.parser().create_profile_item();
let start_time = if profile_item_id.is_some() {
ProfileItem::now()
} else {
0
};
// When we encounter a block construct (e.g. while loop) in the general case, we create a "block
// process" containing its node. This allows us to handle block-level redirections.
// However, if there are no redirections, then we can just jump into the block directly, which
// is significantly faster.
if self.job_is_simple_block(job_node) {
let do_time = job_node.time.is_some();
let _timer = push_timer(do_time);
let mut block = None;
let mut result =
self.apply_variable_assignments(ctx, None, &job_node.variables, &mut block);
let _scope = ScopeGuard::new((), |()| {
if let Some(block) = block {
ctx.parser().pop_block(block);
}
});
let specific_statement = &job_node.statement.contents;
assert!(specific_statement_type_is_redirectable_block(
specific_statement
));
if result == EndExecutionReason::ok {
result = match &**specific_statement {
StatementVariant::BlockStatement(block_statement) => {
self.run_block_statement(ctx, block_statement, associated_block)
}
StatementVariant::IfStatement(ifstmt) => {
self.run_if_statement(ctx, ifstmt, associated_block)
}
StatementVariant::SwitchStatement(switchstmt) => {
self.run_switch_statement(ctx, switchstmt)
}
// Other types should be impossible due to the
// specific_statement_type_is_redirectable_block check.
StatementVariant::NotStatement(_)
| StatementVariant::DecoratedStatement(_)
| StatementVariant::None => panic!(),
};
}
if let Some(profile_item_id) = profile_item_id {
let parser = ctx.parser();
let mut profile_items = parser.profile_items_mut();
let profile_item = &mut profile_items[profile_item_id];
profile_item.duration = ProfileItem::now() - start_time;
profile_item.level = ctx.parser().eval_level.load(Ordering::Relaxed);
profile_item.cmd =
profiling_cmd_name_for_redirectable_block(specific_statement, &self.pstree());
profile_item.skipped = false;
}
return result;
}
let mut props = JobProperties::default();
props.initial_background = job_node.bg.is_some();
{
let parser = ctx.parser();
let ld = &parser.libdata().pods;
props.skip_notification =
ld.is_subshell || parser.is_block() || ld.is_event != 0 || !parser.is_interactive();
props.from_event_handler = ld.is_event != 0;
props.wants_timing = job_node_wants_timing(job_node);
// It's an error to have 'time' in a background job.
if props.wants_timing && props.initial_background {
return report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
job_node,
ERROR_TIME_BACKGROUND
);
}
}
let mut job = Job::new(props, self.node_source(job_node));
// We are about to populate a job. One possible argument to the job is a command substitution
// which may be interested in the job that's populating it, via '--on-job-exit caller'. Record
// the job ID here.
let _caller_id = scoped_push_replacer(
|new_value| {
std::mem::replace(&mut ctx.parser().libdata_mut().pods.caller_id, new_value)
},
job.internal_job_id,
);
// Populate the job. This may fail for reasons like command_not_found. If this fails, an error
// will have been printed.
let pop_result = self.populate_job_from_job_node(ctx, &mut job, job_node, associated_block);
ScopeGuarding::commit(_caller_id);
// Clean up the job on failure or cancellation.
if pop_result == EndExecutionReason::ok {
self.setup_group(ctx, &mut job);
assert!(job.group.is_some(), "Should have a group");
}
// Now that we're done mutating the Job, we can stick it in an Arc
let job = Rc::new(job);
if pop_result == EndExecutionReason::ok {
// Give the job to the parser - it will clean it up.
{
let parser = ctx.parser();
parser.job_add(job.clone());
// Actually execute the job.
let block_io = self.block_io.borrow().clone();
if !exec_job(parser, &job, block_io) {
// No process in the job successfully launched.
// Ensure statuses are set (#7540).
if let Some(statuses) = job.get_statuses() {
parser.set_last_statuses(statuses);
parser.libdata_mut().pods.status_count += 1;
}
remove_job(parser, &job);
}
// Update universal variables on external commands.
// We only incorporate external changes if we had an external proc, for hysterical raisins.
parser.sync_uvars_and_fire(job.has_external_proc() /* always */);
}
// If the job got a SIGINT or SIGQUIT, then we're going to start unwinding.
let mut cancel_signal = self.cancel_signal.borrow_mut();
if cancel_signal.is_none() {
*cancel_signal = job.group().get_cancel_signal();
}
}
if let Some(profile_item_id) = profile_item_id {
let parser = ctx.parser();
let mut profile_items = parser.profile_items_mut();
let profile_item = &mut profile_items[profile_item_id];
profile_item.duration = ProfileItem::now() - start_time;
profile_item.level = ctx.parser().eval_level.load(Ordering::Relaxed);
profile_item.cmd = job.command().to_owned();
profile_item.skipped = pop_result != EndExecutionReason::ok;
}
job_reap(ctx.parser(), false); // clean up jobs
pop_result
}
fn test_and_run_1_job_conjunction(
&self,
ctx: &OperationContext<'_>,
jc: &'a ast::JobConjunction,
associated_block: Option,
) -> EndExecutionReason {
// Test this job conjunction if it has an 'and' or 'or' decorator.
// If it passes, then run it.
if let Some(reason) = self.check_end_execution(ctx) {
return reason;
}
// Maybe skip the job if it has a leading and/or.
let mut skip = false;
if let Some(deco) = &jc.decorator {
let last_status = ctx.parser().get_last_status();
match deco.keyword() {
ParseKeyword::kw_and => {
// AND. Skip if the last job failed.
skip = last_status != 0;
}
ParseKeyword::kw_or => {
// OR. Skip if the last job succeeded.
skip = last_status == 0;
}
_ => unreachable!(),
}
}
// Skipping is treated as success.
if skip {
EndExecutionReason::ok
} else {
self.run_job_conjunction(ctx, jc, associated_block)
}
}
fn run_job_conjunction(
&self,
ctx: &OperationContext<'_>,
job_expr: &'a ast::JobConjunction,
associated_block: Option,
) -> EndExecutionReason {
if let Some(reason) = self.check_end_execution(ctx) {
return reason;
}
let mut result = self.run_1_job(ctx, &job_expr.job, associated_block);
for jc in &job_expr.continuations {
if result != EndExecutionReason::ok {
return result;
}
if let Some(reason) = self.check_end_execution(ctx) {
return reason;
}
// Check the conjunction type.
let last_status = ctx.parser().get_last_status();
let skip = match jc.conjunction.token_type() {
ParseTokenType::andand => {
// AND. Skip if the last job failed.
last_status != 0
}
ParseTokenType::oror => {
// OR. Skip if the last job succeeded.
last_status == 0
}
_ => unreachable!(),
};
if !skip {
result = self.run_1_job(ctx, &jc.job, associated_block);
}
}
result
}
fn run_job_list(
&self,
ctx: &OperationContext<'_>,
job_list_node: &'a ast::JobList,
associated_block: Option,
) -> EndExecutionReason {
let mut result = EndExecutionReason::ok;
for jc in job_list_node {
result = self.test_and_run_1_job_conjunction(ctx, jc, associated_block);
}
// Returns the result of the last job executed or skipped.
result
}
fn run_andor_job_list(
&self,
ctx: &OperationContext<'_>,
job_list_node: &'a ast::AndorJobList,
associated_block: Option,
) -> EndExecutionReason {
let mut result = EndExecutionReason::ok;
for aoj in job_list_node {
result = self.test_and_run_1_job_conjunction(ctx, &aoj.job, associated_block);
}
// Returns the result of the last job executed or skipped.
result
}
fn populate_job_from_job_node(
&self,
ctx: &OperationContext<'_>,
j: &mut Job,
job_node: &ast::JobPipeline,
_associated_block: Option,
) -> EndExecutionReason {
// We are going to construct process_t structures for every statement in the job.
// Create processes. Each one may fail.
let mut processes = ProcessList::new();
processes.push(Box::new(Process::new()));
let mut result = self.populate_job_process(
ctx,
j,
&mut processes[0],
&job_node.statement,
&job_node.variables,
);
// Construct process_ts for job continuations (pipelines).
for jc in &job_node.continuation {
if result != EndExecutionReason::ok {
break;
}
// Handle the pipe, whose fd may not be the obvious stdout.
let parsed_pipe = PipeOrRedir::try_from(&self.node_source(&jc.pipe)[..])
.expect("Failed to parse valid pipe");
if !parsed_pipe.is_valid() {
result = report_error!(
self,
ctx,
STATUS_INVALID_ARGS.unwrap(),
&jc.pipe,
ILLEGAL_FD_ERR_MSG,
&self.node_source(&jc.pipe)
);
break;
}
{
let proc = processes.last_mut().unwrap();
proc.pipe_write_fd = parsed_pipe.fd;
if parsed_pipe.stderr_merge {
// This was a pipe like &| which redirects both stdout and stderr.
// Also redirect stderr to stdout.
let specs = proc.redirection_specs_mut();
specs.push(get_stderr_merge());
}
}
// Store the new process (and maybe with an error).
processes.push(Box::new(Process::new()));
result = self.populate_job_process(
ctx,
j,
processes.last_mut().unwrap(),
&jc.statement,
&jc.variables,
);
}
// Inform our processes of who is first and last
processes.first_mut().unwrap().is_first_in_job = true;
processes.last_mut().unwrap().is_last_in_job = true;
// Return what happened.
if result == EndExecutionReason::ok {
// Link up the processes.
assert!(!processes.is_empty());
*j.processes_mut() = processes;
}
result
}
// Assign a job group to the given job.
fn setup_group(&self, ctx: &OperationContext<'_>, j: &mut Job) {
// We can use the parent group if it's compatible and we're not backgrounded.
if ctx.job_group.as_ref().map_or(false, |job_group| {
job_group.has_job_id() || !j.wants_job_id()
}) && !j.is_initially_background()
{
j.group = ctx.job_group.clone();
return;
}
if j.processes()[0].is_internal() || !self.use_job_control(ctx) {
// This job either doesn't have a pgroup (e.g. a simple block), or lives in fish's pgroup.
j.group = Some(JobGroup::create(j.command().to_owned(), j.wants_job_id()));
} else {
// This is a "real job" that gets its own pgroup.
j.processes_mut()[0].leads_pgrp = true;
let wants_terminal = ctx.parser().libdata().pods.is_event == 0;
j.group = Some(JobGroup::create_with_job_control(
j.command().to_owned(),
wants_terminal,
));
}
j.group().is_foreground.store(!j.is_initially_background());
j.mut_flags().is_group_root = true;
}
// \return whether we should apply job control to our processes.
fn use_job_control(&self, ctx: &OperationContext<'_>) -> bool {
if ctx.parser().is_command_substitution() {
return false;
}
match get_job_control_mode() {
JobControl::all => true,
JobControl::interactive => ctx.parser().is_interactive(),
JobControl::none => false,
}
}
// Returns the line number of the current node.
fn line_offset_of_executing_node(&self) -> Option {
// If we're not executing anything, return nothing.
let node = self.executing_job_node.borrow();
let node = node.as_ref()?;
// If for some reason we're executing a node without source, return nothing.
let range = node.try_source_range()?;
Some(self.line_offset_of_character_at_offset(range.start()))
}
fn line_offset_of_character_at_offset(&self, offset: usize) -> usize {
// Count the number of newlines, leveraging our cache.
assert!(offset <= self.pstree().src.len());
// Easy hack to handle 0.
if offset == 0 {
return 0;
}
// We want to return (one plus) the number of newlines at offsets less than the given offset.
let src = &self.pstree().src;
let mut cached_lineno = self.cached_lineno.borrow_mut();
if offset > cached_lineno.offset {
// Add one for every newline we find in the range [cached_lineno.offset, offset).
let offset = std::cmp::min(offset, src.len());
let i = src[cached_lineno.offset..offset]
.chars()
.filter(|c| *c == '\n')
.count();
cached_lineno.count += i;
cached_lineno.offset = offset;
} else if offset < cached_lineno.offset {
// Subtract one for every newline we find in the range [offset, cached_range.start).
cached_lineno.count -= src[offset..cached_lineno.offset]
.chars()
.filter(|c| *c == '\n')
.count();
cached_lineno.offset = offset;
}
cached_lineno.count
}
}
#[derive(Eq, PartialEq)]
enum Globspec {
failglob,
nullglob,
}
type AstArgsList<'a> = Vec<&'a ast::Argument>;
/// These are the specific statement types that support redirections.
fn type_is_redirectable_block(typ: ast::Type) -> bool {
[
ast::Type::block_statement,
ast::Type::if_statement,
ast::Type::switch_statement,
]
.contains(&typ)
}
fn specific_statement_type_is_redirectable_block(node: &ast::StatementVariant) -> bool {
type_is_redirectable_block(node.typ())
}
/// Get the name of a redirectable block, for profiling purposes.
fn profiling_cmd_name_for_redirectable_block(
node: &ast::StatementVariant,
pstree: &ParsedSourceRef,
) -> WString {
assert!(specific_statement_type_is_redirectable_block(node));
let source_range = node.try_source_range().expect("No source range for block");
let src_end = match node {
StatementVariant::BlockStatement(block_statement) => {
let block_header = &block_statement.header;
match &**block_header {
BlockStatementHeaderVariant::ForHeader(for_header) => {
for_header.semi_nl.source_range().start()
}
BlockStatementHeaderVariant::WhileHeader(while_header) => {
while_header.condition.source_range().start()
}
BlockStatementHeaderVariant::FunctionHeader(function_header) => {
function_header.semi_nl.source_range().start()
}
BlockStatementHeaderVariant::BeginHeader(begin_header) => {
begin_header.kw_begin.source_range().start()
}
BlockStatementHeaderVariant::None => panic!("Unexpected block header type"),
}
}
StatementVariant::IfStatement(ifstmt) => {
ifstmt.if_clause.condition.job.source_range().end()
}
StatementVariant::SwitchStatement(switchstmt) => switchstmt.semi_nl.source_range().start(),
_ => {
panic!("Not a redirectable block_type");
}
};
assert!(src_end >= source_range.start(), "Invalid source end");
// Get the source for the block, and cut it at the next statement terminator.
let mut result = pstree.src[source_range.start()..src_end].to_owned();
result.push_utfstr(L!("..."));
result
}
/// Get a redirection from stderr to stdout (i.e. 2>&1).
fn get_stderr_merge() -> RedirectionSpec {
let stdout_fileno_str = L!("1").to_owned();
RedirectionSpec::new(STDERR_FILENO, RedirectionMode::fd, stdout_fileno_str)
}
/// Decide if a job node should be 'time'd.
/// For historical reasons the 'not' and 'time' prefix are "inside out". That is, it's
/// 'not time cmd'. Note that a time appearing anywhere in the pipeline affects the whole job.
/// `sleep 1 | not time true` will time the whole job!
fn job_node_wants_timing(job_node: &ast::JobPipeline) -> bool {
// Does our job have the job-level time prefix?
if job_node.time.is_some() {
return true;
}
// Helper to return true if a node is 'not time ...' or 'not not time...' or...
let is_timed_not_statement = |mut stat: &ast::Statement| loop {
match &*stat.contents {
StatementVariant::NotStatement(ns) => {
if ns.time.is_some() {
return true;
}
stat = &ns.contents;
}
_ => return false,
}
};
// Do we have a 'not time ...' anywhere in our pipeline?
if is_timed_not_statement(&job_node.statement) {
return true;
}
for jc in &job_node.continuation {
if is_timed_not_statement(&jc.statement) {
return true;
}
}
false
}
fn remove_job(parser: &Parser, job: &JobRef) -> bool {
let mut jobs = parser.jobs_mut();
let num_jobs = jobs.len();
for i in 0..num_jobs {
if Rc::ptr_eq(&jobs[i], job) {
jobs.remove(i);
return true;
}
}
false
}