fd_monitor_t allows observing a collection of fds. It also has its own
fd, which it uses to awaken itself when there are changes. Switch to
using fd_event_signaller_t instead of a pipe; this reduces the number of
file descriptors and is more efficient under Linux.
I ran into problems described in https://github.com/fish-shell/fish-shell/issues/718 when using this prompt. This seems to be a bug in the prompt -- this change fixes it, at least on my system.
I tried this in tmux (TERM=screen) and gnome-terminal (TERM=xterm-256) with fish 3.1.2, on Linux.
queues use std::deque under the hood which is more expensive than a vector.
We always consume the entire queue so there is no advantage to use deque here.
Just use a vector.
Replace the complicated implementation which shared a condition variable, with
one which just uses std::future<void>. This may allocate more condition
variables but is much simpler.
Fish was previously oblivious to the existence of mouse-tracking ANSI
escapes; this was mostly OK because they're disabled by default and we
don't enable them, but if a TUI application that turned on mouse
reporting crashed or exited without turning mouse reporting off, fish
would be left in an unusable state as all mouse reporting CSI sequences
would be posted to the prompt.
This can be tested by executing `printf '\x1b[?1003h'` at the prompt,
then clicking with any mouse button anywhere within the terminal window.
Previously, this would have resulted in seeming garbage being spewed to
the prompt; now, fish detects the mouse tracking CSIs posted to stdin by
the terminal emulator and a) ignores them to prevent invalid input, as
well as b) posts the CSI needed to disable future mouse tracking events
from being emitted on subsequent mouse interactions (until re-enabled).
Note that since we respond to a mouse tracking CSI rather than
pre-emptively disable mouse reporting, we do not need to do any sort of
feature detection to determine whether or not the terminal supports
mouse reporting (otherwise, if it didn't support it and we posted the
CSI anyway, we'd end up with exactly the kind of cruft posted to the
prompt that we're trying to avoid).
Fixes#4873
This is a stack-allocating utility class to peek up to N
characters/events out of an `event_queue_t` object. The need for a
hard-coded maximum peek length N at each call site is to avoid any heap
allocation, as this would be called in a hot path on every input event.
This allows directly inserting multiple characters/events in one go at
the front of the input queue, instead of needing to add them one-by-one
in reverse order.
In addition to improving performance in case of fragmented dequeue
allocation, this also is less error prone since a dev need not remember
to use reverse iterators when looping over a vector of peeked events.
Under non-Linux builds, binary_semaphore is implemented with a
self-pipe. When TSan is active we mark the pipe as non-blocking as TSan
cannot interrupt read (but can interrupt select). However we weren't
properly testing for EAGAIN leading to an assertion failure.
Allow looping on EAGAIN.
io_buffer_t is a buffer that fills itself by reading from a file
descriptor (typically a pipe). When the file descriptor is widowed, the
operation completes, and it reports completion by marking a
`std::promise<void>`. The "main thread" waits for this by waiting on the
promise's future. However TSan was reporting that the future's destructor
races with its promise's wait method. It's not obvious if this is valid,
but we can fix it by keeping the promise alive until the io_buffer_t is
deallocated.
This fixes the TSan issues reported under
`complete_background_fillthread_and_take_buffer` for #7681 (but there
are other unresolved issues).
This was updated and now always fails, but it always did so - you can
test it with 3.1.2 as well, it's just not happy with the iothread
stuff.
Because it's super easy to test this locally this disables the github
actions test so it doesn't complain *constantly*.
See #7681
This concerns how fish prevents its own fds from interfering with
user-defined fd redirections, like `echo hi >&5`. fish has historically
done this by tracking all user defined redirections when running a job,
and ensuring that pipes are not assigned the same fds. However this is
annoying to pass around - it means that we have to thread user-defined
redirections into pipe creation.
Take a page from zsh and just ensure that all pipes we create have fds in
the "high range," which here means at least 10. The primary way to do this
is via the F_DUPFD_CLOEXEC syscall, which also sets CLOEXEC, so we aren't
invoking additional syscalls in the common case. This will free us from
having to track which fds are in user-defined redirections.
fds.h will centralize logic around working with file descriptors. In
particular it will be the new home for logic around moving fds to high
unused values, replacing the "avoid conflicts" logic.
Prior to this change, the checks/git.fish test would fail if run from a
git interactive rebase (such as via `git rebase -i --exec 'ninja test'`),
because git itself would inject stuff into the environment. Teach the git
test how to clean up its environment first before running.
This needs to be rewritten, I'm pretty sure we have like 6 of these
kinds of ad-hoc "is this quoted" things lying around.
But for now, at least don't just check if the *previous* character was
a backslash.
Fixes#7685.
__fish_print_commands just prints the commands we have man pages for,
and help uses that to figure out whether it should link
a command or a section. If the docs aren't installed it won't find
anything.
At least check the builtins, because we document them and it's easy.
This probably needs to be added at build time - glob
doc_src/cmds/*.rst.
Previously we sometimes wanted to access an io_buffer_t to append to it
directly, but that's no longer true; all we really care about is its
separated_buffer_t. Make io_bufferfill_t::finish return the
separated_buffer directly, simplifying call sites. No user visible changes
expected here.
This concerns builtins writing to an io_buffer_t. io_buffer_t is how fish
captures output, especially in command substitutions:
set STUFF (string upper stuff)
Recall that io_buffer_t fills itself by reading from an fd (typically
connected to stdout of the command). However if our command is a builtin,
then we can write to the buffer directly.
Prior to this change, when a builtin anticipated writing to an
io_buffer_t, it would first write into an internal buffer, and then after
the builtin was finished, we would copy it to the io_buffer_t. This was
because we didn't have a polymorphic receiver for builtin output: we
always buffered it and then directed it to the io_buffer_t or file
descriptor or stdout or whatever.
Now that we have polymorphpic io_streams_t, we can notice ahead of time
that the builtin output is destined for an internal buffer and have it
just write directly to that buffer. This saves a buffering step, which is
a nice simplification.