This is a set of miscellaneous cleanup for profiling.
An errant newline has been removed from 'if' statement output, which got
introduced with the new ast.
Switch from storing unique_ptr to a deque, which allocates less.
Collapse "parse" and "exec" times into just a single value "duration". The
"parse" time no longer makes sense, as we now parse ahead of time.
When fish receives a "cancellation inducing" signal (SIGINT in particular)
it has to unwind execution - for example while loops or whatever else that
is executing. There are two ways this may come about:
1. The fish process received the signal
2. A child process received the signal
An example of the second case is:
some_command | some_function
Here `some_command` is the tty owner and so will receive control-C, but
then fish has to cancel function execution.
Prior to this change, these were handled uniformly: both would just set a
cancellation signal inside the parser. However in the future we will have
multiple parsers and it may not be obvious which one to set the flag in.
So instead distinguish these cases: if a process receives SIGINT we mark
the signal in its job group, and if fish receives it we set a global
variable.
Initially I wanted to pick a different name to avoid confusion with
process groups, but really job trees *are* process groups. So name them
to reflect that fact.
Also rename "placeholder" to "internal" which is clearer.
Prior to this, jobs all had a pgid, and fish has to work hard to ensure
that pgids were inherited properly for nested jobs. But now the job tree
is the source of truth and there is only one location for the pgid.
job_lineage was used to track "where jobs came from" but the job tree idea is
a better abstraction. It groups jobs together similar to how a process group
would in other shells. Begin to remove the notion of lineage.
Job trees come in two flavors: “placeholders” for jobs which are only fish
functions, and non-placeholders which need to track a pgid. This adds
logic to allow a job to decide if its parent's job tree is appropriate,
and allocating a new tree if not.
Give string expansion an (optional) parent pgroup. This is threaded all
the way into eval(). This ensures that in a mixed pipeline like:
cmd | begin ; something (cmd2) ; end
that cmd2 and cmd have the same pgroup.
Add a test to ensure that command substitutions inherit pgroups
properly.
Fixes#6624
Prior to this fix, fish was rather inconsistent in when $status gets set
in response to an error. For example, a failed expansion like "$foo["
would not modify $status.
This makes the following inter-related changes:
1. String expansion now directly returns the value to set for $status on
error. The value is always used.
2. parser_t::eval() now directly returns the proc_status_t, which cleans
up a lot of call sites.
3. We expose a new function exec_subshell_for_expand() which ignores
$status but returns errors specifically related to subshell expansion.
4. We reify the notion of "expansion breaking" errors. These include
command-not-found, expand syntax errors, and others.
The upshot is we are more consistent about always setting $status on
errors.
This commit recognizes an existing pattern: many operations need some
combination of a set of variables, a way to detect cancellation, and
sometimes a parser. For example, tab completion needs a parser to execute
custom completions, the variable set, should cancel on SIGINT. Background
autosuggestions don't need a parser, but they do need the variables and
should cancel if the user types something new. Etc.
This introduces a new triple operation_context_t that wraps these concepts
up. This simplifies many method signatures and argument passing.
job_promote attempts to bring the most recently "touched" job to the front
of the job list. It did this via:
std::rotate(begin, job, end)
However this has the effect of pushing job-1 to the end. That is,
promoting '2' in [1, 2, 3] would result in [2, 3, 1].
Correct this by replacing it with:
std::rotate(begin, job, job+1);
now we get the desired [2, 1, 3].
Also add a test.
This PR is aimed at improving how job ids are assigned. In particular,
previous to this commit, a job id would be consumed by functions (and
thus aliases). Since it's usual to use functions as command wrappers
this results in awkward job id assignments.
For example if the user is like me and just made the jump from vim -> neovim
then the user might create the following alias:
```
alias vim=nvim
```
Previous to this commit if the user ran `vim` after setting up this
alias, backgrounded (^Z) and ran `jobs` then the output might be:
```
Job Group State Command
2 60267 stopped nvim $argv
```
If the user subsequently opened another vim (nvim) session, backgrounded
and ran jobs then they might see what follows:
```
Job Group State Command
4 70542 stopped nvim $argv
2 60267 stopped nvim $argv
```
These job ids feel unnatural, especially when transitioning away from
e.g. bash where job ids are sequentially incremented (and aliases/functions
don't consume a job id).
See #6053 for more details.
As @ridiculousfish pointed out in
https://github.com/fish-shell/fish-shell/issues/6053#issuecomment-559899400,
we want to elide a job's job id if it corresponds to a single function in the
foreground. This translates to the following prerequisites:
- A job must correspond to a single process (i.e. the job continuation
must be empty)
- A job must be in the foreground (i.e. `&` wasn't appended)
- The job's single process must resolve to a function invocation
If all of these conditions are true then we should mark a job as
"internal" and somehow remove it from consideration when any
infrastructure tries to interact with jobs / job ids.
I saw two paths to implement these requirements:
- At the time of job creation calculate whether or not a job is
"internal" and use a separate list of job ids to track their ids.
Additionally introduce a new flag denoting that a job is internal so
that e.g. `jobs` doesn't list internal jobs
- I started implementing this route but quickly realized I was
computing the same information that would be computed later on (e.g.
"is this job a single process" and "is this jobs statement a
function"). Specifically I was computing data that populate_job_process
would end up computing later anyway. Additionally this added some
weird complexities to the job system (after the change there were two
job id lists AND an additional flag that had to be taken into
consideration)
- Once a function is about to be executed we release the current jobs
job id if the prerequisites are satisfied (which at this point have
been fully computed).
- I opted for this solution since it seems cleaner. In this
implementation "releasing a job id" is done by both calling
`release_job_id` and by marking the internal job_id member variable to
-1. The former operation allows subsequent child jobs to reuse that
same job id (so e.g. the situation described in Motivation doesn't
occur), and the latter ensures that no other job / job id
infrastructure will interact with these jobs because valid jobs have
positive job ids. The second operation causes job_id to become
non-const which leads to the list of code changes outside of `exec.c`
(i.e. a codemod from `job_t::job_id` -> `job_t::job_id()` and moving the
old member variable to a non-const private `job_t::job_id_`)
Note: Its very possible I missed something and setting the job id to -1
will break some other infrastructure, please let me know if so!
I tried to run `make/ninja lint`, but a bunch of non-relevant issues
appeared (e.g. `fatal error: 'config.h' file not found`). I did
successfully clang-format (`git clang-format -f`) and run tests, though.
This PR closes#6053.
Previously, the block stack was a true stack. However in most cases, you
want to traverse the stack from the topmost frame down. This is awkward
to do with range-based for loops.
Switch it to pushing new blocks to the front of the block list.
This simplifies some traversals.
parser_t::eval indicates whether there was a parse error. It can be
easily confused with the status of the execution. Use a real type to
make it more clear.
Currently a job needs to know three things about its "parents:"
1. Any IO redirections for the block or function containing this job
2. The pgid for the parent job
3. Whether the parent job has been fully constructed (to defer self-disown)
These are all tracked in somewhat separate awkward ways. Collapse them
into a single new type job_lineage_t.
This added the function offset *again*, but it's already included in
the line for the current file.
And yes, I have explicitly tested a function file with a function
defined at a later line.
Fixes#6350
This adds initial support for statements with prefixed variable assignments.
Statments like this are supported:
a=1 b=$a echo $b # outputs 1
Just like in other shells, the left-hand side of each assignment must
be a valid variable identifier (no quoting/escaping). Array indexing
(PATH[1]=/bin ls $PATH) is *not* yet supported, but can be added fairly
easily.
The right hand side may be any valid string token, like a command
substitution, or a brace expansion.
Since `a=* foo` is equivalent to `begin set -lx a *; foo; end`,
the assignment, like `set`, uses nullglob behavior, e.g. below command
can safely be used to check if a directory is empty.
x=/nothing/{,.}* test (count $x) -eq 0
Generic file completion is done after the equal sign, so for example
pressing tab after something like `HOME=/` completes files in the
root directory
Subcommand completion works, so something like
`GIT_DIR=repo.git and command git ` correctly calls git completions
(but the git completion does not use the variable as of now).
The variable assignment is highlighted like an argument.
Closes#6048
We used to have a global notion of "is the shell interactive" but soon we
will want to have multiple independent execution threads, only some of
which may be interactive. Start tracking this data per-parser.
To support distinct parsers having different working directories, we need
to keep the working directory alive, and also retain a non-path reference
to it.