Introduce select_wrapper_t

select_wrapper_t wraps up the annoying bits of using select(): keeping
track of the max fd, passing null for boring parameters, and
constructing the timeout. Introduce a wrapper struct for this and
replace the existing uses of select() with the wrapper.
This commit is contained in:
ridiculousfish 2021-04-10 16:45:26 -07:00
parent 0dd24c8f74
commit e8a61ef4aa
11 changed files with 119 additions and 99 deletions

View file

@ -1437,12 +1437,7 @@ class universal_notifier_named_pipe_t final : public universal_notifier_t {
// We are polling, so we are definitely going to sync.
// See if this is still readable.
fd_set fds;
FD_ZERO(&fds);
FD_SET(pipe_fd.fd(), &fds);
struct timeval timeout = {};
select(pipe_fd.fd() + 1, &fds, nullptr, nullptr, &timeout);
if (!FD_ISSET(pipe_fd.fd(), &fds)) {
if (!select_wrapper_t::poll_fd_readable(pipe_fd.fd())) {
// No longer readable, no longer polling.
polling_due_to_readable_fd = false;
drain_if_still_readable_time_usec = 0;

View file

@ -12,7 +12,6 @@
#include "wutil.h"
static constexpr uint64_t kUsecPerMsec = 1000;
static constexpr uint64_t kUsecPerSec = 1000 * kUsecPerMsec;
fd_monitor_t::fd_monitor_t() = default;
@ -79,15 +78,6 @@ void fd_monitor_t::poke_item(fd_monitor_item_id_t item_id) {
}
}
// Given a usec count, populate and return a timeval.
// If the usec count is kNoTimeout, return nullptr.
static struct timeval *usec_to_tv_or_null(uint64_t usec, struct timeval *timeout) {
if (usec == fd_monitor_item_t::kNoTimeout) return nullptr;
timeout->tv_sec = usec / kUsecPerSec;
timeout->tv_usec = usec % kUsecPerSec;
return timeout;
}
uint64_t fd_monitor_item_t::usec_remaining(const time_point_t &now) const {
assert(last_time.has_value() && "Should always have a last_time");
if (timeout_usec == kNoTimeout) return kNoTimeout;
@ -97,9 +87,9 @@ uint64_t fd_monitor_item_t::usec_remaining(const time_point_t &now) const {
return since >= timeout_usec ? 0 : timeout_usec - since;
}
bool fd_monitor_item_t::service_item(const fd_set *fds, const time_point_t &now) {
bool fd_monitor_item_t::service_item(const select_wrapper_t &fds, const time_point_t &now) {
bool should_retain = true;
bool readable = FD_ISSET(fd.fd(), fds);
bool readable = fds.test(fd.fd());
bool timed_out = !readable && usec_remaining(now) == 0;
if (readable || timed_out) {
last_time = now;
@ -123,6 +113,7 @@ bool fd_monitor_item_t::poke_item(const poke_list_t &pokelist) {
void fd_monitor_t::run_in_background() {
ASSERT_IS_BACKGROUND_THREAD();
poke_list_t pokelist;
select_wrapper_t fds;
for (;;) {
// Poke any items that need it.
if (!pokelist.empty()) {
@ -130,22 +121,19 @@ void fd_monitor_t::run_in_background() {
pokelist.clear();
}
fd_set fds;
FD_ZERO(&fds);
fds.clear();
// Our change_signaller is special cased.
int change_signal_fd = change_signaller_.read_fd();
FD_SET(change_signal_fd, &fds);
int max_fd = change_signal_fd;
fds.add(change_signal_fd);
auto now = std::chrono::steady_clock::now();
uint64_t timeout_usec = fd_monitor_item_t::kNoTimeout;
for (auto &item : items_) {
FD_SET(item.fd.fd(), &fds);
fds.add(item.fd.fd());
if (!item.last_time.has_value()) item.last_time = now;
timeout_usec = std::min(timeout_usec, item.usec_remaining(now));
max_fd = std::max(max_fd, item.fd.fd());
}
// If we have only one item, it means that we are not actively monitoring any fds other than
@ -161,8 +149,7 @@ void fd_monitor_t::run_in_background() {
}
// Call select().
struct timeval tv;
int ret = select(max_fd + 1, &fds, nullptr, nullptr, usec_to_tv_or_null(timeout_usec, &tv));
int ret = fds.select(timeout_usec);
if (ret < 0 && errno != EINTR) {
// Surprising error.
wperror(L"select");
@ -171,7 +158,7 @@ void fd_monitor_t::run_in_background() {
// A predicate which services each item in turn, returning true if it should be removed.
auto servicer = [&fds, &now](fd_monitor_item_t &item) {
int fd = item.fd.fd();
bool remove = !item.service_item(&fds, now);
bool remove = !item.service_item(fds, now);
if (remove) FLOG(fd_monitor, "Removing fd", fd);
return remove;
};
@ -183,7 +170,7 @@ void fd_monitor_t::run_in_background() {
// Handle any changes if the change signaller was set. Alternatively this may be the wait
// lap, in which case we might want to commit to exiting.
if (FD_ISSET(change_signal_fd, &fds) || is_wait_lap) {
if (fds.test(change_signal_fd) || is_wait_lap) {
// Clear the change signaller before processing incoming changes.
change_signaller_.try_consume();
auto data = data_.acquire();

View file

@ -33,7 +33,7 @@ struct fd_monitor_item_t {
using callback_t = std::function<void(autoclose_fd_t &fd, item_wake_reason_t reason)>;
/// A sentinel value meaning no timeout.
static constexpr uint64_t kNoTimeout = std::numeric_limits<uint64_t>::max();
static constexpr uint64_t kNoTimeout = select_wrapper_t::kNoTimeout;
/// The fd to monitor.
autoclose_fd_t fd{};
@ -71,7 +71,7 @@ struct fd_monitor_item_t {
// Invoke this item's callback if its value is set in fd or has timed out.
// \return true to retain the item, false to remove it.
bool service_item(const fd_set *fds, const time_point_t &now);
bool service_item(const select_wrapper_t &fds, const time_point_t &now);
// Invoke this item's callback with a poke, if its ID is present in the (sorted) pokelist.
// \return true to retain the item, false to remove it.

View file

@ -26,12 +26,54 @@
// redirections, e.g. >&3
const int k_first_high_fd = 10;
static constexpr uint64_t kUsecPerMsec = 1000;
static constexpr uint64_t kUsecPerSec = 1000 * kUsecPerMsec;
void autoclose_fd_t::close() {
if (fd_ < 0) return;
exec_close(fd_);
fd_ = -1;
}
select_wrapper_t::select_wrapper_t() { clear(); }
void select_wrapper_t::clear() {
FD_ZERO(&fdset_);
nfds_ = 0;
}
void select_wrapper_t::add(int fd) {
if (fd >= 0) {
FD_SET(fd, &fdset_);
nfds_ = std::max(nfds_, fd + 1);
}
}
bool select_wrapper_t::test(int fd) const { return fd >= 0 && FD_ISSET(fd, &fdset_); }
int select_wrapper_t::select(uint64_t timeout_usec) {
if (timeout_usec == kNoTimeout) {
return ::select(nfds_, &fdset_, nullptr, nullptr, nullptr);
} else {
struct timeval tvs;
tvs.tv_sec = timeout_usec / kUsecPerSec;
tvs.tv_usec = timeout_usec % kUsecPerSec;
return ::select(nfds_, &fdset_, nullptr, nullptr, &tvs);
}
}
// static
bool select_wrapper_t::is_fd_readable(int fd, uint64_t timeout_usec) {
if (fd < 0) return false;
select_wrapper_t s;
s.add(fd);
int res = s.select(timeout_usec);
return res > 0 && s.test(fd);
}
// static
bool select_wrapper_t::poll_fd_readable(int fd) { return is_fd_readable(fd, 0); }
#ifdef HAVE_EVENTFD
// Note we do not want to use EFD_SEMAPHORE because we are binary (not counting) semaphore.
fd_event_signaller_t::fd_event_signaller_t() {

View file

@ -5,9 +5,11 @@
#include "config.h" // IWYU pragma: keep
#include <sys/select.h>
#include <sys/types.h>
#include <algorithm>
#include <limits>
#include <string>
#include <vector>
@ -18,7 +20,8 @@ using wcstring = std::wstring;
/// Pipe redirection error message.
#define PIPE_ERROR _(L"An error occurred while setting up pipe")
/// The first "high fd", which is considered outside the range of valid user-specified redirections (like >&5).
/// The first "high fd", which is considered outside the range of valid user-specified redirections
/// (like >&5).
extern const int k_first_high_fd;
/// A helper class for managing and automatically closing a file descriptor.
@ -62,6 +65,43 @@ class autoclose_fd_t {
~autoclose_fd_t() { close(); }
};
/// A modest wrapper around fd_set and select().
/// This allows accumulating a set of fds and then select()ing on them.
/// This only handles readability.
struct select_wrapper_t {
/// Construct an empty set.
select_wrapper_t();
/// Reset back to an empty set.
void clear();
/// Add an fd to the set. The fd is ignored if negative (for convenience).
void add(int fd);
/// \return true if the given fd is marked as set, in our set. \returns false if negative.
bool test(int fd) const;
/// Call select(), with this set as 'readfds' and null for the other sets, with a timeout given
/// by timeout_usec. Note this destructively modifies the set. \return the result of select().
int select(uint64_t timeout_usec = select_wrapper_t::kNoTimeout);
/// Poll a single fd: select() on it with a given timeout.
/// \return true if readable, false if not.
static bool is_fd_readable(int fd, uint64_t timeout_usec);
/// Poll a single fd: select() on it with zero timeout.
/// \return true if readable, false if not.
static bool poll_fd_readable(int fd);
/// A special timeout value which may be passed to indicate no timeout.
static constexpr uint64_t kNoTimeout = std::numeric_limits<uint64_t>::max();
private:
/// The underlying fdset and nfds value to pass to select().
fd_set fdset_;
int nfds_{0};
};
/// Helper type returned from making autoclose pipes.
struct autoclose_pipes_t {
/// Read end of the pipe.

View file

@ -3993,15 +3993,9 @@ bool poll_notifier(const std::unique_ptr<universal_notifier_t> &note) {
bool result = false;
int fd = note->notification_fd();
if (fd >= 0) {
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
struct timeval tv = {0, 0};
if (select(fd + 1, &fds, NULL, NULL, &tv) > 0 && FD_ISSET(fd, &fds)) {
if (fd >= 0 && select_wrapper_t::poll_fd_readable(fd)) {
result = note->notification_fd_became_readable(fd);
}
}
return result;
}

View file

@ -44,40 +44,30 @@ void input_common_init(interrupt_func_t func) { interrupt_handler = func; }
/// Internal function used by input_common_readch to read one byte from fd 0. This function should
/// only be called by input_common_readch().
char_event_t input_event_queue_t::readb() {
select_wrapper_t fdset;
for (;;) {
fd_set fdset;
int fd_max = in_;
int ioport = iothread_port();
int res;
fdset.clear();
fdset.add(in_);
FD_ZERO(&fdset);
FD_SET(in_, &fdset);
int ioport = iothread_port();
if (ioport > 0) {
FD_SET(ioport, &fdset);
fd_max = std::max(fd_max, ioport);
fdset.add(ioport);
}
// Get our uvar notifier.
universal_notifier_t& notifier = universal_notifier_t::default_notifier();
// Get the notification fd (possibly none).
int notifier_fd = notifier.notification_fd();
if (notifier_fd > 0) {
FD_SET(notifier_fd, &fdset);
fd_max = std::max(fd_max, notifier_fd);
fdset.add(notifier_fd);
}
// Get its suggested delay (possibly none).
struct timeval tv = {};
const unsigned long usecs_delay = notifier.usec_delay_between_polls();
if (usecs_delay > 0) {
unsigned long usecs_per_sec = 1000000;
tv.tv_sec = static_cast<int>(usecs_delay / usecs_per_sec);
tv.tv_usec = static_cast<int>(usecs_delay % usecs_per_sec);
uint64_t timeout_usec = select_wrapper_t::kNoTimeout;
if (auto notifier_usec_delay = notifier.usec_delay_between_polls()) {
timeout_usec = notifier_usec_delay;
}
res = select(fd_max + 1, &fdset, nullptr, nullptr, usecs_delay > 0 ? &tv : nullptr);
if (res == -1) {
int res = fdset.select(timeout_usec);
if (res < 0) {
if (errno == EINTR || errno == EAGAIN) {
// Some uvar notifiers rely on signals - see #7671.
if (notifier.poll()) {
@ -98,7 +88,7 @@ char_event_t input_event_queue_t::readb() {
// Check to see if we want a universal variable barrier.
bool barrier_from_poll = notifier.poll();
bool barrier_from_readability = false;
if (notifier_fd > 0 && FD_ISSET(notifier_fd, &fdset)) {
if (notifier_fd > 0 && fdset.test(notifier_fd)) {
barrier_from_readability = notifier.notification_fd_became_readable(notifier_fd);
}
if (barrier_from_poll || barrier_from_readability) {
@ -110,7 +100,7 @@ char_event_t input_event_queue_t::readb() {
}
}
if (FD_ISSET(in_, &fdset)) {
if (fdset.test(in_)) {
unsigned char arr[1];
if (read_blocked(in_, arr, 1) != 1) {
// The teminal has been closed.
@ -123,7 +113,7 @@ char_event_t input_event_queue_t::readb() {
// Check for iothread completions only if there is no data to be read from the stdin.
// This gives priority to the foreground.
if (ioport > 0 && FD_ISSET(ioport, &fdset)) {
if (ioport > 0 && fdset.test(ioport)) {
iothread_service_main();
if (auto mc = pop_discard_timeouts()) {
return *mc;
@ -214,11 +204,9 @@ char_event_t input_event_queue_t::readch_timed(bool dequeue_timeouts) {
if (has_lookahead()) {
result = pop();
} else {
fd_set fds;
FD_ZERO(&fds);
FD_SET(in_, &fds);
struct timeval tm = {wait_on_escape_ms / 1000, 1000 * (wait_on_escape_ms % 1000)};
if (select(in_ + 1, &fds, nullptr, nullptr, &tm) > 0) {
const uint64_t usec_per_msec = 1000;
uint64_t timeout_usec = static_cast<uint64_t>(wait_on_escape_ms) * usec_per_msec;
if (select_wrapper_t::is_fd_readable(in_, timeout_usec)) {
result = readch();
}
}

View file

@ -260,21 +260,8 @@ void iothread_perform_impl(void_function_t &&func, bool cant_wait) {
int iothread_port() { return get_notify_signaller().read_fd(); }
static bool iothread_wait_for_main_requests(long timeout_usec) {
const long usec_per_sec = 1000000;
struct timeval tv;
tv.tv_sec = timeout_usec / usec_per_sec;
tv.tv_usec = timeout_usec % usec_per_sec;
const int fd = iothread_port();
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
int ret = select(fd + 1, &fds, nullptr, nullptr, &tv);
return ret > 0;
}
void iothread_service_main_with_timeout(long timeout_usec) {
if (iothread_wait_for_main_requests(timeout_usec)) {
void iothread_service_main_with_timeout(uint64_t timeout_usec) {
if (select_wrapper_t::is_fd_readable(iothread_port(), timeout_usec)) {
iothread_service_main();
}
}

View file

@ -19,7 +19,7 @@ int iothread_port();
void iothread_service_main();
// Services any main thread requests. Does not wait more than \p timeout_usec.
void iothread_service_main_with_timeout(long timeout_usec);
void iothread_service_main_with_timeout(uint64_t timeout_usec);
/// Waits for all iothreads to terminate.
/// \return the number of threads that were running.

View file

@ -2751,16 +2751,6 @@ static int read_i(parser_t &parser) {
return 0;
}
/// Test if there are bytes available for reading on the specified file descriptor.
static int can_read(int fd) {
struct timeval can_read_timeout = {0, 0};
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
return select(fd + 1, &fds, nullptr, nullptr, &can_read_timeout) == 1;
}
/// Test if the specified character in the specified string is backslashed. pos may be at the end of
/// the string, which indicates if there is a trailing backslash.
static bool is_backslashed(const wcstring &str, size_t pos) {
@ -2867,7 +2857,7 @@ maybe_t<char_event_t> reader_data_t::read_normal_chars(readline_loop_state_t &rl
while (accumulated_chars.size() < limit) {
bool allow_commands = (accumulated_chars.empty());
auto evt = inputter.readch(allow_commands ? normal_handler : empty_handler);
if (!event_is_normal_char(evt) || !can_read(conf.in)) {
if (!event_is_normal_char(evt) || !select_wrapper_t::poll_fd_readable(conf.in)) {
event_needing_handling = std::move(evt);
break;
} else if (evt.input_style == char_input_style_t::notfirst && accumulated_chars.empty() &&

View file

@ -90,10 +90,7 @@ void binary_semaphore_t::wait() {
// Under tsan our notifying pipe is non-blocking, so we would busy-loop on the read()
// call until data is available (that is, fish would use 100% cpu while waiting for
// processes). The select prevents that.
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
(void)select(fd + 1, &fds, nullptr, nullptr, nullptr /* timeout */);
(void)select_wrapper_t::is_fd_readable(fd, select_wrapper_t::kNoTimeout);
#endif
uint8_t ignored;
auto amt = read(fd, &ignored, sizeof ignored);