This should speed things up on slower PCs given that the vast majority
of shell commands are simple jobs consisting of a single command without
any pipelines, in which case there's no need for a keepalive process at
all. Applies to WSL only.
As a temporary workaround for the behavior described in
Microsoft/WSL#2997 wherein WSL does not correctly assign the spawned
child its own PID as its PGID, explicitly set the PGID for the newly
spawned process.
The job control functions were a bit messy, in particular
`set_child_group`'s name would imply that all it does is set the child
group, but in reality it used to set the child group (via `setpgid`),
set the job's pgrp if it hasn't been set, and possibly assign control of
the terminal to the newly-created job.
These have been split into separate functions. Now `set_child_group`
does just (and only) that, `maybe_assign_terminal` might assign the
terminal to the new pgrp, and `on_process_created` is used to set the
job properties the first time an external process is created. This might
also speed things up (but probably not noticeably) as there are no more
repeated calls to `getpgrp()` if JOB_CONTROL is not set.
Additionally, this closes#4715 by no longer unconditionally calling
`setpgid` on all new processes, including those created by `posix_spawn`
which does not need this since the child's pgrep is set at in the
arguments to that API call.
This switches function execution from the function's source code to
its stored node and pstree. This means we no longer have to re-parse
the function every time we execute it.
This concerns block nodes with redirections, like
begin ... end | grep ...
Prior to this fix, we passed in a pointer to the node. Switch to passing
in the tnode and parsed source ref. This improves type safety and better
aligns with the function-node plans.
keepalive processes are typically killed by the main shell process.
However if the main shell exits the keepalive may linger. In WSL
keepalives are used more often, and the lingering keepalives are both
leaks and prevent the tests from finishing.
Have keepalives poll for their parent process ID and exit when it
changes, so they can clean themselves up. The polling frequency can be
low.
Have WSL use a keepalive whenever the first process is external.
This works around the fact that WSL prohibits setting an exited
process as the group leader.
We had pid_status defined as a pid_t instance, which was fine since on
most platforms pid_t is an alias for int. However, that is not
universally the case and waitpid takes an int *, not a pid_t *.
This eliminates the "missing" notion of env_var_t. Instead
env_get returns a maybe_t<env_var_t>, which forces callers to
handle the possibility that the variable is missing.
Internally fish should store vars as a vector of elements. The current
flat string representation is a holdover from when the code was written
in C.
Fixes#4200
It's bugged me forever that the scope is the second arg to `env_get()`
but not `env_set()`. And since I'll be introducing some helper functions
that wrap `env_set()` now is a good time to change the order of its
arguments.
There is no more race condition between parent and child with
regards to setting the process groups. Each child sets it for themselves
and then blocks indefinitely until the parent does what it needs to for
them (having waited for them to set their process groups). They are not
SIGCONT'd until the next process in the chain (if any) starts so that
that process can join their process group and open the pipes.
In the last commit, we introduced an indiscriminate if !EXTERNAL check
that unblocks a previously SIGSTOP'd command (if any) to allow the main
loop in exec_job to read from it without deadlocking (since builtins and
functions read directly from input as an optimization, sometimes).
Now only unblocking where a fork will not happen to ensure that if a
builtin ends up forking, that fork'd process is guaranteed to be able to
join the previous process' process group and access its output pipes.
We were having child processes SIGSTOP themselves immediately after
setting their process group and before launching their intended targets,
but they were not necessarily stopped by the time the next command was
being executed (so the opposite of the original race condition where
they might have finished executing by the time the next command came
around), and as a result when we sent them SIGCONT, that could never
reach. Now using waitpid to synchronize the SIGSTOP/SIGCONT between the
two.
If we had a good, unnamed inter-process event/semaphore, we could use
that to have a child process conditionally stop itself if the next
command in the job chain hadn't yet been started / setup, but this is
probably a lot more straightforward and less-confusing, which isn't a
bad thing.
Additionally, there was a bug caused by the fact that the main exec_job
loop actually blocks to read from previous commands in the job if the
current command is a built-in that doesn't need to fork.
With this waitpid code, I was able to finally add the SIGSTOP code to
all the fork'd processes in the main exec_job loop without introducing
deadlocks; it turns out that they should be treated just like the main
EXTERNAL fork, but they tend to execute faster causing the same deadlock
described above to occur more readily.
The only thing I'm not sure about is whether we should execute
unblock_pid undconditionally for all !EXTERNAL commands. It makes more
sense to *only* do that if a blocking read were about to be done in the
main loop, otherwise the original race condition could still appear
(though it is probably mitigated by whatever duration the SIGSTOP lasted
for, even if it is SIGCONT'd before the next command tries to join the
process group).
I hadn't realized that the for loop is called multiple times for a given
"single input" (anything that doesn't include semicolons, etc) to fish,
and so processes were being blocked but blocked_pid was lost by the time
that the next job (which was reading from the last process in the
previous job) came around.
Now using a static variable to store the last blocked PID. AFAICT, this
main job control loop is always executed from the same process and
thread, so this shouldn't need to be wrapped in atomics/mutexes, etc.