Let's hope this doesn't causes build failures for e.g. musl: I just
know it's good on macOS and our Linux CI.
It's been a long time.
One fix this brings, is I discovered we #include assert.h or cassert
in a lot of places. If those ever happen to be in a file that doesn't
include common.h, or we are before common.h gets included, we're
unawaringly working with the system 'assert' macro again, which
may get disabled for debug builds or at least has different
behavior on crash. We undef 'assert' and redefine it in common.h.
Those were all eliminated, except in one catch-22 spot for
maybe.h: it can't include common.h. A fix might be to
make a fish_assert.h that *usually* common.h exports.
Cancellation groups were meant to reflect the following idea: if you ran a
simple block:
begin
cmd1
cmd2
end
then under job control, cmd1 and cmd2 would get separate groups; however if
either exits due to SIGINT or SIGQUIT we also want to propagate that to the
outer block. So the outermost block and its interior jobs would share a
cancellation group. However this is more complex than necessary; it's
sufficient for the execution context to just store an int internally.
This ought not to affect anything user-visible.
This is a cleanup of job groups, rationalizing a bunch of stuff. Some
notable changes (none user-visible hopefully):
1. Previously, if a job group wanted a pgid, then we would assign it to the
first process to run in the job group. Now we deliberately mark which
process will own the pgroup, via a new `leads_pgrp` flag in process_t. This
eliminates a source of ambiguity.
2. Previously, if a job were run inside fish's pgroup, we would set fish's
pgroup as the group of the job. But this meant we had to check if the job
had fish's pgroup in lots of places, for example when calling tcsetpgrp.
Now a job group only has a pgrp if that pgrp is external (i.e. the job is
under job control).
This concerns how "internal job groups" know to stop executing when an
external command receives a "cancel signal" (SIGINT or SIGQUIT). For
example:
while true
sleep 1
end
The intent is that if any 'sleep' exits from a cancel signal, then so would
the while loop. This is why you can hit control-C to end the loop even
if the SIGINT is delivered to sleep and not fish.
Here the 'while' loop is considered an "internal job group" (no separate
pgid, bash would not fork) while each 'sleep' is a separate external
command with its own job group, pgroup, etc. Prior to this change, after
running each 'sleep', parse_execution_context_t would check to see if its
exit status was a cancel signal, and if so, stash it into an int that the
cancel checker would check. But this became unwieldy: now there were three
sources of cancellation signals (that int, the job group, and fish itself).
Introduce the notion of a "cancellation group" which is a set of job
groups that should cancel together. Even though the while loop and sleep
are in different job groups, they are in the same cancellation group. When
any job gets a SIGINT or SIGQUIT, it marks that signal in its cancellation
group, which prevents running new jobs in that group.
This reduces the number of signals to check from 3 to 2; eventually we can
teach cancellation groups how to check fish's own signals and then it will
just be 1.