In preparation for fixing #7559, add a function poke_item to fd_monitor.
fd_monitor has a list of file descriptors, and invokes a callback when an
fd becomes readable. With this change, we assign each item a unique ID and
return it when the item is added; the ID may then be used to invoke the
callback explicitly.
The idea is that we can stop reading from the pipe associated with the
cmdsub when the job is finished, even if the pipe is still open.
It was possible though unlikely for make_autoclose_pipes to close only
one side of pipe, if it fails to find a new fd. This would result in an
fd leak. Ensure that doesn't happen.
builtins output to stdout and stderr via io_streams_t. Prior to this fix, it
contained an output_stream_t which just wraps a buffer. So all builtin output
went to this buffer (except for eval).
Switch output_stream_t to become a new abstract class which can output to a
buffer, file descriptor, or nowhere. This allows for example `string` to stream
its output as it is produced, instead of buffering it.
Currently fish aborts execution mid-pipeline if a file redirection
failed, which can leave the shell in a broken state (job abandoned after
giving control of the terminal to an already-executed job in the
pipeline).
This patch replaces a failed fd with a closed fd and continues execution
if the affected process wasn't the first in the pipeline.
While this is a hack to address the regression behind fish-shell/#7038
introduced in d62576c, it can also be argued that this behavior is
actually more correct... right?
Closes#7038.
Prior to this fix, builtin_eval would direct output to the io_chain of the
job. The problem is with pipes: `builtin_eval` might happily attempt to
write unlimited output to the write end of a pipe, but the corresponding
reading process has not yet been launched. This results in deadlock.
The fix is to buffer all the output from `builtin_eval`. This is not fun
but the best that can be done until we have real concurrent processes.
Fixes#6806
This switches bufferfills from using an exclusively-owned thread, to
sharing an fd_monitor. This allows multiple bufferfills to all use the same
thread.
Sometimes we must spawn a new thread, to avoid the risk of deadlock.
Ensure we always spawn a thread in those cases. In particular this
includes the fillthread.
user_supplied was used to distinguish IO redirections which were
explicit, vs those that came about through "transmogrphication." But
transmogrification is no more. Remove the flag.
The IO cleanup left file redirections open in the child. For example,
/bin/cmd < file.txt would redirect stdin but also leave the file open.
Ensure these get closed properly.
Prior to this fix, a file redirection was turned into an io_file_t. This is
annoying because every place where we want to apply the redirection, we
might fail due to open() failing. Switch to opening the file at the point
we resolve the redirection spec. This will simplify a lot of code.
Prior to this change, a process after it has been constructed by
parse_execution, but before it is executed, was given a list of
io_data_t redirections. The problem is that redirections have a
sensitive ownership policy because they hold onto fds. This made it
rather hard to reason about fd lifetime.
Change these to redirection_spec_t. This is a textual description
of a redirection after expansion. It does not represent an open file and
so its lifetime is no longer important.
This enables files to be held only on the stack, and are no longer owned
by a process of indeterminate lifetime.
fish has to ensure that the pipes it creates do not conflict with any
explicit fds named in redirections. Switch this code to using
autoclose_fd_t to make the ownership logic more explicit, and also
introduce fd_set_t to reduce the dependence on io_chain_t.
Background fillthreads are used when we want to populate a buffer from an
external command. The most common is command substitution.
Prior to this commit, fish would spin up a fillthread whenever required.
This ended up being quite expensive.
Switch to using the iothread pool instead. This enables reusing the same
thread(s), which prevents needing to spawn new threads. This shows a big
perf win on the alias benchmark (766 -> 378 ms).
Previously when propagating explicitly separated output, we would early-out
if the buffer was empty, where empty meant contains no characters. However
it may contain one or more empty strings, in which case we should propagate
those strings.
Remove this footgun "empty" function and handle this properly.
Fixes#5987
This runs build_tools/style.fish, which runs clang-format on C++, fish_indent on fish and (new) black on python.
If anything is wrong with the formatting, we should fix the tools, but automated formatting is worth it.
Now that we use an internal process to perform builtin output, simplify the
logic around how it is performed. In particular we no longer have to be
careful about async-safe functions since we do not fork.
Also fix a bunch of comments that no longer apply.
This introduces "internal processes" which are backed by a pthread instead
of a normal process. Internal processes are reaped using the topic
machinery, plugging in neatly alongside the sigchld topic; this means that
process_mark_finished_children() can wait for internal and external
processes simultaneously.
Initially internal processes replace the forked process that fish uses to
write out the output of blocks and functions.
This happens on OpenIndiana/Solaris/Illumos/SunOS.
Elsewhere we use read_blocked, which already returned in this
case (and which we might want to use here as well!).
This is a large change to how io_buffers are filled. The essential problem
comes about with code like (example):
echo ( /bin/pwd )
The output of /bin/pwd must go to fish, not the tty. To arrange for this,
fish does the following:
1. Invoke pipe() to create a pipe.
2. Add an io_bufferfill_t redirection that owns the write end of the pipe.
3. After fork (or equiv), call dup2() to replace pwd's stdout with this pipe.
Now when /bin/pwd writes, it will send output to the read end of the pipe.
But who reads it?
Prior to this fix, fish would do the following in a loop:
1. select() on the pipe with a 10 msec timeout
2. waitpid(WNOHANG) on the pwd proc
This polling is ugly and confusing and is what is replaced here.
With this new change, fish now reads from the pipe via a background thread:
1. Spawn a background pthread, which select()s on the pipe's read end with
a long (100 msec) timeout.
2. In the foreground, waitpid() (allowing hanging) on the pwd proc.
The big win here is a major simplification of job_t::continue_job() since
it no longer has to worry about filling buffers. This will make things
easier for concurrent execution.
It may not be obvious why the background thread still needs a poll (100 msec).
The answer is for cases where the write end of the fd escapes, in particular
background processes invoked inside command substitutions. psub is perhaps
the only important case of this (other shells typically just hang here).