// Functions for storing and retrieving function information. These functions also take care of // autoloading functions in the $fish_function_path. Actual function evaluation is taken care of by // the parser and to some degree the builtin handling library. // #include "config.h" // IWYU pragma: keep // IWYU pragma: no_include #include #include #include #include #include #include #include #include #include #include "autoload.h" #include "common.h" #include "env.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "function.h" #include "intern.h" #include "parser_keywords.h" #include "reader.h" #include "wutil.h" // IWYU pragma: keep /// Table containing all functions. typedef std::map function_map_t; static function_map_t loaded_functions; /// Functions that shouldn't be autoloaded (anymore). static std::set function_tombstones; /// Lock for functions. static std::recursive_mutex functions_lock; static bool function_remove_ignore_autoload(const wcstring &name, bool tombstone = true); /// Callback when an autoloaded function is removed. void autoloaded_function_removed(const wcstring &cmd) { function_remove_ignore_autoload(cmd, false); } // Function autoloader static autoload_t function_autoloader(L"fish_function_path", autoloaded_function_removed); /// Kludgy flag set by the load function in order to tell function_add that the function being /// defined is autoloaded. There should be a better way to do this... static bool is_autoload = false; /// Make sure that if the specified function is a dynamically loaded function, it has been fully /// loaded. static int load(const wcstring &name) { ASSERT_IS_MAIN_THREAD(); scoped_rlock locker(functions_lock); bool was_autoload = is_autoload; int res; bool no_more_autoload = function_tombstones.count(name) > 0; if (no_more_autoload) return 0; function_map_t::iterator iter = loaded_functions.find(name); if (iter != loaded_functions.end() && !iter->second.is_autoload) { // We have a non-autoload version already. return 0; } is_autoload = true; res = function_autoloader.load(name, true); is_autoload = was_autoload; return res; } /// Insert a list of all dynamically loaded functions into the specified list. static void autoload_names(std::set &names, int get_hidden) { size_t i; const env_var_t path_var = env_get(L"fish_function_path"); if (path_var.missing_or_empty()) return; wcstring_list_t path_list; path_var.to_list(path_list); for (i = 0; i < path_list.size(); i++) { const wcstring &ndir_str = path_list.at(i); const wchar_t *ndir = (wchar_t *)ndir_str.c_str(); DIR *dir = wopendir(ndir); if (!dir) continue; wcstring name; while (wreaddir(dir, name)) { const wchar_t *fn = name.c_str(); const wchar_t *suffix; if (!get_hidden && fn[0] == L'_') continue; suffix = wcsrchr(fn, L'.'); if (suffix && (wcscmp(suffix, L".fish") == 0)) { wcstring name(fn, suffix - fn); names.insert(name); } } closedir(dir); } } static std::map snapshot_vars(const wcstring_list_t &vars) { std::map result; for (wcstring_list_t::const_iterator it = vars.begin(), end = vars.end(); it != end; ++it) { result.insert(std::make_pair(*it, env_get(*it))); } return result; } function_info_t::function_info_t(const function_data_t &data, const wchar_t *filename, int def_offset, bool autoload) : definition(data.definition), description(data.description), definition_file(intern(filename)), definition_offset(def_offset), named_arguments(data.named_arguments), inherit_vars(snapshot_vars(data.inherit_vars)), is_autoload(autoload), shadow_scope(data.shadow_scope) {} function_info_t::function_info_t(const function_info_t &data, const wchar_t *filename, int def_offset, bool autoload) : definition(data.definition), description(data.description), definition_file(intern(filename)), definition_offset(def_offset), named_arguments(data.named_arguments), inherit_vars(data.inherit_vars), is_autoload(autoload), shadow_scope(data.shadow_scope) {} void function_add(const function_data_t &data, const parser_t &parser, int definition_line_offset) { UNUSED(parser); ASSERT_IS_MAIN_THREAD(); CHECK(!data.name.empty(), ); //!OCLINT(multiple unary operator) CHECK(data.definition, ); scoped_rlock locker(functions_lock); // Remove the old function. function_remove(data.name); // Create and store a new function. const wchar_t *filename = reader_current_filename(); const function_map_t::value_type new_pair( data.name, function_info_t(data, filename, definition_line_offset, is_autoload)); loaded_functions.insert(new_pair); // Add event handlers. for (std::vector::const_iterator iter = data.events.begin(); iter != data.events.end(); ++iter) { event_add_handler(*iter); } } int function_exists(const wcstring &cmd) { if (parser_keywords_is_reserved(cmd)) return 0; scoped_rlock locker(functions_lock); load(cmd); return loaded_functions.find(cmd) != loaded_functions.end(); } void function_load(const wcstring &cmd) { if (!parser_keywords_is_reserved(cmd)) { scoped_rlock locker(functions_lock); load(cmd); } } int function_exists_no_autoload(const wcstring &cmd, const env_vars_snapshot_t &vars) { if (parser_keywords_is_reserved(cmd)) return 0; scoped_rlock locker(functions_lock); return loaded_functions.find(cmd) != loaded_functions.end() || function_autoloader.can_load(cmd, vars); } static bool function_remove_ignore_autoload(const wcstring &name, bool tombstone) { // Note: the lock may be held at this point, but is recursive. scoped_rlock locker(functions_lock); function_map_t::iterator iter = loaded_functions.find(name); // Not found. Not erasing. if (iter == loaded_functions.end()) return false; // Removing an auto-loaded function. Prevent it from being auto-reloaded. if (iter->second.is_autoload && tombstone) function_tombstones.insert(name); loaded_functions.erase(iter); event_t ev(EVENT_ANY); ev.function_name = name; event_remove(ev); return true; } void function_remove(const wcstring &name) { if (function_remove_ignore_autoload(name)) function_autoloader.unload(name); } static const function_info_t *function_get(const wcstring &name) { // The caller must lock the functions_lock before calling this; however our mutex is currently // recursive, so trylock will never fail. We need a way to correctly check if a lock is locked // (or better yet, make our lock non-recursive). // ASSERT_IS_LOCKED(functions_lock); function_map_t::iterator iter = loaded_functions.find(name); if (iter == loaded_functions.end()) { return NULL; } return &iter->second; } bool function_get_definition(const wcstring &name, wcstring *out_definition) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); if (func && out_definition) { out_definition->assign(func->definition); } return func != NULL; } wcstring_list_t function_get_named_arguments(const wcstring &name) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); return func ? func->named_arguments : wcstring_list_t(); } std::map function_get_inherit_vars(const wcstring &name) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); return func ? func->inherit_vars : std::map(); } bool function_get_shadow_scope(const wcstring &name) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); return func ? func->shadow_scope : false; } bool function_get_desc(const wcstring &name, wcstring *out_desc) { // Empty length string goes to NULL. scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); if (out_desc && func && !func->description.empty()) { out_desc->assign(_(func->description.c_str())); return true; } return false; } void function_set_desc(const wcstring &name, const wcstring &desc) { load(name); scoped_rlock locker(functions_lock); function_map_t::iterator iter = loaded_functions.find(name); if (iter != loaded_functions.end()) { iter->second.description = desc; } } bool function_copy(const wcstring &name, const wcstring &new_name) { bool result = false; scoped_rlock locker(functions_lock); function_map_t::const_iterator iter = loaded_functions.find(name); if (iter != loaded_functions.end()) { // This new instance of the function shouldn't be tied to the definition file of the // original, so pass NULL filename, etc. const function_map_t::value_type new_pair(new_name, function_info_t(iter->second, NULL, 0, false)); loaded_functions.insert(new_pair); result = true; } return result; } wcstring_list_t function_get_names(int get_hidden) { std::set names; scoped_rlock locker(functions_lock); autoload_names(names, get_hidden); function_map_t::const_iterator iter; for (iter = loaded_functions.begin(); iter != loaded_functions.end(); ++iter) { const wcstring &name = iter->first; // Maybe skip hidden. if (!get_hidden && (name.empty() || name.at(0) == L'_')) { continue; } names.insert(name); } return wcstring_list_t(names.begin(), names.end()); } const wchar_t *function_get_definition_file(const wcstring &name) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); return func ? func->definition_file : NULL; } bool function_is_autoloaded(const wcstring &name) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); return func->is_autoload; } int function_get_definition_offset(const wcstring &name) { scoped_rlock locker(functions_lock); const function_info_t *func = function_get(name); return func ? func->definition_offset : -1; } // Setup the environment for the function. There are three components of the environment: // 1. argv // 2. named arguments // 3. inherited variables void function_prepare_environment(const wcstring &name, const wchar_t *const *argv, const std::map &inherited_vars) { env_set_argv(argv); const wcstring_list_t named_arguments = function_get_named_arguments(name); if (!named_arguments.empty()) { const wchar_t *const *arg = argv; for (size_t i = 0; i < named_arguments.size(); i++) { if (*arg) { env_set_one(named_arguments.at(i), ENV_LOCAL | ENV_USER, *arg); arg++; } else { env_set_empty(named_arguments.at(i), ENV_LOCAL | ENV_USER); } } } for (auto it = inherited_vars.begin(), end = inherited_vars.end(); it != end; ++it) { // Note: Prior to my rewrite to address issue #4200 this code did the equivalent of this: // if (it->second.missing()) { // env_set_empty(it->first, ENV_LOCAL | ENV_USER); // } else { // It should be impossible for the var to be missing since we're inheriting it from an outer // scope. So we now die horribly if it is missing. assert(!it->second.missing()); env_set(it->first, ENV_LOCAL | ENV_USER, it->second.as_const_list()); } }