This can be used to determine whether the previous command produced a real status, or just carried over the status from the command before it. Backgrounded commands and variable assignments will not increment status_generation, all other commands will.
This moves us slightly closer towards fish code in the background. The idea is
that a background job may still have "foreground" sub-jobs, example:
begin ; sleep 5 ; end &
The begin/end job runs in the background but should wait for `sleep`.
Prior to this fix, fish would see the overall job group is in the background
and not wait for any of its processes. With this change we detach waiting from
is_foreground.
This changes how fish attempts to protect itself from calling tcsetpgrp() too
aggressively. Recall that tcsetpgrp() will "force" itself, if SIGTTOU is
ignored (which it is in fish when job control is enabled).
Prior to this fix, we avoided SIGTTINs by only transferring the tty ownership
if fish was already the owner. This dated from a time before we had really
nailed down how pgroups should be assigned. Now we more deliberately assign a
job's pgroup so we don't need this conservative check.
However we still need logic to avoid transferring the tty if fish is not the
owner. The bad case is when job control is enabled while fish is running in the
background - here fish would transfer the tty and "steal" from the foreground
process.
So retain the checks of the current tty owner but migrate them to the point of
calling tcsetpgrp() itself.
add_disowned_pgid skipped jobs that have a PGID equal to the running
process. However, this includes processes started in config.fish or when
job control is turned off, so they never get waited on.
Instead, refactor this function to add_disowned_job, and add either the PGID or
all the PIDs of the job to the list of disowned PIDs/PGIDs.
Fixes#7183.
Assigning the tty is really a function of a job group, not an individual
job. Reflect that in terminal_maybe_give_to_job_group and also
terminal_return_from_job_group.
This reverts commit 3a5585df95.
This reverts a change that removed a lock. It's indeed true that in master,
fish script is bound to the main thread. But I'm working to remove that
limitation and these locks are important in that future.
The owning locks were added after the original code and decorated with
comments indicating they are thread-safe, even though they're only ever
used from the main thread. Presuming the intent was to make future
manipulation of the code safer rather than to actually make use of any
thread safety guarantees, these have been wrapped in a new
`thread_exclusive` type which always calls ASSERT_IS_MAIN_THREAD.
The benefit is that this does not perform a syscall to lock a mutex
each time the variables are accessed.
When fish receives a "cancellation inducing" signal (SIGINT in particular)
it has to unwind execution - for example while loops or whatever else that
is executing. There are two ways this may come about:
1. The fish process received the signal
2. A child process received the signal
An example of the second case is:
some_command | some_function
Here `some_command` is the tty owner and so will receive control-C, but
then fish has to cancel function execution.
Prior to this change, these were handled uniformly: both would just set a
cancellation signal inside the parser. However in the future we will have
multiple parsers and it may not be obvious which one to set the flag in.
So instead distinguish these cases: if a process receives SIGINT we mark
the signal in its job group, and if fish receives it we set a global
variable.
After profiling bottlenecks in job execution, the calls to `tcgetpgrp`
were identified to take a good amount of the execution time. Collecting
metrics on which branches were taken revealed that in all "normal"
cases, there is no benefit to calling `tcgetpgrp` before calling
`tcsetpgrp` as it can instead be called only in the error case to
determine what sort of error handling behavior should be applied.
This makes the best-case scenario of a single syscall much more likely
than in the previous situation.
Initially I wanted to pick a different name to avoid confusion with
process groups, but really job trees *are* process groups. So name them
to reflect that fact.
Also rename "placeholder" to "internal" which is clearer.
Prior to this, jobs all had a pgid, and fish has to work hard to ensure
that pgids were inherited properly for nested jobs. But now the job tree
is the source of truth and there is only one location for the pgid.
Job trees come in two flavors: “placeholders” for jobs which are only fish
functions, and non-placeholders which need to track a pgid. This adds
logic to allow a job to decide if its parent's job tree is appropriate,
and allocating a new tree if not.
job_tree represents the data that should be shared between a job and any
jobs that may be spawned by functions or eval run as part of that job. It
reifies shared data that before was handled piecemeal.
When sending SIGCONT to a stopped job, this behaves now
a bit more like a job that was continued by the bg builtin;
bg uses job_t::continue_job which seems overkill here.
The default implementation will not print any output in that case, but this provides users with additional flexibility when it comes to customising the shell's behaviour.
This allows users to customise the behaviour of the shell by redefining the function. This is similar to how fish_title or fish_greeting behave, where the default implementation can be easily overridden.
The function receives as arguments the job id, command line, signal name and signal description.
Prior to this fix, if job control is enabled but stdin is not a tty, we
would return an error from terminal_maybe_give_to_job which would cause us
to avoid waiting for the job. Instead just return notneeded.
Fixes#6573.
Fixes#6830
For some reason, with this change, typing "vi", Control-Z, and 2 x Control-D,
results in the cursor not moving correctly, but this only
seems to happen when starting fish from a fish that doesnt have this fix.
I hope that is a temporary glitch.
55e3270 introduced a regression where we would remove all completed
jobs. But jobs that want to print a status message get skipped, so
the status message (and associated event handlers) might not get run.
Fix this by making it explicit which jobs are safe to process, and which
should be skipped.
Fixes#6679.
Mostly line breaks, one instance of tabs!
For some reason clang-format insists on two spaces before a same-line comment?
(I continue to be unimpressed with super-strict line length limits,
but I continue to believe in automatic styling, so it is what it is)
[ci skip]
The `function --on-job-exit caller` feature allows a command substitution
to observe when the parent job exits. This has never worked very well - in
particular it is based on job IDs, so a function that observes this will
run multiple times. Implement it properly.
Do this by having a not-recycled "internal job id".
This is only used by psub, but ensure it works properly none-the-less.
"job_exit" events, despite their name, can only be created via
the '--on-job-exit caller' misfeature of function. Rename it to make it
clear that this event type is specifically for caller-exit.
fish has some unprincipled code that attempts to tcsetpgrp() to own the
terminal before running a builtin; this was added because 'read' might
want to read from the terminal. I added this code before fully
understanding how process groups and terminals work. A better fix would
be to ensure that fish is marked as the pgroup leader in the job when
the builtin is the first process in the job, and we do that now.
Courageously back out the changes to grab the terminal; see #5147 and
also #5133.