// A small utility to print information related to pressing keys. This is similar to using tools // like `xxd` and `od -tx1z` but provides more information such as the time delay between each // character. It also allows pressing and interpreting keys that are normally special such as // [ctrl-C] (interrupt the program) or [ctrl-D] (EOF to signal the program should exit). // And unlike those other tools this one disables ICRNL mode so it can distinguish between // carriage-return (\cM) and newline (\cJ). // // Type "exit" or "quit" to terminate the program. #include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "env.h" #include "fallback.h" // IWYU pragma: keep #include "fish_version.h" #include "input.h" #include "input_common.h" #include "parser.h" #include "print_help.h" #include "proc.h" #include "reader.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep struct config_paths_t determine_config_directory_paths(const char *argv0); static const wchar_t *ctrl_symbolic_names[] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, L"\\a", L"\\b", L"\\t", L"\\n", L"\\v", L"\\f", L"\\r", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, L"\\e", NULL, NULL, NULL, NULL}; static bool keep_running = true; /// Return true if the recent sequence of characters indicates the user wants to exit the program. static bool should_exit(wchar_t wc) { unsigned char c = wc < 0x80 ? wc : 0; static unsigned char recent_chars[4] = {0}; recent_chars[0] = recent_chars[1]; recent_chars[1] = recent_chars[2]; recent_chars[2] = recent_chars[3]; recent_chars[3] = c; if (c == shell_modes.c_cc[VINTR]) { if (recent_chars[2] == shell_modes.c_cc[VINTR]) return true; std::fwprintf(stderr, L"Press [ctrl-%c] again to exit\n", shell_modes.c_cc[VINTR] + 0x40); return false; } if (c == shell_modes.c_cc[VEOF]) { if (recent_chars[2] == shell_modes.c_cc[VEOF]) return true; std::fwprintf(stderr, L"Press [ctrl-%c] again to exit\n", shell_modes.c_cc[VEOF] + 0x40); return false; } return std::memcmp(recent_chars, "exit", 4) == 0 || std::memcmp(recent_chars, "quit", 4) == 0; } /// Return the name if the recent sequence of characters matches a known terminfo sequence. static maybe_t sequence_name(wchar_t wc) { static std::string recent_chars; if (wc >= 0x80) { // Terminfo sequences are always ASCII. recent_chars.clear(); return none(); } unsigned char c = wc; recent_chars.push_back(c); while (recent_chars.size() > 8) { recent_chars.erase(recent_chars.begin()); } // Check all nonempty substrings extending to the end. for (size_t i = 0; i < recent_chars.size(); i++) { wcstring out_name; wcstring seq = str2wcstring(recent_chars.substr(i)); if (input_terminfo_get_name(seq, &out_name)) { return out_name; } } return none(); ; } /// Return true if the character must be escaped when used in the sequence of chars to be bound in /// a `bind` command. static bool must_escape(wchar_t wc) { return std::wcschr(L"[]()<>{}*\\?$#;&|'\"", wc) != NULL; } static void ctrl_to_symbol(wchar_t *buf, int buf_len, wchar_t wc, bool bind_friendly) { if (ctrl_symbolic_names[wc]) { if (bind_friendly) { std::swprintf(buf, buf_len, L"%ls", ctrl_symbolic_names[wc]); } else { std::swprintf(buf, buf_len, L"\\c%c (or %ls)", wc + 0x40, ctrl_symbolic_names[wc]); } } else { std::swprintf(buf, buf_len, L"\\c%c", wc + 0x40); } } static void space_to_symbol(wchar_t *buf, int buf_len, wchar_t wc, bool bind_friendly) { if (bind_friendly) { std::swprintf(buf, buf_len, L"\\x%X", wc); } else { std::swprintf(buf, buf_len, L"\\x%X (aka \"space\")", wc); } } static void del_to_symbol(wchar_t *buf, int buf_len, wchar_t wc, bool bind_friendly) { if (bind_friendly) { std::swprintf(buf, buf_len, L"\\x%X", wc); } else { std::swprintf(buf, buf_len, L"\\x%X (aka \"del\")", wc); } } static void ascii_printable_to_symbol(wchar_t *buf, int buf_len, wchar_t wc, bool bind_friendly) { if (bind_friendly && must_escape(wc)) { std::swprintf(buf, buf_len, L"\\%c", wc); } else { std::swprintf(buf, buf_len, L"%c", wc); } } /// Convert a wide-char to a symbol that can be used in our output. The use of a static buffer /// requires that the returned string be used before we are called again. static wchar_t *char_to_symbol(wchar_t wc, bool bind_friendly) { static wchar_t buf[64]; if (wc < L' ') { // ASCII control character ctrl_to_symbol(buf, sizeof(buf) / sizeof(*buf), wc, bind_friendly); } else if (wc == L' ') { // the "space" character space_to_symbol(buf, sizeof(buf) / sizeof(*buf), wc, bind_friendly); } else if (wc == 0x7F) { // the "del" character del_to_symbol(buf, sizeof(buf) / sizeof(*buf), wc, bind_friendly); } else if (wc < 0x80) { // ASCII characters that are not control characters ascii_printable_to_symbol(buf, sizeof(buf) / sizeof(*buf), wc, bind_friendly); } else if (wc <= 0xFFFF) { // BMP Unicode chararacter std::swprintf(buf, sizeof(buf) / sizeof(*buf), L"\\u%04X", wc); } else { // Non-BMP Unicode chararacter std::swprintf(buf, sizeof(buf) / sizeof(*buf), L"\\U%06X", wc); } return buf; } static void add_char_to_bind_command(wchar_t wc, std::vector &bind_chars) { bind_chars.push_back(wc); } static void output_bind_command(std::vector &bind_chars) { if (bind_chars.size()) { std::fputws(L"bind ", stdout); for (size_t i = 0; i < bind_chars.size(); i++) { std::fputws(char_to_symbol(bind_chars[i], true), stdout); } std::fputws(L" 'do something'\n", stdout); bind_chars.clear(); } } static void output_info_about_char(wchar_t wc) { std::fwprintf(stderr, L"hex: %4X char: %ls\n", wc, char_to_symbol(wc, false)); } static bool output_matching_key_name(wchar_t wc) { if (maybe_t name = sequence_name(wc)) { std::fwprintf(stdout, L"bind -k %ls 'do something'\n", name->c_str()); return true; } return false; } static double output_elapsed_time(double prev_tstamp, bool first_char_seen) { // How much time has passed since the previous char was received in microseconds. double now = timef(); long long int delta_tstamp_us = 1000000 * (now - prev_tstamp); if (delta_tstamp_us >= 200000 && first_char_seen) std::fputwc(L'\n', stderr); if (delta_tstamp_us >= 1000000) { std::fwprintf(stderr, L" "); } else { std::fwprintf(stderr, L"(%3lld.%03lld ms) ", delta_tstamp_us / 1000, delta_tstamp_us % 1000); } return now; } /// Process the characters we receive as the user presses keys. static void process_input(bool continuous_mode) { bool first_char_seen = false; double prev_tstamp = 0.0; input_event_queue_t queue; std::vector bind_chars; std::fwprintf(stderr, L"Press a key\n\n"); while (keep_running) { char_event_t evt{0}; if (reader_test_and_clear_interrupted()) { evt = char_event_t{shell_modes.c_cc[VINTR]}; } else { evt = queue.readch_timed(true); } if (!evt.is_char()) { output_bind_command(bind_chars); if (first_char_seen && !continuous_mode) { return; } continue; } wchar_t wc = evt.get_char(); prev_tstamp = output_elapsed_time(prev_tstamp, first_char_seen); // Hack for #3189. Do not suggest \c@ as the binding for nul, because a string containing // nul cannot be passed to builtin_bind since it uses C strings. We'll output the name of // this key (nul) elsewhere. if (wc) { add_char_to_bind_command(wc, bind_chars); } output_info_about_char(wc); if (output_matching_key_name(wc)) { output_bind_command(bind_chars); } if (should_exit(wc)) { std::fwprintf(stderr, L"\nExiting at your request.\n"); break; } first_char_seen = true; } } /// Make sure we cleanup before exiting if we receive a signal that should cause us to exit. /// Otherwise just report receipt of the signal. static struct sigaction old_sigactions[32]; static void signal_handler(int signo, siginfo_t *siginfo, void *siginfo_arg) { std::fwprintf(stdout, _(L"signal #%d (%ls) received\n"), signo, sig2wcs(signo)); if (signo == SIGHUP || signo == SIGTERM || signo == SIGABRT || signo == SIGSEGV) { keep_running = false; } if (old_sigactions[signo].sa_handler != SIG_IGN && old_sigactions[signo].sa_handler != SIG_DFL) { int needs_siginfo = old_sigactions[signo].sa_flags & SA_SIGINFO; if (needs_siginfo) { old_sigactions[signo].sa_sigaction(signo, siginfo, siginfo_arg); } else { old_sigactions[signo].sa_handler(signo); } } } /// Install a handler for every signal. This allows us to restore the tty modes so the terminal is /// still usable when we die. If the signal already has a handler arrange to invoke it from within /// our handler. static void install_our_signal_handlers() { struct sigaction new_sa, old_sa; sigemptyset(&new_sa.sa_mask); new_sa.sa_flags = SA_SIGINFO; new_sa.sa_sigaction = signal_handler; for (int signo = 1; signo < 32; signo++) { if (sigaction(signo, &new_sa, &old_sa) != -1) { std::memcpy(&old_sigactions[signo], &old_sa, sizeof(old_sa)); if (old_sa.sa_handler == SIG_IGN) { debug(3, "signal #%d (%ls) was being ignored", signo, sig2wcs(signo)); } if (old_sa.sa_flags && ~SA_SIGINFO != 0) { debug(3, L"signal #%d (%ls) handler had flags 0x%X", signo, sig2wcs(signo), old_sa.sa_flags); } } } } /// Setup our environment (e.g., tty modes), process key strokes, then reset the environment. static void setup_and_process_keys(bool continuous_mode) { set_interactive_session(true); // by definition this program is interactive set_main_thread(); setup_fork_guards(); env_init(); reader_init(); parser_t &parser = parser_t::principal_parser(); scoped_push interactive{&parser.libdata().is_interactive, true}; // We need to set the shell-modes for ICRNL, // in fish-proper this is done once a command is run. tcsetattr(STDIN_FILENO, TCSANOW, &shell_modes); install_our_signal_handlers(); if (continuous_mode) { std::fwprintf(stderr, L"\n"); std::fwprintf(stderr, L"To terminate this program type \"exit\" or \"quit\" in this window,\n"); std::fwprintf(stderr, L"or press [ctrl-%c] or [ctrl-%c] twice in a row.\n", shell_modes.c_cc[VINTR] + 0x40, shell_modes.c_cc[VEOF] + 0x40); std::fwprintf(stderr, L"\n"); } process_input(continuous_mode); restore_term_mode(); restore_term_foreground_process_group(); } static bool parse_debug_level_flag() { errno = 0; char *end; long tmp = strtol(optarg, &end, 10); if (tmp >= 0 && tmp <= 10 && !*end && !errno) { debug_level = (int)tmp; } else { std::fwprintf(stderr, _(L"Invalid value '%s' for debug-level flag\n"), optarg); return false; } return true; } static bool parse_debug_frames_flag() { errno = 0; char *end; long tmp = strtol(optarg, &end, 10); if (tmp > 0 && tmp <= 128 && !*end && !errno) { set_debug_stack_frames((int)tmp); } else { std::fwprintf(stderr, _(L"Invalid value '%s' for debug-stack-frames flag\n"), optarg); return false; } return true; } static bool parse_flags(int argc, char **argv, bool *continuous_mode) { const char *short_opts = "+cd:D:hv"; const struct option long_opts[] = {{"continuous", no_argument, NULL, 'c'}, {"debug-level", required_argument, NULL, 'd'}, {"debug-stack-frames", required_argument, NULL, 'D'}, {"help", no_argument, NULL, 'h'}, {"version", no_argument, NULL, 'v'}, {NULL, 0, NULL, 0}}; int opt; bool error = false; while (!error && (opt = getopt_long(argc, argv, short_opts, long_opts, NULL)) != -1) { switch (opt) { case 'c': { *continuous_mode = true; break; } case 'h': { print_help("fish_key_reader", 0); error = true; break; } case 'd': { error = !parse_debug_level_flag(); break; } case 'D': { error = !parse_debug_frames_flag(); break; } case 'v': { std::fwprintf(stdout, L"%s\n", get_fish_version()); return false; } default: { // We assume getopt_long() has already emitted a diagnostic msg. error = true; break; } } } if (error) return false; argc -= optind; if (argc != 0) { std::fwprintf(stderr, L"Expected no arguments, got %d\n", argc); return false; } return true; } int main(int argc, char **argv) { program_name = L"fish_key_reader"; bool continuous_mode = false; if (!parse_flags(argc, argv, &continuous_mode)) return 1; if (!isatty(STDIN_FILENO)) { std::fwprintf(stderr, L"Stdin must be attached to a tty.\n"); return 1; } setup_and_process_keys(continuous_mode); return 0; }