The global variables are moved (not copied) from C++ to rust and exported as
extern C integers. On the rust side they are accessed only with atomic semantics
but regular int access is preserved from the C++ side (until that code is also
ported).
This implements the primary environment stack, and other environments such
as the null and snapshot environments, in Rust. These are used to implement
the push and pop from block scoped commands such as `for` and `begin`, and
also function calls.
owning_null_terminated_array is used for environment variables, where we need to
provide envp for child processes. This switches the implementation from C++ to
Rust.
We retain the C++ owning_null_terminated_array_t; it simply wraps the Rust
version now.
There are many places where we want to treat a missing variable the same as
a variable with an empty value.
In C++ we handle this by branching on maybe_t<env_var_t>::missing_or_empty().
If it returns false, we go on to access maybe_t<env_var_t>::value() aka
operator*.
In Rust, Environment::get() will return an Option<EnvVar>.
We could define a MissingOrEmpty trait and implement it for Option<EnvVar>.
However that will still leave us with ugly calls to Option::unwrap()
(by convention Rust does use shorthands like *).
Let's add a variable getter that returns none for empty variables.
This reverts commit 3e556b984c.
Revert "Further fix the issue and add the assert that'd have prevented it."
This reverts commit 056502001e.
Revert "Fix actual issue with allow_use_posix_spawn."
This reverts commit 85b9f3c71f.
Revert "Stop using posix_spawn when it is not allowed"
This reverts commit 9c896e1990.
Revert "don't even set up a fish_use_posix_spawn handler if unsupported"
This reverts commit 8b14ac4a9c.
Let's hope this doesn't causes build failures for e.g. musl: I just
know it's good on macOS and our Linux CI.
It's been a long time.
One fix this brings, is I discovered we #include assert.h or cassert
in a lot of places. If those ever happen to be in a file that doesn't
include common.h, or we are before common.h gets included, we're
unawaringly working with the system 'assert' macro again, which
may get disabled for debug builds or at least has different
behavior on crash. We undef 'assert' and redefine it in common.h.
Those were all eliminated, except in one catch-22 spot for
maybe.h: it can't include common.h. A fix might be to
make a fish_assert.h that *usually* common.h exports.
This adds a line to `set --show`s output like
```
$PATH: originally inherited as |/home/alfa/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/bin/site_perl:/usr/bin/vendor_perl:/usr/bin/core_perl:/var/lib/flatpak/exports/bin|
```
to help with debugging.
Note that this means keeping an additional copy of the original
environment around. At most this would be one ARG_MAX's worth, which
is about 2M.
Prior to this commit, setting a universal variable may trigger syncing
against the file which will modify other universal variables. But if we
want to support multiple environments we need the parser to decide when to
sync uvars. Shift the decision of when to sync to the parser itself. When a
universal variable is modified, now we just set a flag and it's up to the
(main) parser when to pick it up. This is hopefully just a refactoring with
no user-visible changes.
* Add `set --function`
This makes the function's scope available, even inside of blocks. Outside of blocks it's the toplevel local scope.
This removes the need to declare variables locally before use, and will probably end up being the main way variables get set.
E.g.:
```fish
set -l thing
if condition
set thing one
else
set thing two
end
```
could be written as
```fish
if condition
set -f thing one
else
set -f thing two
end
```
Note: Many scripts shipped with fish use workarounds like `and`/`or`
instead of `if`, so it isn't easy to find good examples.
Also, if there isn't an else-branch in that above, just with
```fish
if condition
set -f thing one
end
```
that means something different from setting it before! Now, if
`condition` isn't true, it would use a global (or universal) variable of
te same name!
Some more interesting parts:
Because it *is* a local scope, setting a variable `-f` and
`-l` in the toplevel of a function ends up the same:
```fish
function foo2
set -l foo bar
set -f foo baz # modifies the *same* variable!
end
```
but setting it locally inside a block creates a new local variable
that shadows the function-scoped variable:
```fish
function foo3
set -f foo bar
begin
set -l foo banana
# $foo is banana
end
# $foo is bar again
end
```
This is how local variables already work. "Local" is actually "block-scoped".
Also `set --show` will only show the closest local scope, so it won't
show a shadowed function-level variable. Again, this is how local
variables already work, and could be done as a separate change.
As a fun tidbit, functions with --no-scope-shadowing can now use this to set variables in the calling function. That's probably okay given that it's already an escape hatch (but to be clear: if it turns out to problematic I reserve the right to remove it).
Fixes#565
This doesn't work.
The real thing that tells if something is read-only is
electric_var_t::readonly().
This wasn't used, and we provide no way to make a variable read-only,
which makes this an unnecessary footgun.
Several functions including wgetopt and execve operate on null-terminated
arrays of nul-terminated pointers: a list of pointers to C strings where
the last pointer is null. Prior to this change, each process_t stored its
argv in such an array. This had two problems:
1. It was awkward to work with this type, instead of using std::vector,
etc.
2. The process's arguments would be rearranged by builtins which is
surprising
Our null terminated arrays were built around a fancy type that would copy
input strings and also generate an array of pointers to them, in one big
allocation.
Switch to a new model where we construct an array of pointers over
existing strings. So you can supply a `vector<string>` and now
`null_terminated_array_t` will just make a list of pointers to them. Now
processes can just store their argv in a familiar wcstring_list_t.
Profiling revealed string comparison in variable lookups to be a
significant hotspot. This change causes `make test` to complete ~4.5%
faster per `hyperfine`.
fish will react to certain variable modifications, such as "TZ." Only do
this if the main stack is modified. This has no effect now because there
is always a single stack, but will become important when concurrent
execution is supported.
PATH and CDPATH have special behavior around empty elements. Express this
directly in env_stack_t::set rather than via variable dispatch; this is
cleaner.
Prior to this fix, fish would invalidate the exported variable list
whenever an exported variable changes. However we soon will not have a
single "exported variable list." If a global variable changes, it is
infeasible to find all exported variable lists and invalidate them.
Switch to a new model where we store a list of generation counts. Every
time an exported variable changes, the node gets a new generation. If the
current generation list does not match the cached one, then we know that
our exported variable list is stale.
This makes the following changes:
1. Events in background threads are executed in those threads, instead of
being silently dropped
2. Blocked events are now per-parser instead of global
3. Events are posted in builtin_set instead of within the environment stack
The last one means that we no longer support event handlers for implicit
sets like (example) argv. Instead only the `set` builtin (and also `cd`)
post variable-change events.
Events from universal variable changes are still not fully rationalized.
Prior to this fix, a function_block stored a process_t, which was only used
when printing backtraces. Switch this to an array of arguments, and make
various other cleanups around null terminated argument arrays.
This runs build_tools/style.fish, which runs clang-format on C++, fish_indent on fish and (new) black on python.
If anything is wrong with the formatting, we should fix the tools, but automated formatting is worth it.
This was a sort of side channel that was only used to propagate redraws
after universal variable changes. We can eliminate it and handle these
more directly.