[muparser] Restyle muparser sources to match fish

Add muparser soruces to style.fish, and run it to make muparser
match fish style guidelines.
This commit is contained in:
ridiculousfish 2017-11-18 13:49:52 -08:00
parent b39d0adc39
commit e2b798cda3
24 changed files with 6315 additions and 6962 deletions

View file

@ -29,7 +29,7 @@ if test $all = yes
echo
exit 1
end
set c_files src/*.h src/*.cpp
set c_files src/*.h src/*.cpp muparser-2.2.5/src/*.cpp muparser-2.2.5/include/*.h
# For now we don't restyle all fish scripts other than completion scripts. That's because people
# really like to vertically align the elements of the `complete` command and fish_indent
# currently does not honor that whitespace.

View file

@ -36,22 +36,19 @@
\brief Definition of the standard floating point parser.
*/
namespace mu
{
/** \brief Mathematical expressions parser.
namespace mu {
/** \brief Mathematical expressions parser.
Standard implementation of the mathematical expressions parser.
Can be used as a reference implementation for subclassing the parser.
<small>
(C) 2011 Ingo Berg<br>
muparser(at)beltoforion.de
</small>
*/
/* final */ class Parser : public ParserBase
{
public:
Standard implementation of the mathematical expressions parser.
Can be used as a reference implementation for subclassing the parser.
<small>
(C) 2011 Ingo Berg<br>
muparser(at)beltoforion.de
</small>
*/
/* final */ class Parser : public ParserBase {
public:
Parser();
virtual void InitCharSets();
@ -60,56 +57,52 @@ namespace mu
virtual void InitOprt();
virtual void OnDetectVar(string_type *pExpr, int &nStart, int &nEnd);
value_type Diff(value_type *a_Var,
value_type a_fPos,
value_type a_fEpsilon = 0) const;
protected:
value_type Diff(value_type *a_Var, value_type a_fPos, value_type a_fEpsilon = 0) const;
protected:
// Trigonometric functions
static value_type Sin(value_type);
static value_type Cos(value_type);
static value_type Tan(value_type);
static value_type Tan2(value_type, value_type);
static value_type Sin(value_type);
static value_type Cos(value_type);
static value_type Tan(value_type);
static value_type Tan2(value_type, value_type);
// arcus functions
static value_type ASin(value_type);
static value_type ACos(value_type);
static value_type ATan(value_type);
static value_type ATan2(value_type, value_type);
static value_type ASin(value_type);
static value_type ACos(value_type);
static value_type ATan(value_type);
static value_type ATan2(value_type, value_type);
// hyperbolic functions
static value_type Sinh(value_type);
static value_type Cosh(value_type);
static value_type Tanh(value_type);
static value_type Sinh(value_type);
static value_type Cosh(value_type);
static value_type Tanh(value_type);
// arcus hyperbolic functions
static value_type ASinh(value_type);
static value_type ACosh(value_type);
static value_type ATanh(value_type);
static value_type ASinh(value_type);
static value_type ACosh(value_type);
static value_type ATanh(value_type);
// Logarithm functions
static value_type Log2(value_type); // Logarithm Base 2
static value_type Log10(value_type); // Logarithm Base 10
static value_type Ln(value_type); // Logarithm Base e (natural logarithm)
static value_type Log2(value_type); // Logarithm Base 2
static value_type Log10(value_type); // Logarithm Base 10
static value_type Ln(value_type); // Logarithm Base e (natural logarithm)
// misc
static value_type Exp(value_type);
static value_type Abs(value_type);
static value_type Sqrt(value_type);
static value_type Rint(value_type);
static value_type Sign(value_type);
static value_type Exp(value_type);
static value_type Abs(value_type);
static value_type Sqrt(value_type);
static value_type Rint(value_type);
static value_type Sign(value_type);
// Prefix operators
// !!! Unary Minus is a MUST if you want to use negative signs !!!
static value_type UnaryMinus(value_type);
static value_type UnaryPlus(value_type);
static value_type UnaryMinus(value_type);
static value_type UnaryPlus(value_type);
// Functions with variable number of arguments
static value_type Sum(const value_type*, int); // sum
static value_type Avg(const value_type*, int); // mean value
static value_type Min(const value_type*, int); // minimum
static value_type Max(const value_type*, int); // maximum
static value_type Sum(const value_type *, int); // sum
static value_type Avg(const value_type *, int); // mean value
static value_type Min(const value_type *, int); // minimum
static value_type Max(const value_type *, int); // maximum
static int IsVal(const char_type* a_szExpr, int *a_iPos, value_type *a_fVal);
};
} // namespace mu
static int IsVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal);
};
} // namespace mu
#endif

View file

@ -26,24 +26,22 @@
#define MU_PARSER_BASE_H
//--- Standard includes ------------------------------------------------------------------------
#include <limits.h>
#include <cmath>
#include <string>
#include <iostream>
#include <locale>
#include <map>
#include <memory>
#include <locale>
#include <limits.h>
#include <string>
//--- Parser includes --------------------------------------------------------------------------
#include "muParserBytecode.h"
#include "muParserDef.h"
#include "muParserError.h"
#include "muParserStack.h"
#include "muParserTokenReader.h"
#include "muParserBytecode.h"
#include "muParserError.h"
namespace mu
{
namespace mu {
/** \file
\brief This file contains the class definition of the muparser engine.
*/
@ -59,12 +57,10 @@ namespace mu
Complementary to a set of internally implemented functions the parser is able to handle
user defined functions and variables.
*/
class ParserBase
{
friend class ParserTokenReader;
private:
class ParserBase {
friend class ParserTokenReader;
private:
/** \brief Typedef for the parse functions.
The parse function do the actual work. The parser exchanges
@ -88,8 +84,7 @@ private:
/** \brief Maximum number of threads spawned by OpenMP when using the bulk mode. */
static const int s_MaxNumOpenMPThreads = 16;
public:
public:
/** \brief Type of the error class.
Included for backwards compatibility.
@ -100,12 +95,12 @@ private:
ParserBase();
ParserBase(const ParserBase &a_Parser);
ParserBase& operator=(const ParserBase &a_Parser);
ParserBase &operator=(const ParserBase &a_Parser);
virtual ~ParserBase();
value_type Eval() const;
value_type* Eval(int &nStackSize) const;
value_type Eval() const;
value_type *Eval(int &nStackSize) const;
void Eval(value_type *results, int nBulkSize);
int GetNumResults() const;
@ -117,34 +112,32 @@ private:
void SetThousandsSep(char_type cThousandsSep = 0);
void ResetLocale();
void EnableOptimizer(bool a_bIsOn=true);
void EnableBuiltInOprt(bool a_bIsOn=true);
void EnableOptimizer(bool a_bIsOn = true);
void EnableBuiltInOprt(bool a_bIsOn = true);
bool HasBuiltInOprt() const;
void AddValIdent(identfun_type a_pCallback);
/** \fn void mu::ParserBase::DefineFun(const string_type &a_strName, fun_type0 a_pFun, bool a_bAllowOpt = true)
/** \fn void mu::ParserBase::DefineFun(const string_type &a_strName, fun_type0 a_pFun, bool
a_bAllowOpt = true)
\brief Define a parser function without arguments.
\param a_strName Name of the function
\param a_pFun Pointer to the callback function
\param a_bAllowOpt A flag indicating this function may be optimized
*/
template<typename T>
void DefineFun(const string_type &a_strName, T a_pFun, bool a_bAllowOpt = true)
{
AddCallback( a_strName, ParserCallback(a_pFun, a_bAllowOpt), m_FunDef, ValidNameChars() );
template <typename T>
void DefineFun(const string_type &a_strName, T a_pFun, bool a_bAllowOpt = true) {
AddCallback(a_strName, ParserCallback(a_pFun, a_bAllowOpt), m_FunDef, ValidNameChars());
}
void DefineOprt(const string_type &a_strName,
fun_type2 a_pFun,
unsigned a_iPri=0,
EOprtAssociativity a_eAssociativity = oaLEFT,
bool a_bAllowOpt = false);
void DefineOprt(const string_type &a_strName, fun_type2 a_pFun, unsigned a_iPri = 0,
EOprtAssociativity a_eAssociativity = oaLEFT, bool a_bAllowOpt = false);
void DefineConst(const string_type &a_sName, value_type a_fVal);
void DefineStrConst(const string_type &a_sName, const string_type &a_strVal);
void DefineVar(const string_type &a_sName, value_type *a_fVar);
void DefinePostfixOprt(const string_type &a_strFun, fun_type1 a_pOprt, bool a_bAllowOpt=true);
void DefineInfixOprt(const string_type &a_strName, fun_type1 a_pOprt, int a_iPrec=prINFIX, bool a_bAllowOpt=true);
void DefinePostfixOprt(const string_type &a_strFun, fun_type1 a_pOprt, bool a_bAllowOpt = true);
void DefineInfixOprt(const string_type &a_strName, fun_type1 a_pOprt, int a_iPrec = prINFIX,
bool a_bAllowOpt = true);
// Clear user defined variables, constants or functions
void ClearVar();
@ -155,31 +148,29 @@ private:
void ClearOprt();
void RemoveVar(const string_type &a_strVarName);
const varmap_type& GetUsedVar() const;
const varmap_type& GetVar() const;
const valmap_type& GetConst() const;
const string_type& GetExpr() const;
const funmap_type& GetFunDef() const;
const varmap_type &GetUsedVar() const;
const varmap_type &GetVar() const;
const valmap_type &GetConst() const;
const string_type &GetExpr() const;
const funmap_type &GetFunDef() const;
string_type GetVersion(EParserVersionInfo eInfo = pviFULL) const;
const char_type ** GetOprtDef() const;
const char_type **GetOprtDef() const;
void DefineNameChars(const char_type *a_szCharset);
void DefineOprtChars(const char_type *a_szCharset);
void DefineInfixOprtChars(const char_type *a_szCharset);
const char_type* ValidNameChars() const;
const char_type* ValidOprtChars() const;
const char_type* ValidInfixOprtChars() const;
const char_type *ValidNameChars() const;
const char_type *ValidOprtChars() const;
const char_type *ValidInfixOprtChars() const;
void SetArgSep(char_type cArgSep);
char_type GetArgSep() const;
void Error(EErrorCodes a_iErrc,
int a_iPos = (int)mu::string_type::npos,
const string_type &a_strTok = string_type() ) const;
protected:
void Error(EErrorCodes a_iErrc, int a_iPos = (int)mu::string_type::npos,
const string_type &a_strTok = string_type()) const;
protected:
void Init();
virtual void InitCharSets() = 0;
@ -195,68 +186,50 @@ private:
static bool g_DbgDumpStack;
/** \brief A facet class used to change decimal and thousands separator. */
template<class TChar>
class change_dec_sep : public std::numpunct<TChar>
{
public:
template <class TChar>
class change_dec_sep : public std::numpunct<TChar> {
public:
explicit change_dec_sep(char_type cDecSep, char_type cThousandsSep = 0, int nGroup = 3)
: std::numpunct<TChar>(),
m_nGroup(nGroup),
m_cDecPoint(cDecSep),
m_cThousandsSep(cThousandsSep) {}
explicit change_dec_sep(char_type cDecSep, char_type cThousandsSep = 0, int nGroup = 3)
:std::numpunct<TChar>()
,m_nGroup(nGroup)
,m_cDecPoint(cDecSep)
,m_cThousandsSep(cThousandsSep)
{}
protected:
virtual char_type do_decimal_point() const { return m_cDecPoint; }
protected:
virtual char_type do_thousands_sep() const { return m_cThousandsSep; }
virtual char_type do_decimal_point() const
{
return m_cDecPoint;
}
virtual std::string do_grouping() const {
// fix for issue 4: https://code.google.com/p/muparser/issues/detail?id=4
// courtesy of Jens Bartsch
// original code:
// return std::string(1, (char)m_nGroup);
// new code:
return std::string(1, (char)(m_cThousandsSep > 0 ? m_nGroup : CHAR_MAX));
}
virtual char_type do_thousands_sep() const
{
return m_cThousandsSep;
}
virtual std::string do_grouping() const
{
// fix for issue 4: https://code.google.com/p/muparser/issues/detail?id=4
// courtesy of Jens Bartsch
// original code:
// return std::string(1, (char)m_nGroup);
// new code:
return std::string(1, (char)(m_cThousandsSep > 0 ? m_nGroup : CHAR_MAX));
}
private:
int m_nGroup;
char_type m_cDecPoint;
char_type m_cThousandsSep;
private:
int m_nGroup;
char_type m_cDecPoint;
char_type m_cThousandsSep;
};
private:
private:
void Assign(const ParserBase &a_Parser);
void InitTokenReader();
void ReInit() const;
void AddCallback( const string_type &a_strName,
const ParserCallback &a_Callback,
funmap_type &a_Storage,
const char_type *a_szCharSet );
void AddCallback(const string_type &a_strName, const ParserCallback &a_Callback,
funmap_type &a_Storage, const char_type *a_szCharSet);
void ApplyRemainingOprt(ParserStack<token_type> &a_stOpt,
ParserStack<token_type> &a_stVal) const;
void ApplyBinOprt(ParserStack<token_type> &a_stOpt,
ParserStack<token_type> &a_stVal) const;
ParserStack<token_type> &a_stVal) const;
void ApplyBinOprt(ParserStack<token_type> &a_stOpt, ParserStack<token_type> &a_stVal) const;
void ApplyIfElse(ParserStack<token_type> &a_stOpt,
ParserStack<token_type> &a_stVal) const;
void ApplyIfElse(ParserStack<token_type> &a_stOpt, ParserStack<token_type> &a_stVal) const;
void ApplyFunc(ParserStack<token_type> &a_stOpt,
ParserStack<token_type> &a_stVal,
void ApplyFunc(ParserStack<token_type> &a_stOpt, ParserStack<token_type> &a_stVal,
int iArgCount) const;
token_type ApplyStrFunc(const token_type &a_FunTok,
@ -271,47 +244,48 @@ private:
value_type ParseCmdCode() const;
value_type ParseCmdCodeBulk(int nOffset, int nThreadID) const;
void CheckName(const string_type &a_strName, const string_type &a_CharSet) const;
void CheckOprt(const string_type &a_sName,
const ParserCallback &a_Callback,
const string_type &a_szCharSet) const;
void CheckName(const string_type &a_strName, const string_type &a_CharSet) const;
void CheckOprt(const string_type &a_sName, const ParserCallback &a_Callback,
const string_type &a_szCharSet) const;
void StackDump(const ParserStack<token_type > &a_stVal,
const ParserStack<token_type > &a_stOprt) const;
void StackDump(const ParserStack<token_type> &a_stVal,
const ParserStack<token_type> &a_stOprt) const;
/** \brief Pointer to the parser function.
Eval() calls the function whose address is stored there.
*/
mutable ParseFunction m_pParseFormula;
mutable ParserByteCode m_vRPN; ///< The Bytecode class.
mutable stringbuf_type m_vStringBuf; ///< String buffer, used for storing string function arguments
stringbuf_type m_vStringVarBuf;
mutable ParseFunction m_pParseFormula;
mutable ParserByteCode m_vRPN; ///< The Bytecode class.
mutable stringbuf_type
m_vStringBuf; ///< String buffer, used for storing string function arguments
stringbuf_type m_vStringVarBuf;
std::auto_ptr<token_reader_type> m_pTokenReader; ///< Managed pointer to the token reader object.
std::auto_ptr<token_reader_type>
m_pTokenReader; ///< Managed pointer to the token reader object.
funmap_type m_FunDef; ///< Map of function names and pointers.
funmap_type m_PostOprtDef; ///< Postfix operator callbacks
funmap_type m_InfixOprtDef; ///< unary infix operator.
funmap_type m_OprtDef; ///< Binary operator callbacks
valmap_type m_ConstDef; ///< user constants.
strmap_type m_StrVarDef; ///< user defined string constants
varmap_type m_VarDef; ///< user defind variables.
funmap_type m_FunDef; ///< Map of function names and pointers.
funmap_type m_PostOprtDef; ///< Postfix operator callbacks
funmap_type m_InfixOprtDef; ///< unary infix operator.
funmap_type m_OprtDef; ///< Binary operator callbacks
valmap_type m_ConstDef; ///< user constants.
strmap_type m_StrVarDef; ///< user defined string constants
varmap_type m_VarDef; ///< user defind variables.
bool m_bBuiltInOp; ///< Flag that can be used for switching built in operators on and off
bool m_bBuiltInOp; ///< Flag that can be used for switching built in operators on and off
string_type m_sNameChars; ///< Charset for names
string_type m_sOprtChars; ///< Charset for postfix/ binary operator tokens
string_type m_sInfixOprtChars; ///< Charset for infix operator tokens
string_type m_sNameChars; ///< Charset for names
string_type m_sOprtChars; ///< Charset for postfix/ binary operator tokens
string_type m_sInfixOprtChars; ///< Charset for infix operator tokens
mutable int m_nIfElseCounter; ///< Internal counter for keeping track of nested if-then-else clauses
mutable int
m_nIfElseCounter; ///< Internal counter for keeping track of nested if-then-else clauses
// items merely used for caching state information
mutable valbuf_type m_vStackBuffer; ///< This is merely a buffer used for the stack in the cmd parsing routine
mutable valbuf_type
m_vStackBuffer; ///< This is merely a buffer used for the stack in the cmd parsing routine
mutable int m_nFinalResultIdx;
};
} // namespace mu
#endif

View file

@ -26,8 +26,8 @@
#define MU_PARSER_BYTECODE_H
#include <cassert>
#include <string>
#include <stack>
#include <string>
#include <vector>
#include "muParserDef.h"
@ -38,56 +38,49 @@
\brief Definition of the parser bytecode class.
*/
namespace mu
{
struct SToken
{
namespace mu {
struct SToken {
ECmdCode Cmd;
int StackPos;
union
{
struct //SValData
{
value_type *ptr;
value_type data;
value_type data2;
} Val;
union {
struct // SValData
{
value_type *ptr;
value_type data;
value_type data2;
} Val;
struct //SFunData
{
// Note: generic_fun_type is merely a placeholder. The real type could be
// anything between gun_type1 and fun_type9. I can't use a void
// pointer due to constraints in the ANSI standard which allows
// data pointers and function pointers to differ in size.
generic_fun_type ptr;
int argc;
int idx;
} Fun;
struct // SFunData
{
// Note: generic_fun_type is merely a placeholder. The real type could be
// anything between gun_type1 and fun_type9. I can't use a void
// pointer due to constraints in the ANSI standard which allows
// data pointers and function pointers to differ in size.
generic_fun_type ptr;
int argc;
int idx;
} Fun;
struct //SOprtData
{
value_type *ptr;
int offset;
} Oprt;
struct // SOprtData
{
value_type *ptr;
int offset;
} Oprt;
};
};
};
/** \brief Bytecode implementation of the Math Parser.
/** \brief Bytecode implementation of the Math Parser.
The bytecode contains the formula converted to revers polish notation stored in a continious
memory area. Associated with this data are operator codes, variable pointers, constant
values and function pointers. Those are necessary in order to calculate the result.
All those data items will be casted to the underlying datatype of the bytecode.
The bytecode contains the formula converted to revers polish notation stored in a continious
memory area. Associated with this data are operator codes, variable pointers, constant
values and function pointers. Those are necessary in order to calculate the result.
All those data items will be casted to the underlying datatype of the bytecode.
\author (C) 2004-2013 Ingo Berg
\author (C) 2004-2013 Ingo Berg
*/
class ParserByteCode
{
private:
class ParserByteCode {
private:
/** \brief Token type for internal use only. */
typedef ParserToken<value_type, string_type> token_type;
@ -101,17 +94,16 @@ private:
std::size_t m_iMaxStackSize;
/** \brief The actual rpn storage. */
rpn_type m_vRPN;
rpn_type m_vRPN;
bool m_bEnableOptimizer;
void ConstantFolding(ECmdCode a_Oprt);
public:
public:
ParserByteCode();
ParserByteCode(const ParserByteCode &a_ByteCode);
ParserByteCode& operator=(const ParserByteCode &a_ByteCode);
ParserByteCode &operator=(const ParserByteCode &a_ByteCode);
void Assign(const ParserByteCode &a_ByteCode);
void AddVar(value_type *a_pVar);
@ -130,12 +122,10 @@ public:
std::size_t GetMaxStackSize() const;
std::size_t GetSize() const;
const SToken* GetBase() const;
const SToken *GetBase() const;
void AsciiDump();
};
} // namespace mu
} // namespace mu
#endif

View file

@ -32,8 +32,7 @@
\brief Definition of the parser callback class.
*/
namespace mu
{
namespace mu {
/** \brief Encapsulation of prototypes for a numerical parser function.
@ -47,32 +46,33 @@ namespace mu
\author (C) 2004-2011 Ingo Berg
*/
class ParserCallback
{
public:
ParserCallback(fun_type0 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type1 a_pFun, bool a_bAllowOpti, int a_iPrec = -1, ECmdCode a_iCode=cmFUNC);
ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti, int a_iPrec, EOprtAssociativity a_eAssociativity);
ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type3 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type4 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type5 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type6 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type7 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type8 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type9 a_pFun, bool a_bAllowOpti);
class ParserCallback {
public:
ParserCallback(fun_type0 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type1 a_pFun, bool a_bAllowOpti, int a_iPrec = -1,
ECmdCode a_iCode = cmFUNC);
ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti, int a_iPrec,
EOprtAssociativity a_eAssociativity);
ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type3 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type4 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type5 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type6 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type7 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type8 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type9 a_pFun, bool a_bAllowOpti);
ParserCallback(fun_type10 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type0 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type1 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type2 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type3 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type4 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type5 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type6 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type7 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type8 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type9 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type0 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type1 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type2 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type3 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type4 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type5 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type6 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type7 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type8 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type9 a_pFun, bool a_bAllowOpti);
ParserCallback(bulkfun_type10 a_pFun, bool a_bAllowOpti);
ParserCallback(multfun_type a_pFun, bool a_bAllowOpti);
@ -80,39 +80,38 @@ public:
ParserCallback(strfun_type2 a_pFun, bool a_bAllowOpti);
ParserCallback(strfun_type3 a_pFun, bool a_bAllowOpti);
ParserCallback();
ParserCallback(const ParserCallback &a_Fun);
ParserCallback(const ParserCallback& a_Fun);
ParserCallback* Clone() const;
bool IsOptimizable() const;
bool IsOptimizable() const;
void* GetAddr() const;
ECmdCode GetCode() const;
ECmdCode GetCode() const;
ETypeCode GetType() const;
int GetPri() const;
int GetPri() const;
EOprtAssociativity GetAssociativity() const;
int GetArgc() const;
private:
void *m_pFun; ///< Pointer to the callback function, casted to void
private:
void* m_pFun; ///< Pointer to the callback function, casted to void
/** \brief Number of numeric function arguments
This number is negative for functions with variable number of arguments. in this cases
they represent the actual number of arguments found.
*/
int m_iArgc;
int m_iPri; ///< Valid only for binary and infix operators; Operator precedence.
EOprtAssociativity m_eOprtAsct; ///< Operator associativity; Valid only for binary operators
ECmdCode m_iCode;
int m_iArgc;
int m_iPri; ///< Valid only for binary and infix operators; Operator precedence.
EOprtAssociativity m_eOprtAsct; ///< Operator associativity; Valid only for binary operators
ECmdCode m_iCode;
ETypeCode m_iType;
bool m_bAllowOpti; ///< Flag indication optimizeability
bool m_bAllowOpti; ///< Flag indication optimizeability
};
//------------------------------------------------------------------------------
/** \brief Container for Callback objects. */
typedef std::map<string_type, ParserCallback> funmap_type;
} // namespace mu
} // namespace mu
#endif

View file

@ -26,19 +26,17 @@
#define MU_PARSER_DLL_H
#if defined(WIN32) || defined(_WIN32)
#ifdef MUPARSERLIB_EXPORTS
#define API_EXPORT(TYPE) __declspec(dllexport) TYPE __cdecl
#else
#define API_EXPORT(TYPE) __declspec(dllimport) TYPE __cdecl
#endif
#ifdef MUPARSERLIB_EXPORTS
#define API_EXPORT(TYPE) __declspec(dllexport) TYPE __cdecl
#else
#define API_EXPORT(TYPE) TYPE
#define API_EXPORT(TYPE) __declspec(dllimport) TYPE __cdecl
#endif
#else
#define API_EXPORT(TYPE) TYPE
#endif
#ifdef __cplusplus
extern "C"
{
extern "C" {
#endif
/** \file
@ -46,61 +44,73 @@ extern "C"
*/
// Basic types
typedef void* muParserHandle_t; // parser handle
typedef void *muParserHandle_t; // parser handle
#ifndef _UNICODE
typedef char muChar_t; // character type
typedef char muChar_t; // character type
#else
typedef wchar_t muChar_t; // character type
typedef wchar_t muChar_t; // character type
#endif
typedef int muBool_t; // boolean type
typedef int muInt_t; // integer type
typedef double muFloat_t; // floating point type
typedef int muBool_t; // boolean type
typedef int muInt_t; // integer type
typedef double muFloat_t; // floating point type
// function types for calculation
typedef muFloat_t (*muFun0_t )();
typedef muFloat_t (*muFun1_t )(muFloat_t);
typedef muFloat_t (*muFun2_t )(muFloat_t, muFloat_t);
typedef muFloat_t (*muFun3_t )(muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun4_t )(muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun5_t )(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun6_t )(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun7_t )(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun8_t )(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun9_t )(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun10_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun0_t)();
typedef muFloat_t (*muFun1_t)(muFloat_t);
typedef muFloat_t (*muFun2_t)(muFloat_t, muFloat_t);
typedef muFloat_t (*muFun3_t)(muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun4_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun5_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun6_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun7_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t);
typedef muFloat_t (*muFun8_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t);
typedef muFloat_t (*muFun9_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muFun10_t)(muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t, muFloat_t, muFloat_t);
// Function prototypes for bulkmode functions
typedef muFloat_t (*muBulkFun0_t )(int, int);
typedef muFloat_t (*muBulkFun1_t )(int, int, muFloat_t);
typedef muFloat_t (*muBulkFun2_t )(int, int, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun3_t )(int, int, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun4_t )(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun5_t )(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun6_t )(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun7_t )(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun8_t )(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun9_t )(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun10_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun0_t)(int, int);
typedef muFloat_t (*muBulkFun1_t)(int, int, muFloat_t);
typedef muFloat_t (*muBulkFun2_t)(int, int, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun3_t)(int, int, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun4_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun5_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun6_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t);
typedef muFloat_t (*muBulkFun7_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun8_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun9_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muBulkFun10_t)(int, int, muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t,
muFloat_t, muFloat_t, muFloat_t, muFloat_t, muFloat_t);
typedef muFloat_t (*muMultFun_t)(const muFloat_t*, muInt_t);
typedef muFloat_t (*muStrFun1_t)(const muChar_t*);
typedef muFloat_t (*muStrFun2_t)(const muChar_t*, muFloat_t);
typedef muFloat_t (*muStrFun3_t)(const muChar_t*, muFloat_t, muFloat_t);
typedef muFloat_t (*muMultFun_t)(const muFloat_t *, muInt_t);
typedef muFloat_t (*muStrFun1_t)(const muChar_t *);
typedef muFloat_t (*muStrFun2_t)(const muChar_t *, muFloat_t);
typedef muFloat_t (*muStrFun3_t)(const muChar_t *, muFloat_t, muFloat_t);
// Functions for parser management
typedef void (*muErrorHandler_t)(muParserHandle_t a_hParser); // [optional] callback to an error handler
typedef muFloat_t* (*muFacFun_t)(const muChar_t*, void*); // [optional] callback for creating new variables
typedef muInt_t (*muIdentFun_t)(const muChar_t*, muInt_t*, muFloat_t*); // [optional] value identification callbacks
typedef void (*muErrorHandler_t)(
muParserHandle_t a_hParser); // [optional] callback to an error handler
typedef muFloat_t *(*muFacFun_t)(const muChar_t *,
void *); // [optional] callback for creating new variables
typedef muInt_t (*muIdentFun_t)(const muChar_t *, muInt_t *,
muFloat_t *); // [optional] value identification callbacks
//-----------------------------------------------------------------------------------------------------
// Constants
static const int muOPRT_ASCT_LEFT = 0;
static const int muOPRT_ASCT_LEFT = 0;
static const int muOPRT_ASCT_RIGHT = 1;
static const int muBASETYPE_FLOAT = 0;
static const int muBASETYPE_INT = 1;
static const int muBASETYPE_FLOAT = 0;
static const int muBASETYPE_INT = 1;
//-----------------------------------------------------------------------------------------------------
//
@ -110,95 +120,120 @@ static const int muBASETYPE_INT = 1;
//
//-----------------------------------------------------------------------------------------------------
// Basic operations / initialization
API_EXPORT(muParserHandle_t) mupCreate(int nBaseType);
API_EXPORT(void) mupRelease(muParserHandle_t a_hParser);
API_EXPORT(const muChar_t*) mupGetExpr(muParserHandle_t a_hParser);
API_EXPORT(const muChar_t *) mupGetExpr(muParserHandle_t a_hParser);
API_EXPORT(void) mupSetExpr(muParserHandle_t a_hParser, const muChar_t *a_szExpr);
API_EXPORT(void) mupSetVarFactory(muParserHandle_t a_hParser, muFacFun_t a_pFactory, void* pUserData);
API_EXPORT(const muChar_t*) mupGetVersion(muParserHandle_t a_hParser);
API_EXPORT(void)
mupSetVarFactory(muParserHandle_t a_hParser, muFacFun_t a_pFactory, void *pUserData);
API_EXPORT(const muChar_t *) mupGetVersion(muParserHandle_t a_hParser);
API_EXPORT(muFloat_t) mupEval(muParserHandle_t a_hParser);
API_EXPORT(muFloat_t*) mupEvalMulti(muParserHandle_t a_hParser, int *nNum);
API_EXPORT(muFloat_t *) mupEvalMulti(muParserHandle_t a_hParser, int *nNum);
API_EXPORT(void) mupEvalBulk(muParserHandle_t a_hParser, muFloat_t *a_fResult, int nSize);
// Defining callbacks / variables / constants
API_EXPORT(void) mupDefineFun0(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun0_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun1(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun1_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun2(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun2_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun3(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun3_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun4(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun4_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun5(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun5_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun6(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun6_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun7(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun7_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun8(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun8_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun9(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun9_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineFun10(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun10_t a_pFun, muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun0(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun0_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun1(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun1_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun2(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun2_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun3(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun3_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun4(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun4_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun5(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun5_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun6(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun6_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun7(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun7_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun8(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun8_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun9(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun9_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineFun10(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun10_t a_pFun,
muBool_t a_bOptimize);
// Defining bulkmode functions
API_EXPORT(void) mupDefineBulkFun0(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun0_t a_pFun);
API_EXPORT(void) mupDefineBulkFun1(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun1_t a_pFun);
API_EXPORT(void) mupDefineBulkFun2(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun2_t a_pFun);
API_EXPORT(void) mupDefineBulkFun3(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun3_t a_pFun);
API_EXPORT(void) mupDefineBulkFun4(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun4_t a_pFun);
API_EXPORT(void) mupDefineBulkFun5(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun5_t a_pFun);
API_EXPORT(void) mupDefineBulkFun6(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun6_t a_pFun);
API_EXPORT(void) mupDefineBulkFun7(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun7_t a_pFun);
API_EXPORT(void) mupDefineBulkFun8(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun8_t a_pFun);
API_EXPORT(void) mupDefineBulkFun9(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun9_t a_pFun);
API_EXPORT(void) mupDefineBulkFun10(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun10_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun0(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun0_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun1(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun1_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun2(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun2_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun3(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun3_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun4(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun4_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun5(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun5_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun6(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun6_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun7(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun7_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun8(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun8_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun9(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun9_t a_pFun);
API_EXPORT(void)
mupDefineBulkFun10(muParserHandle_t a_hParser, const muChar_t *a_szName, muBulkFun10_t a_pFun);
// string functions
API_EXPORT(void) mupDefineStrFun1(muParserHandle_t a_hParser, const muChar_t *a_szName, muStrFun1_t a_pFun);
API_EXPORT(void) mupDefineStrFun2(muParserHandle_t a_hParser, const muChar_t *a_szName, muStrFun2_t a_pFun);
API_EXPORT(void) mupDefineStrFun3(muParserHandle_t a_hParser, const muChar_t *a_szName, muStrFun3_t a_pFun);
API_EXPORT(void)
mupDefineStrFun1(muParserHandle_t a_hParser, const muChar_t *a_szName, muStrFun1_t a_pFun);
API_EXPORT(void)
mupDefineStrFun2(muParserHandle_t a_hParser, const muChar_t *a_szName, muStrFun2_t a_pFun);
API_EXPORT(void)
mupDefineStrFun3(muParserHandle_t a_hParser, const muChar_t *a_szName, muStrFun3_t a_pFun);
API_EXPORT(void) mupDefineMultFun( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muMultFun_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineMultFun(muParserHandle_t a_hParser, const muChar_t *a_szName, muMultFun_t a_pFun,
muBool_t a_bOptimize);
API_EXPORT(void) mupDefineOprt( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muFun2_t a_pFun,
muInt_t a_nPrec,
muInt_t a_nOprtAsct,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineOprt(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun2_t a_pFun,
muInt_t a_nPrec, muInt_t a_nOprtAsct, muBool_t a_bOptimize);
API_EXPORT(void) mupDefineConst( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muFloat_t a_fVal );
API_EXPORT(void)
mupDefineConst(muParserHandle_t a_hParser, const muChar_t *a_szName, muFloat_t a_fVal);
API_EXPORT(void) mupDefineStrConst( muParserHandle_t a_hParser,
const muChar_t* a_szName,
const muChar_t *a_sVal );
API_EXPORT(void)
mupDefineStrConst(muParserHandle_t a_hParser, const muChar_t *a_szName, const muChar_t *a_sVal);
API_EXPORT(void) mupDefineVar( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muFloat_t *a_fVar);
API_EXPORT(void)
mupDefineVar(muParserHandle_t a_hParser, const muChar_t *a_szName, muFloat_t *a_fVar);
API_EXPORT(void) mupDefineBulkVar( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muFloat_t *a_fVar);
API_EXPORT(void)
mupDefineBulkVar(muParserHandle_t a_hParser, const muChar_t *a_szName, muFloat_t *a_fVar);
API_EXPORT(void) mupDefinePostfixOprt( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muFun1_t a_pOprt,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefinePostfixOprt(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun1_t a_pOprt,
muBool_t a_bOptimize);
API_EXPORT(void) mupDefineInfixOprt( muParserHandle_t a_hParser,
const muChar_t* a_szName,
muFun1_t a_pOprt,
muBool_t a_bOptimize);
API_EXPORT(void)
mupDefineInfixOprt(muParserHandle_t a_hParser, const muChar_t *a_szName, muFun1_t a_pOprt,
muBool_t a_bOptimize);
// Define character sets for identifiers
API_EXPORT(void) mupDefineNameChars(muParserHandle_t a_hParser, const muChar_t* a_szCharset);
API_EXPORT(void) mupDefineOprtChars(muParserHandle_t a_hParser, const muChar_t* a_szCharset);
API_EXPORT(void) mupDefineInfixOprtChars(muParserHandle_t a_hParser, const muChar_t* a_szCharset);
API_EXPORT(void) mupDefineNameChars(muParserHandle_t a_hParser, const muChar_t *a_szCharset);
API_EXPORT(void) mupDefineOprtChars(muParserHandle_t a_hParser, const muChar_t *a_szCharset);
API_EXPORT(void) mupDefineInfixOprtChars(muParserHandle_t a_hParser, const muChar_t *a_szCharset);
// Remove all / single variables
API_EXPORT(void) mupRemoveVar(muParserHandle_t a_hParser, const muChar_t* a_szName);
API_EXPORT(void) mupRemoveVar(muParserHandle_t a_hParser, const muChar_t *a_szName);
API_EXPORT(void) mupClearVar(muParserHandle_t a_hParser);
API_EXPORT(void) mupClearConst(muParserHandle_t a_hParser);
API_EXPORT(void) mupClearOprt(muParserHandle_t a_hParser);
@ -208,9 +243,15 @@ API_EXPORT(void) mupClearFun(muParserHandle_t a_hParser);
API_EXPORT(int) mupGetExprVarNum(muParserHandle_t a_hParser);
API_EXPORT(int) mupGetVarNum(muParserHandle_t a_hParser);
API_EXPORT(int) mupGetConstNum(muParserHandle_t a_hParser);
API_EXPORT(void) mupGetExprVar(muParserHandle_t a_hParser, unsigned a_iVar, const muChar_t** a_pszName, muFloat_t** a_pVar);
API_EXPORT(void) mupGetVar(muParserHandle_t a_hParser, unsigned a_iVar, const muChar_t** a_pszName, muFloat_t** a_pVar);
API_EXPORT(void) mupGetConst(muParserHandle_t a_hParser, unsigned a_iVar, const muChar_t** a_pszName, muFloat_t* a_pVar);
API_EXPORT(void)
mupGetExprVar(muParserHandle_t a_hParser, unsigned a_iVar, const muChar_t **a_pszName,
muFloat_t **a_pVar);
API_EXPORT(void)
mupGetVar(muParserHandle_t a_hParser, unsigned a_iVar, const muChar_t **a_pszName,
muFloat_t **a_pVar);
API_EXPORT(void)
mupGetConst(muParserHandle_t a_hParser, unsigned a_iVar, const muChar_t **a_pszName,
muFloat_t *a_pVar);
API_EXPORT(void) mupSetArgSep(muParserHandle_t a_hParser, const muChar_t cArgSep);
API_EXPORT(void) mupSetDecSep(muParserHandle_t a_hParser, const muChar_t cArgSep);
API_EXPORT(void) mupSetThousandsSep(muParserHandle_t a_hParser, const muChar_t cArgSep);
@ -223,19 +264,19 @@ API_EXPORT(void) mupAddValIdent(muParserHandle_t a_hParser, muIdentFun_t);
API_EXPORT(muBool_t) mupError(muParserHandle_t a_hParser);
API_EXPORT(void) mupErrorReset(muParserHandle_t a_hParser);
API_EXPORT(void) mupSetErrorHandler(muParserHandle_t a_hParser, muErrorHandler_t a_pErrHandler);
API_EXPORT(const muChar_t*) mupGetErrorMsg(muParserHandle_t a_hParser);
API_EXPORT(const muChar_t *) mupGetErrorMsg(muParserHandle_t a_hParser);
API_EXPORT(muInt_t) mupGetErrorCode(muParserHandle_t a_hParser);
API_EXPORT(muInt_t) mupGetErrorPos(muParserHandle_t a_hParser);
API_EXPORT(const muChar_t*) mupGetErrorToken(muParserHandle_t a_hParser);
//API_EXPORT(const muChar_t*) mupGetErrorExpr(muParserHandle_t a_hParser);
API_EXPORT(const muChar_t *) mupGetErrorToken(muParserHandle_t a_hParser);
// API_EXPORT(const muChar_t*) mupGetErrorExpr(muParserHandle_t a_hParser);
// This is used for .NET only. It creates a new variable allowing the dll to
// manage the variable rather than the .NET garbage collector.
API_EXPORT(muFloat_t*) mupCreateVar();
API_EXPORT(void) mupReleaseVar(muFloat_t*);
API_EXPORT(muFloat_t *) mupCreateVar();
API_EXPORT(void) mupReleaseVar(muFloat_t *);
#ifdef __cplusplus
}
#endif
#endif // include guard
#endif // include guard

View file

@ -26,9 +26,9 @@
#define MUP_DEF_H
#include <iostream>
#include <string>
#include <sstream>
#include <map>
#include <sstream>
#include <string>
#include "muParserFixes.h"
@ -41,7 +41,8 @@
#define MUP_CHARS _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")
/** \brief If this macro is defined mathematical exceptions (div by zero) will be thrown as exceptions. */
/** \brief If this macro is defined mathematical exceptions (div by zero) will be thrown as
* exceptions. */
//#define MUP_MATH_EXCEPTIONS
/** \brief Define the base datatype for values.
@ -52,121 +53,104 @@
#define MUP_BASETYPE double
#if defined(_UNICODE)
/** \brief Definition of the basic parser string type. */
#define MUP_STRING_TYPE std::wstring
/** \brief Definition of the basic parser string type. */
#define MUP_STRING_TYPE std::wstring
#if !defined(_T)
#define _T(x) L##x
#endif // not defined _T
#if !defined(_T)
#define _T(x) L##x
#endif // not defined _T
#else
#ifndef _T
#define _T(x) x
#endif
#ifndef _T
#define _T(x) x
#endif
/** \brief Definition of the basic parser string type. */
#define MUP_STRING_TYPE std::string
/** \brief Definition of the basic parser string type. */
#define MUP_STRING_TYPE std::string
#endif
#if defined(_DEBUG)
/** \brief Debug macro to force an abortion of the programm with a certain message.
*/
#define MUP_FAIL(MSG) \
{ \
bool MSG=false; \
assert(MSG); \
}
/** \brief Debug macro to force an abortion of the programm with a certain message.
*/
#define MUP_FAIL(MSG) \
{ \
bool MSG = false; \
assert(MSG); \
}
/** \brief An assertion that does not kill the program.
/** \brief An assertion that does not kill the program.
This macro is neutralised in UNICODE builds. It's
too difficult to translate.
*/
#define MUP_ASSERT(COND) \
if (!(COND)) \
{ \
stringstream_type ss; \
ss << _T("Assertion \"") _T(#COND) _T("\" failed: ") \
<< __FILE__ << _T(" line ") \
<< __LINE__ << _T("."); \
throw ParserError( ss.str() ); \
}
This macro is neutralised in UNICODE builds. It's
too difficult to translate.
*/
#define MUP_ASSERT(COND) \
if (!(COND)) { \
stringstream_type ss; \
ss << _T("Assertion \"") _T(#COND) _T("\" failed: ") << __FILE__ << _T(" line ") \
<< __LINE__ << _T("."); \
throw ParserError(ss.str()); \
}
#else
#define MUP_FAIL(MSG)
#define MUP_ASSERT(COND)
#define MUP_FAIL(MSG)
#define MUP_ASSERT(COND)
#endif
namespace mu
{
namespace mu {
#if defined(_UNICODE)
//------------------------------------------------------------------------------
/** \brief Encapsulate wcout. */
inline std::wostream& console()
{
return std::wcout;
}
//------------------------------------------------------------------------------
/** \brief Encapsulate wcout. */
inline std::wostream& console() { return std::wcout; }
/** \brief Encapsulate cin. */
inline std::wistream& console_in()
{
return std::wcin;
}
/** \brief Encapsulate cin. */
inline std::wistream& console_in() { return std::wcin; }
#else
/** \brief Encapsulate cout.
/** \brief Encapsulate cout.
Used for supporting UNICODE more easily.
*/
inline std::ostream& console()
{
return std::cout;
}
Used for supporting UNICODE more easily.
*/
inline std::ostream& console() { return std::cout; }
/** \brief Encapsulate cin.
/** \brief Encapsulate cin.
Used for supporting UNICODE more easily.
*/
inline std::istream& console_in()
{
return std::cin;
}
Used for supporting UNICODE more easily.
*/
inline std::istream& console_in() { return std::cin; }
#endif
//------------------------------------------------------------------------------
/** \brief Bytecode values.
//------------------------------------------------------------------------------
/** \brief Bytecode values.
\attention The order of the operator entries must match the order in ParserBase::c_DefaultOprt!
*/
enum ECmdCode
{
\attention The order of the operator entries must match the order in ParserBase::c_DefaultOprt!
*/
enum ECmdCode {
// The following are codes for built in binary operators
// apart from built in operators the user has the opportunity to
// add user defined operators.
cmLE = 0, ///< Operator item: less or equal
cmGE = 1, ///< Operator item: greater or equal
cmNEQ = 2, ///< Operator item: not equal
cmEQ = 3, ///< Operator item: equals
cmLT = 4, ///< Operator item: less than
cmGT = 5, ///< Operator item: greater than
cmADD = 6, ///< Operator item: add
cmSUB = 7, ///< Operator item: subtract
cmMUL = 8, ///< Operator item: multiply
cmDIV = 9, ///< Operator item: division
cmPOW = 10, ///< Operator item: y to the power of ...
cmLAND = 11,
cmLOR = 12,
cmASSIGN = 13, ///< Operator item: Assignment operator
cmBO = 14, ///< Operator item: opening bracket
cmBC = 15, ///< Operator item: closing bracket
cmIF = 16, ///< For use in the ternary if-then-else operator
cmELSE = 17, ///< For use in the ternary if-then-else operator
cmENDIF = 18, ///< For use in the ternary if-then-else operator
cmARG_SEP = 19, ///< function argument separator
cmVAR = 20, ///< variable item
cmVAL = 21, ///< value item
cmLE = 0, ///< Operator item: less or equal
cmGE = 1, ///< Operator item: greater or equal
cmNEQ = 2, ///< Operator item: not equal
cmEQ = 3, ///< Operator item: equals
cmLT = 4, ///< Operator item: less than
cmGT = 5, ///< Operator item: greater than
cmADD = 6, ///< Operator item: add
cmSUB = 7, ///< Operator item: subtract
cmMUL = 8, ///< Operator item: multiply
cmDIV = 9, ///< Operator item: division
cmPOW = 10, ///< Operator item: y to the power of ...
cmLAND = 11,
cmLOR = 12,
cmASSIGN = 13, ///< Operator item: Assignment operator
cmBO = 14, ///< Operator item: opening bracket
cmBC = 15, ///< Operator item: closing bracket
cmIF = 16, ///< For use in the ternary if-then-else operator
cmELSE = 17, ///< For use in the ternary if-then-else operator
cmENDIF = 18, ///< For use in the ternary if-then-else operator
cmARG_SEP = 19, ///< function argument separator
cmVAR = 20, ///< variable item
cmVAL = 21, ///< value item
// For optimization purposes
cmVARPOW2,
@ -176,187 +160,187 @@ namespace mu
cmPOW2,
// operators and functions
cmFUNC, ///< Code for a generic function item
cmFUNC_STR, ///< Code for a function with a string parameter
cmFUNC_BULK, ///< Special callbacks for Bulk mode with an additional parameter for the bulk index
cmSTRING, ///< Code for a string token
cmOPRT_BIN, ///< user defined binary operator
cmOPRT_POSTFIX, ///< code for postfix operators
cmOPRT_INFIX, ///< code for infix operators
cmEND, ///< end of formula
cmUNKNOWN ///< uninitialized item
};
cmFUNC, ///< Code for a generic function item
cmFUNC_STR, ///< Code for a function with a string parameter
cmFUNC_BULK, ///< Special callbacks for Bulk mode with an additional parameter for the bulk
///index
cmSTRING, ///< Code for a string token
cmOPRT_BIN, ///< user defined binary operator
cmOPRT_POSTFIX, ///< code for postfix operators
cmOPRT_INFIX, ///< code for infix operators
cmEND, ///< end of formula
cmUNKNOWN ///< uninitialized item
};
//------------------------------------------------------------------------------
/** \brief Types internally used by the parser.
*/
enum ETypeCode
{
tpSTR = 0, ///< String type (Function arguments and constants only, no string variables)
tpDBL = 1, ///< Floating point variables
tpVOID = 2 ///< Undefined type.
};
//------------------------------------------------------------------------------
/** \brief Types internally used by the parser.
*/
enum ETypeCode {
tpSTR = 0, ///< String type (Function arguments and constants only, no string variables)
tpDBL = 1, ///< Floating point variables
tpVOID = 2 ///< Undefined type.
};
//------------------------------------------------------------------------------
enum EParserVersionInfo
{
pviBRIEF,
pviFULL
};
//------------------------------------------------------------------------------
enum EParserVersionInfo { pviBRIEF, pviFULL };
//------------------------------------------------------------------------------
/** \brief Parser operator precedence values. */
enum EOprtAssociativity
{
oaLEFT = 0,
oaRIGHT = 1,
oaNONE = 2
};
//------------------------------------------------------------------------------
/** \brief Parser operator precedence values. */
enum EOprtAssociativity { oaLEFT = 0, oaRIGHT = 1, oaNONE = 2 };
//------------------------------------------------------------------------------
/** \brief Parser operator precedence values. */
enum EOprtPrecedence
{
//------------------------------------------------------------------------------
/** \brief Parser operator precedence values. */
enum EOprtPrecedence {
// binary operators
prLOR = 1,
prLAND = 2,
prLOGIC = 3, ///< logic operators
prCMP = 4, ///< comparsion operators
prLOR = 1,
prLAND = 2,
prLOGIC = 3, ///< logic operators
prCMP = 4, ///< comparsion operators
prADD_SUB = 5, ///< addition
prMUL_DIV = 6, ///< multiplication/division
prPOW = 7, ///< power operator priority (highest)
prPOW = 7, ///< power operator priority (highest)
// infix operators
prINFIX = 6, ///< Signs have a higher priority than ADD_SUB, but lower than power operator
prINFIX = 6, ///< Signs have a higher priority than ADD_SUB, but lower than power operator
prPOSTFIX = 6 ///< Postfix operator priority (currently unused)
};
};
//------------------------------------------------------------------------------
// basic types
//------------------------------------------------------------------------------
// basic types
/** \brief The numeric datatype used by the parser.
/** \brief The numeric datatype used by the parser.
Normally this is a floating point type either single or double precision.
*/
typedef MUP_BASETYPE value_type;
Normally this is a floating point type either single or double precision.
*/
typedef MUP_BASETYPE value_type;
/** \brief The stringtype used by the parser.
/** \brief The stringtype used by the parser.
Depends on wether UNICODE is used or not.
*/
typedef MUP_STRING_TYPE string_type;
Depends on wether UNICODE is used or not.
*/
typedef MUP_STRING_TYPE string_type;
/** \brief The character type used by the parser.
/** \brief The character type used by the parser.
Depends on wether UNICODE is used or not.
*/
typedef string_type::value_type char_type;
Depends on wether UNICODE is used or not.
*/
typedef string_type::value_type char_type;
/** \brief Typedef for easily using stringstream that respect the parser stringtype. */
typedef std::basic_stringstream<char_type,
std::char_traits<char_type>,
std::allocator<char_type> > stringstream_type;
/** \brief Typedef for easily using stringstream that respect the parser stringtype. */
typedef std::basic_stringstream<char_type, std::char_traits<char_type>, std::allocator<char_type> >
stringstream_type;
// Data container types
// Data container types
/** \brief Type used for storing variables. */
typedef std::map<string_type, value_type*> varmap_type;
/** \brief Type used for storing variables. */
typedef std::map<string_type, value_type*> varmap_type;
/** \brief Type used for storing constants. */
typedef std::map<string_type, value_type> valmap_type;
/** \brief Type used for storing constants. */
typedef std::map<string_type, value_type> valmap_type;
/** \brief Type for assigning a string name to an index in the internal string table. */
typedef std::map<string_type, std::size_t> strmap_type;
/** \brief Type for assigning a string name to an index in the internal string table. */
typedef std::map<string_type, std::size_t> strmap_type;
// Parser callbacks
// Parser callbacks
/** \brief Callback type used for functions without arguments. */
typedef value_type (*generic_fun_type)();
/** \brief Callback type used for functions without arguments. */
typedef value_type (*generic_fun_type)();
/** \brief Callback type used for functions without arguments. */
typedef value_type (*fun_type0)();
/** \brief Callback type used for functions without arguments. */
typedef value_type (*fun_type0)();
/** \brief Callback type used for functions with a single arguments. */
typedef value_type (*fun_type1)(value_type);
/** \brief Callback type used for functions with a single arguments. */
typedef value_type (*fun_type1)(value_type);
/** \brief Callback type used for functions with two arguments. */
typedef value_type (*fun_type2)(value_type, value_type);
/** \brief Callback type used for functions with two arguments. */
typedef value_type (*fun_type2)(value_type, value_type);
/** \brief Callback type used for functions with three arguments. */
typedef value_type (*fun_type3)(value_type, value_type, value_type);
/** \brief Callback type used for functions with three arguments. */
typedef value_type (*fun_type3)(value_type, value_type, value_type);
/** \brief Callback type used for functions with four arguments. */
typedef value_type (*fun_type4)(value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with four arguments. */
typedef value_type (*fun_type4)(value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type5)(value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type5)(value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type6)(value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type6)(value_type, value_type, value_type, value_type, value_type,
value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type7)(value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type7)(value_type, value_type, value_type, value_type, value_type,
value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type8)(value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type8)(value_type, value_type, value_type, value_type, value_type,
value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type9)(value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type9)(value_type, value_type, value_type, value_type, value_type,
value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type10)(value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*fun_type10)(value_type, value_type, value_type, value_type, value_type,
value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions without arguments. */
typedef value_type (*bulkfun_type0)(int, int);
/** \brief Callback type used for functions without arguments. */
typedef value_type (*bulkfun_type0)(int, int);
/** \brief Callback type used for functions with a single arguments. */
typedef value_type (*bulkfun_type1)(int, int, value_type);
/** \brief Callback type used for functions with a single arguments. */
typedef value_type (*bulkfun_type1)(int, int, value_type);
/** \brief Callback type used for functions with two arguments. */
typedef value_type (*bulkfun_type2)(int, int, value_type, value_type);
/** \brief Callback type used for functions with two arguments. */
typedef value_type (*bulkfun_type2)(int, int, value_type, value_type);
/** \brief Callback type used for functions with three arguments. */
typedef value_type (*bulkfun_type3)(int, int, value_type, value_type, value_type);
/** \brief Callback type used for functions with three arguments. */
typedef value_type (*bulkfun_type3)(int, int, value_type, value_type, value_type);
/** \brief Callback type used for functions with four arguments. */
typedef value_type (*bulkfun_type4)(int, int, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with four arguments. */
typedef value_type (*bulkfun_type4)(int, int, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type5)(int, int, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type5)(int, int, value_type, value_type, value_type, value_type,
value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type6)(int, int, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type6)(int, int, value_type, value_type, value_type, value_type,
value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type7)(int, int, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type7)(int, int, value_type, value_type, value_type, value_type,
value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type8)(int, int, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type8)(int, int, value_type, value_type, value_type, value_type,
value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type9)(int, int, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type9)(int, int, value_type, value_type, value_type, value_type,
value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type10)(int, int, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type, value_type);
/** \brief Callback type used for functions with five arguments. */
typedef value_type (*bulkfun_type10)(int, int, value_type, value_type, value_type, value_type,
value_type, value_type, value_type, value_type, value_type,
value_type);
/** \brief Callback type used for functions with a variable argument list. */
typedef value_type (*multfun_type)(const value_type*, int);
/** \brief Callback type used for functions with a variable argument list. */
typedef value_type (*multfun_type)(const value_type*, int);
/** \brief Callback type used for functions taking a string as an argument. */
typedef value_type (*strfun_type1)(const char_type*);
/** \brief Callback type used for functions taking a string as an argument. */
typedef value_type (*strfun_type1)(const char_type*);
/** \brief Callback type used for functions taking a string and a value as arguments. */
typedef value_type (*strfun_type2)(const char_type*, value_type);
/** \brief Callback type used for functions taking a string and a value as arguments. */
typedef value_type (*strfun_type2)(const char_type*, value_type);
/** \brief Callback type used for functions taking a string and two values as arguments. */
typedef value_type (*strfun_type3)(const char_type*, value_type, value_type);
/** \brief Callback type used for functions taking a string and two values as arguments. */
typedef value_type (*strfun_type3)(const char_type*, value_type, value_type);
/** \brief Callback used for functions that identify values in a string. */
typedef int (*identfun_type)(const char_type *sExpr, int *nPos, value_type *fVal);
/** \brief Callback used for functions that identify values in a string. */
typedef int (*identfun_type)(const char_type* sExpr, int* nPos, value_type* fVal);
/** \brief Callback used for variable creation factory functions. */
typedef value_type* (*facfun_type)(const char_type*, void*);
} // end of namespace
/** \brief Callback used for variable creation factory functions. */
typedef value_type* (*facfun_type)(const char_type*, void*);
} // end of namespace
#endif

View file

@ -27,11 +27,11 @@
#define MU_PARSER_ERROR_H
#include <cassert>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <sstream>
#include <vector>
#include <memory>
#include "muParserDef.h"
@ -39,81 +39,80 @@
\brief This file defines the error class used by the parser.
*/
namespace mu
{
namespace mu {
/** \brief Error codes. */
enum EErrorCodes
{
// Formula syntax errors
ecUNEXPECTED_OPERATOR = 0, ///< Unexpected binary operator found
ecUNASSIGNABLE_TOKEN = 1, ///< Token cant be identified.
ecUNEXPECTED_EOF = 2, ///< Unexpected end of formula. (Example: "2+sin(")
ecUNEXPECTED_ARG_SEP = 3, ///< An unexpected comma has been found. (Example: "1,23")
ecUNEXPECTED_ARG = 4, ///< An unexpected argument has been found
ecUNEXPECTED_VAL = 5, ///< An unexpected value token has been found
ecUNEXPECTED_VAR = 6, ///< An unexpected variable token has been found
ecUNEXPECTED_PARENS = 7, ///< Unexpected Parenthesis, opening or closing
ecUNEXPECTED_STR = 8, ///< A string has been found at an inapropriate position
ecSTRING_EXPECTED = 9, ///< A string function has been called with a different type of argument
ecVAL_EXPECTED = 10, ///< A numerical function has been called with a non value type of argument
ecMISSING_PARENS = 11, ///< Missing parens. (Example: "3*sin(3")
ecUNEXPECTED_FUN = 12, ///< Unexpected function found. (Example: "sin(8)cos(9)")
ecUNTERMINATED_STRING = 13, ///< unterminated string constant. (Example: "3*valueof("hello)")
ecTOO_MANY_PARAMS = 14, ///< Too many function parameters
ecTOO_FEW_PARAMS = 15, ///< Too few function parameters. (Example: "ite(1<2,2)")
ecOPRT_TYPE_CONFLICT = 16, ///< binary operators may only be applied to value items of the same type
ecSTR_RESULT = 17, ///< result is a string
enum EErrorCodes {
// Formula syntax errors
ecUNEXPECTED_OPERATOR = 0, ///< Unexpected binary operator found
ecUNASSIGNABLE_TOKEN = 1, ///< Token cant be identified.
ecUNEXPECTED_EOF = 2, ///< Unexpected end of formula. (Example: "2+sin(")
ecUNEXPECTED_ARG_SEP = 3, ///< An unexpected comma has been found. (Example: "1,23")
ecUNEXPECTED_ARG = 4, ///< An unexpected argument has been found
ecUNEXPECTED_VAL = 5, ///< An unexpected value token has been found
ecUNEXPECTED_VAR = 6, ///< An unexpected variable token has been found
ecUNEXPECTED_PARENS = 7, ///< Unexpected Parenthesis, opening or closing
ecUNEXPECTED_STR = 8, ///< A string has been found at an inapropriate position
ecSTRING_EXPECTED = 9, ///< A string function has been called with a different type of argument
ecVAL_EXPECTED =
10, ///< A numerical function has been called with a non value type of argument
ecMISSING_PARENS = 11, ///< Missing parens. (Example: "3*sin(3")
ecUNEXPECTED_FUN = 12, ///< Unexpected function found. (Example: "sin(8)cos(9)")
ecUNTERMINATED_STRING = 13, ///< unterminated string constant. (Example: "3*valueof("hello)")
ecTOO_MANY_PARAMS = 14, ///< Too many function parameters
ecTOO_FEW_PARAMS = 15, ///< Too few function parameters. (Example: "ite(1<2,2)")
ecOPRT_TYPE_CONFLICT =
16, ///< binary operators may only be applied to value items of the same type
ecSTR_RESULT = 17, ///< result is a string
// Invalid Parser input Parameters
ecINVALID_NAME = 18, ///< Invalid function, variable or constant name.
ecINVALID_BINOP_IDENT = 19, ///< Invalid binary operator identifier
ecINVALID_INFIX_IDENT = 20, ///< Invalid function, variable or constant name.
ecINVALID_POSTFIX_IDENT = 21, ///< Invalid function, variable or constant name.
// Invalid Parser input Parameters
ecINVALID_NAME = 18, ///< Invalid function, variable or constant name.
ecINVALID_BINOP_IDENT = 19, ///< Invalid binary operator identifier
ecINVALID_INFIX_IDENT = 20, ///< Invalid function, variable or constant name.
ecINVALID_POSTFIX_IDENT = 21, ///< Invalid function, variable or constant name.
ecBUILTIN_OVERLOAD = 22, ///< Trying to overload builtin operator
ecINVALID_FUN_PTR = 23, ///< Invalid callback function pointer
ecINVALID_VAR_PTR = 24, ///< Invalid variable pointer
ecEMPTY_EXPRESSION = 25, ///< The Expression is empty
ecNAME_CONFLICT = 26, ///< Name conflict
ecOPT_PRI = 27, ///< Invalid operator priority
//
ecDOMAIN_ERROR = 28, ///< catch division by zero, sqrt(-1), log(0) (currently unused)
ecDIV_BY_ZERO = 29, ///< Division by zero (currently unused)
ecGENERIC = 30, ///< Generic error
ecLOCALE = 31, ///< Conflict with current locale
ecBUILTIN_OVERLOAD = 22, ///< Trying to overload builtin operator
ecINVALID_FUN_PTR = 23, ///< Invalid callback function pointer
ecINVALID_VAR_PTR = 24, ///< Invalid variable pointer
ecEMPTY_EXPRESSION = 25, ///< The Expression is empty
ecNAME_CONFLICT = 26, ///< Name conflict
ecOPT_PRI = 27, ///< Invalid operator priority
//
ecDOMAIN_ERROR = 28, ///< catch division by zero, sqrt(-1), log(0) (currently unused)
ecDIV_BY_ZERO = 29, ///< Division by zero (currently unused)
ecGENERIC = 30, ///< Generic error
ecLOCALE = 31, ///< Conflict with current locale
ecUNEXPECTED_CONDITIONAL = 32,
ecMISSING_ELSE_CLAUSE = 33,
ecMISPLACED_COLON = 34,
ecUNEXPECTED_CONDITIONAL = 32,
ecMISSING_ELSE_CLAUSE = 33,
ecMISPLACED_COLON = 34,
ecUNREASONABLE_NUMBER_OF_COMPUTATIONS = 35,
ecUNREASONABLE_NUMBER_OF_COMPUTATIONS = 35,
// The last two are special entries
ecCOUNT, ///< This is no error code, It just stores just the total number of error codes
ecUNDEFINED = -1 ///< Undefined message, placeholder to detect unassigned error messages
// The last two are special entries
ecCOUNT, ///< This is no error code, It just stores just the total number of error codes
ecUNDEFINED = -1 ///< Undefined message, placeholder to detect unassigned error messages
};
//---------------------------------------------------------------------------
/** \brief A class that handles the error messages.
*/
class ParserErrorMsg
{
public:
class ParserErrorMsg {
public:
typedef ParserErrorMsg self_type;
ParserErrorMsg& operator=(const ParserErrorMsg &);
ParserErrorMsg(const ParserErrorMsg&);
ParserErrorMsg &operator=(const ParserErrorMsg &);
ParserErrorMsg(const ParserErrorMsg &);
ParserErrorMsg();
~ParserErrorMsg();
~ParserErrorMsg();
static const ParserErrorMsg& Instance();
static const ParserErrorMsg &Instance();
string_type operator[](unsigned a_iIdx) const;
private:
std::vector<string_type> m_vErrMsg; ///< A vector with the predefined error messages
static const self_type m_Instance; ///< The instance pointer
private:
std::vector<string_type> m_vErrMsg; ///< A vector with the predefined error messages
static const self_type m_Instance; ///< The instance pointer
};
//---------------------------------------------------------------------------
@ -122,52 +121,41 @@ private:
Part of the math parser package.
*/
class ParserError
{
private:
class ParserError {
private:
/** \brief Replace all ocuurences of a substring with another string. */
void ReplaceSubString( string_type &strSource,
const string_type &strFind,
const string_type &strReplaceWith);
void ReplaceSubString(string_type &strSource, const string_type &strFind,
const string_type &strReplaceWith);
void Reset();
public:
public:
ParserError();
explicit ParserError(EErrorCodes a_iErrc);
explicit ParserError(const string_type &sMsg);
ParserError( EErrorCodes a_iErrc,
const string_type &sTok,
const string_type &sFormula = string_type(),
int a_iPos = -1);
ParserError( EErrorCodes a_iErrc,
int a_iPos,
const string_type &sTok);
ParserError( const char_type *a_szMsg,
int a_iPos = -1,
const string_type &sTok = string_type());
ParserError(EErrorCodes a_iErrc, const string_type &sTok,
const string_type &sFormula = string_type(), int a_iPos = -1);
ParserError(EErrorCodes a_iErrc, int a_iPos, const string_type &sTok);
ParserError(const char_type *a_szMsg, int a_iPos = -1, const string_type &sTok = string_type());
ParserError(const ParserError &a_Obj);
ParserError& operator=(const ParserError &a_Obj);
~ParserError();
ParserError &operator=(const ParserError &a_Obj);
~ParserError();
void SetFormula(const string_type &a_strFormula);
const string_type& GetExpr() const;
const string_type& GetMsg() const;
const string_type &GetExpr() const;
const string_type &GetMsg() const;
int GetPos() const;
const string_type& GetToken() const;
const string_type &GetToken() const;
EErrorCodes GetCode() const;
private:
string_type m_strMsg; ///< The message string
string_type m_strFormula; ///< Formula string
string_type m_strTok; ///< Token related with the error
int m_iPos; ///< Formula position related to the error
EErrorCodes m_iErrc; ///< Error code
private:
string_type m_strMsg; ///< The message string
string_type m_strFormula; ///< Formula string
string_type m_strTok; ///< Token related with the error
int m_iPos; ///< Formula position related to the error
EErrorCodes m_iErrc; ///< Error code
const ParserErrorMsg &m_ErrMsg;
};
} // namespace mu
} // namespace mu
#endif

View file

@ -45,18 +45,16 @@
// remark #981: operands are evaluated in unspecified order
// disabled -> completely pointless if the functions do not have side effects
//
#pragma warning(disable:981)
#pragma warning(disable : 981)
// remark #383: value copied to temporary, reference to temporary used
#pragma warning(disable:383)
#pragma warning(disable : 383)
// remark #1572: floating-point equality and inequality comparisons are unreliable
// disabled -> everyone knows it, the parser passes this problem
// deliberately to the user
#pragma warning(disable:1572)
#pragma warning(disable : 1572)
#endif
#endif // include guard
#endif // include guard

View file

@ -26,106 +26,91 @@
#ifndef MU_PARSER_INT_H
#define MU_PARSER_INT_H
#include "muParserBase.h"
#include <vector>
#include "muParserBase.h"
/** \file
\brief Definition of a parser using integer value.
*/
namespace mu
{
namespace mu {
/** \brief Mathematical expressions parser.
This version of the parser handles only integer numbers. It disables the built in operators thus it is
This version of the parser handles only integer numbers. It disables the built in operators thus
it is
slower than muParser. Integer values are stored in the double value_type and converted if needed.
*/
class ParserInt : public ParserBase
{
private:
static int Round(value_type v) { return (int)(v + ((v>=0) ? 0.5 : -0.5) ); };
class ParserInt : public ParserBase {
private:
static int Round(value_type v) { return (int)(v + ((v >= 0) ? 0.5 : -0.5)); };
static value_type Abs(value_type);
static value_type Sign(value_type);
static value_type Ite(value_type, value_type, value_type);
static value_type Abs(value_type);
static value_type Sign(value_type);
static value_type Ite(value_type, value_type, value_type);
// !! The unary Minus is a MUST, otherwise you cant use negative signs !!
static value_type UnaryMinus(value_type);
static value_type UnaryMinus(value_type);
// Functions with variable number of arguments
static value_type Sum(const value_type* a_afArg, int a_iArgc); // sum
static value_type Min(const value_type* a_afArg, int a_iArgc); // minimum
static value_type Max(const value_type* a_afArg, int a_iArgc); // maximum
static value_type Sum(const value_type* a_afArg, int a_iArgc); // sum
static value_type Min(const value_type* a_afArg, int a_iArgc); // minimum
static value_type Max(const value_type* a_afArg, int a_iArgc); // maximum
// binary operator callbacks
static value_type Add(value_type v1, value_type v2);
static value_type Sub(value_type v1, value_type v2);
static value_type Mul(value_type v1, value_type v2);
static value_type Div(value_type v1, value_type v2);
static value_type Mod(value_type v1, value_type v2);
static value_type Pow(value_type v1, value_type v2);
static value_type Shr(value_type v1, value_type v2);
static value_type Shl(value_type v1, value_type v2);
static value_type LogAnd(value_type v1, value_type v2);
static value_type LogOr(value_type v1, value_type v2);
static value_type And(value_type v1, value_type v2);
static value_type Or(value_type v1, value_type v2);
static value_type Xor(value_type v1, value_type v2);
static value_type Less(value_type v1, value_type v2);
static value_type Greater(value_type v1, value_type v2);
static value_type LessEq(value_type v1, value_type v2);
static value_type GreaterEq(value_type v1, value_type v2);
static value_type Equal(value_type v1, value_type v2);
static value_type NotEqual(value_type v1, value_type v2);
static value_type Not(value_type v1);
static value_type Add(value_type v1, value_type v2);
static value_type Sub(value_type v1, value_type v2);
static value_type Mul(value_type v1, value_type v2);
static value_type Div(value_type v1, value_type v2);
static value_type Mod(value_type v1, value_type v2);
static value_type Pow(value_type v1, value_type v2);
static value_type Shr(value_type v1, value_type v2);
static value_type Shl(value_type v1, value_type v2);
static value_type LogAnd(value_type v1, value_type v2);
static value_type LogOr(value_type v1, value_type v2);
static value_type And(value_type v1, value_type v2);
static value_type Or(value_type v1, value_type v2);
static value_type Xor(value_type v1, value_type v2);
static value_type Less(value_type v1, value_type v2);
static value_type Greater(value_type v1, value_type v2);
static value_type LessEq(value_type v1, value_type v2);
static value_type GreaterEq(value_type v1, value_type v2);
static value_type Equal(value_type v1, value_type v2);
static value_type NotEqual(value_type v1, value_type v2);
static value_type Not(value_type v1);
static int IsHexVal(const char_type* a_szExpr, int *a_iPos, value_type *a_iVal);
static int IsBinVal(const char_type* a_szExpr, int *a_iPos, value_type *a_iVal);
static int IsVal (const char_type* a_szExpr, int *a_iPos, value_type *a_iVal);
static int IsHexVal(const char_type* a_szExpr, int* a_iPos, value_type* a_iVal);
static int IsBinVal(const char_type* a_szExpr, int* a_iPos, value_type* a_iVal);
static int IsVal(const char_type* a_szExpr, int* a_iPos, value_type* a_iVal);
/** \brief A facet class used to change decimal and thousands separator. */
template<class TChar>
class change_dec_sep : public std::numpunct<TChar>
{
public:
template <class TChar>
class change_dec_sep : public std::numpunct<TChar> {
public:
explicit change_dec_sep(char_type cDecSep, char_type cThousandsSep = 0, int nGroup = 3)
: std::numpunct<TChar>(),
m_cDecPoint(cDecSep),
m_cThousandsSep(cThousandsSep),
m_nGroup(nGroup) {}
explicit change_dec_sep(char_type cDecSep, char_type cThousandsSep = 0, int nGroup = 3)
:std::numpunct<TChar>()
,m_cDecPoint(cDecSep)
,m_cThousandsSep(cThousandsSep)
,m_nGroup(nGroup)
{}
protected:
virtual char_type do_decimal_point() const { return m_cDecPoint; }
protected:
virtual char_type do_thousands_sep() const { return m_cThousandsSep; }
virtual char_type do_decimal_point() const
{
return m_cDecPoint;
}
virtual std::string do_grouping() const {
// fix for issue 4: https://code.google.com/p/muparser/issues/detail?id=4
// courtesy of Jens Bartsch
// original code:
// return std::string(1, (char)m_nGroup);
// new code:
return std::string(1, (char)(m_cThousandsSep > 0 ? m_nGroup : CHAR_MAX));
}
virtual char_type do_thousands_sep() const
{
return m_cThousandsSep;
}
virtual std::string do_grouping() const
{
// fix for issue 4: https://code.google.com/p/muparser/issues/detail?id=4
// courtesy of Jens Bartsch
// original code:
// return std::string(1, (char)m_nGroup);
// new code:
return std::string(1, (char)(m_cThousandsSep > 0 ? m_nGroup : CHAR_MAX));
}
private:
int m_nGroup;
char_type m_cDecPoint;
char_type m_cThousandsSep;
private:
int m_nGroup;
char_type m_cDecPoint;
char_type m_cThousandsSep;
};
public:
public:
ParserInt();
virtual void InitFun();
@ -134,7 +119,6 @@ public:
virtual void InitCharSets();
};
} // namespace mu
} // namespace mu
#endif

View file

@ -27,8 +27,8 @@
#define MU_PARSER_STACK_H
#include <cassert>
#include <string>
#include <stack>
#include <string>
#include <vector>
#include "muParserError.h"
@ -38,88 +38,67 @@
\brief This file defines the stack used by muparser.
*/
namespace mu
{
namespace mu {
/** \brief Parser stack implementation.
/** \brief Parser stack implementation.
Stack implementation based on a std::stack. The behaviour of pop() had been
slightly changed in order to get an error code if the stack is empty.
The stack is used within the Parser both as a value stack and as an operator stack.
Stack implementation based on a std::stack. The behaviour of pop() had been
slightly changed in order to get an error code if the stack is empty.
The stack is used within the Parser both as a value stack and as an operator stack.
\author (C) 2004-2011 Ingo Berg
*/
template <typename TValueType>
class ParserStack
{
private:
\author (C) 2004-2011 Ingo Berg
*/
template <typename TValueType>
class ParserStack {
private:
/** \brief Type of the underlying stack implementation. */
typedef std::stack<TValueType, std::vector<TValueType> > impl_type;
/** \brief Type of the underlying stack implementation. */
typedef std::stack<TValueType, std::vector<TValueType> > impl_type;
impl_type m_Stack; ///< This is the actual stack.
impl_type m_Stack; ///< This is the actual stack.
public:
//---------------------------------------------------------------------------
ParserStack() : m_Stack() {}
public:
//---------------------------------------------------------------------------
virtual ~ParserStack() {}
//---------------------------------------------------------------------------
ParserStack()
:m_Stack()
{}
//---------------------------------------------------------------------------
/** \brief Pop a value from the stack.
//---------------------------------------------------------------------------
virtual ~ParserStack()
{}
Unlike the standard implementation this function will return the value that
is going to be taken from the stack.
//---------------------------------------------------------------------------
/** \brief Pop a value from the stack.
Unlike the standard implementation this function will return the value that
is going to be taken from the stack.
\throw ParserException in case the stack is empty.
\sa pop(int &a_iErrc)
*/
TValueType pop()
{
if (empty())
throw ParserError( _T("stack is empty.") );
\throw ParserException in case the stack is empty.
\sa pop(int &a_iErrc)
*/
TValueType pop() {
if (empty()) throw ParserError(_T("stack is empty."));
TValueType el = top();
m_Stack.pop();
return el;
}
}
/** \brief Push an object into the stack.
/** \brief Push an object into the stack.
\param a_Val object to push into the stack.
\throw nothrow
*/
void push(const TValueType& a_Val)
{
m_Stack.push(a_Val);
}
\param a_Val object to push into the stack.
\throw nothrow
*/
void push(const TValueType& a_Val) { m_Stack.push(a_Val); }
/** \brief Return the number of stored elements. */
unsigned size() const
{
return (unsigned)m_Stack.size();
}
/** \brief Return the number of stored elements. */
unsigned size() const { return (unsigned)m_Stack.size(); }
/** \brief Returns true if stack is empty false otherwise. */
bool empty() const
{
return m_Stack.empty();
}
/** \brief Returns true if stack is empty false otherwise. */
bool empty() const { return m_Stack.empty(); }
/** \brief Return reference to the top object in the stack.
/** \brief Return reference to the top object in the stack.
The top object is the one pushed most recently.
*/
TValueType& top()
{
return m_Stack.top();
}
};
} // namespace MathUtils
The top object is the one pushed most recently.
*/
TValueType& top() { return m_Stack.top(); }
};
} // namespace MathUtils
#endif

View file

@ -4,110 +4,97 @@
#include <cmath>
#include "muParserError.h"
namespace mu {
//-----------------------------------------------------------------------------------------------
//
// Compile time type detection
//
//-----------------------------------------------------------------------------------------------
namespace mu
{
//-----------------------------------------------------------------------------------------------
//
// Compile time type detection
//
//-----------------------------------------------------------------------------------------------
/** \brief A class singling out integer types at compile time using
template meta programming.
*/
template<typename T>
struct TypeInfo
{
/** \brief A class singling out integer types at compile time using
template meta programming.
*/
template <typename T>
struct TypeInfo {
static bool IsInteger() { return false; }
};
};
template<>
struct TypeInfo<char>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<char> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<short>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<short> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<int>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<int> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<long>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<long> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<unsigned char>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<unsigned char> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<unsigned short>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<unsigned short> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<unsigned int>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<unsigned int> {
static bool IsInteger() { return true; }
};
template<>
struct TypeInfo<unsigned long>
{
static bool IsInteger() { return true; }
};
template <>
struct TypeInfo<unsigned long> {
static bool IsInteger() { return true; }
};
//-----------------------------------------------------------------------------------------------
//
// Standard math functions with dummy overload for integer types
//
//-----------------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------------------------
//
// Standard math functions with dummy overload for integer types
//
//-----------------------------------------------------------------------------------------------
/** \brief A template class for providing wrappers for essential math functions.
/** \brief A template class for providing wrappers for essential math functions.
This template is spezialized for several types in order to provide a unified interface
for parser internal math function calls regardless of the data type.
*/
template<typename T>
struct MathImpl
{
static T Sin(T v) { return sin(v); }
static T Cos(T v) { return cos(v); }
static T Tan(T v) { return tan(v); }
static T ASin(T v) { return asin(v); }
static T ACos(T v) { return acos(v); }
static T ATan(T v) { return atan(v); }
This template is spezialized for several types in order to provide a unified interface
for parser internal math function calls regardless of the data type.
*/
template <typename T>
struct MathImpl {
static T Sin(T v) { return sin(v); }
static T Cos(T v) { return cos(v); }
static T Tan(T v) { return tan(v); }
static T ASin(T v) { return asin(v); }
static T ACos(T v) { return acos(v); }
static T ATan(T v) { return atan(v); }
static T ATan2(T v1, T v2) { return atan2(v1, v2); }
static T Sinh(T v) { return sinh(v); }
static T Cosh(T v) { return cosh(v); }
static T Tanh(T v) { return tanh(v); }
static T Sinh(T v) { return sinh(v); }
static T Cosh(T v) { return cosh(v); }
static T Tanh(T v) { return tanh(v); }
static T ASinh(T v) { return log(v + sqrt(v * v + 1)); }
static T ACosh(T v) { return log(v + sqrt(v * v - 1)); }
static T ATanh(T v) { return ((T)0.5 * log((1 + v) / (1 - v))); }
static T Log(T v) { return log(v); }
static T Log2(T v) { return log(v)/log((T)2); } // Logarithm base 2
static T Log10(T v) { return log10(v); } // Logarithm base 10
static T Exp(T v) { return exp(v); }
static T Abs(T v) { return (v>=0) ? v : -v; }
static T Sqrt(T v) { return sqrt(v); }
static T Rint(T v) { return floor(v + (T)0.5); }
static T Sign(T v) { return (T)((v<0) ? -1 : (v>0) ? 1 : 0); }
static T Log(T v) { return log(v); }
static T Log2(T v) { return log(v) / log((T)2); } // Logarithm base 2
static T Log10(T v) { return log10(v); } // Logarithm base 10
static T Exp(T v) { return exp(v); }
static T Abs(T v) { return (v >= 0) ? v : -v; }
static T Sqrt(T v) { return sqrt(v); }
static T Rint(T v) { return floor(v + (T)0.5); }
static T Sign(T v) { return (T)((v < 0) ? -1 : (v > 0) ? 1 : 0); }
static T Pow(T v1, T v2) { return std::pow(v1, v2); }
};
};
}
#endif

View file

@ -26,9 +26,9 @@
#ifndef MU_PARSER_TEST_H
#define MU_PARSER_TEST_H
#include <string>
#include <cstdlib>
#include <numeric> // for accumulate
#include <numeric> // for accumulate
#include <string>
#include "muParser.h"
#include "muParserInt.h"
@ -36,179 +36,169 @@
\brief This file contains the parser test class.
*/
namespace mu
namespace mu {
/** \brief Namespace for test cases. */
namespace Test {
//------------------------------------------------------------------------------
/** \brief Test cases for unit testing.
(C) 2004-2011 Ingo Berg
*/
class ParserTester // final
{
/** \brief Namespace for test cases. */
namespace Test
{
//------------------------------------------------------------------------------
/** \brief Test cases for unit testing.
private:
static int c_iCount;
(C) 2004-2011 Ingo Berg
*/
class ParserTester // final
{
private:
static int c_iCount;
// Multiarg callbacks
static value_type f1of1(value_type v) { return v; };
// Multiarg callbacks
static value_type f1of1(value_type v) { return v;};
static value_type f1of2(value_type v, value_type) { return v; };
static value_type f2of2(value_type, value_type v) { return v; };
static value_type f1of2(value_type v, value_type ) {return v;};
static value_type f2of2(value_type , value_type v) {return v;};
static value_type f1of3(value_type v, value_type, value_type) { return v; };
static value_type f2of3(value_type, value_type v, value_type) { return v; };
static value_type f3of3(value_type, value_type, value_type v) { return v; };
static value_type f1of3(value_type v, value_type , value_type ) {return v;};
static value_type f2of3(value_type , value_type v, value_type ) {return v;};
static value_type f3of3(value_type , value_type , value_type v) {return v;};
static value_type f1of4(value_type v, value_type, value_type, value_type) { return v; }
static value_type f2of4(value_type, value_type v, value_type, value_type) { return v; }
static value_type f3of4(value_type, value_type, value_type v, value_type) { return v; }
static value_type f4of4(value_type, value_type, value_type, value_type v) { return v; }
static value_type f1of4(value_type v, value_type, value_type , value_type ) {return v;}
static value_type f2of4(value_type , value_type v, value_type , value_type ) {return v;}
static value_type f3of4(value_type , value_type, value_type v, value_type ) {return v;}
static value_type f4of4(value_type , value_type, value_type , value_type v) {return v;}
static value_type f1of5(value_type v, value_type, value_type, value_type, value_type) {
return v;
}
static value_type f2of5(value_type, value_type v, value_type, value_type, value_type) {
return v;
}
static value_type f3of5(value_type, value_type, value_type v, value_type, value_type) {
return v;
}
static value_type f4of5(value_type, value_type, value_type, value_type v, value_type) {
return v;
}
static value_type f5of5(value_type, value_type, value_type, value_type, value_type v) {
return v;
}
static value_type f1of5(value_type v, value_type, value_type , value_type , value_type ) { return v; }
static value_type f2of5(value_type , value_type v, value_type , value_type , value_type ) { return v; }
static value_type f3of5(value_type , value_type, value_type v, value_type , value_type ) { return v; }
static value_type f4of5(value_type , value_type, value_type , value_type v, value_type ) { return v; }
static value_type f5of5(value_type , value_type, value_type , value_type , value_type v) { return v; }
static value_type Min(value_type a_fVal1, value_type a_fVal2) {
return (a_fVal1 < a_fVal2) ? a_fVal1 : a_fVal2;
}
static value_type Max(value_type a_fVal1, value_type a_fVal2) {
return (a_fVal1 > a_fVal2) ? a_fVal1 : a_fVal2;
}
static value_type Min(value_type a_fVal1, value_type a_fVal2) { return (a_fVal1<a_fVal2) ? a_fVal1 : a_fVal2; }
static value_type Max(value_type a_fVal1, value_type a_fVal2) { return (a_fVal1>a_fVal2) ? a_fVal1 : a_fVal2; }
static value_type plus2(value_type v1) { return v1 + 2; }
static value_type times3(value_type v1) { return v1 * 3; }
static value_type sqr(value_type v1) { return v1 * v1; }
static value_type sign(value_type v) { return -v; }
static value_type add(value_type v1, value_type v2) { return v1 + v2; }
static value_type land(value_type v1, value_type v2) { return (int)v1 & (int)v2; }
static value_type plus2(value_type v1) { return v1+2; }
static value_type times3(value_type v1) { return v1*3; }
static value_type sqr(value_type v1) { return v1*v1; }
static value_type sign(value_type v) { return -v; }
static value_type add(value_type v1, value_type v2) { return v1+v2; }
static value_type land(value_type v1, value_type v2) { return (int)v1 & (int)v2; }
static value_type FirstArg(const value_type* a_afArg, int a_iArgc) {
if (!a_iArgc)
throw mu::Parser::exception_type(_T("too few arguments for function FirstArg."));
return a_afArg[0];
}
static value_type FirstArg(const value_type* a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw mu::Parser::exception_type( _T("too few arguments for function FirstArg.") );
static value_type LastArg(const value_type* a_afArg, int a_iArgc) {
if (!a_iArgc)
throw mu::Parser::exception_type(_T("too few arguments for function LastArg."));
return a_afArg[0];
}
return a_afArg[a_iArgc - 1];
}
static value_type LastArg(const value_type* a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw mu::Parser::exception_type( _T("too few arguments for function LastArg.") );
static value_type Sum(const value_type* a_afArg, int a_iArgc) {
if (!a_iArgc) throw mu::Parser::exception_type(_T("too few arguments for function sum."));
return a_afArg[a_iArgc-1];
}
value_type fRes = 0;
for (int i = 0; i < a_iArgc; ++i) fRes += a_afArg[i];
return fRes;
}
static value_type Sum(const value_type* a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw mu::Parser::exception_type( _T("too few arguments for function sum.") );
static value_type Rnd(value_type v) {
return (value_type)(1 + (v * std::rand() / (RAND_MAX + 1.0)));
}
value_type fRes=0;
for (int i=0; i<a_iArgc; ++i) fRes += a_afArg[i];
return fRes;
}
static value_type RndWithString(const char_type*) {
return (value_type)(1 + (1000.0f * std::rand() / (RAND_MAX + 1.0)));
}
static value_type Rnd(value_type v)
{
return (value_type)(1+(v*std::rand()/(RAND_MAX+1.0)));
}
static value_type Ping() { return 10; }
static value_type RndWithString(const char_type*)
{
return (value_type)( 1 + (1000.0f * std::rand() / (RAND_MAX + 1.0) ) );
}
static value_type ValueOf(const char_type*) { return 123; }
static value_type Ping()
{
return 10;
}
static value_type StrFun1(const char_type* v1) {
int val(0);
stringstream_type(v1) >> val;
return (value_type)val;
}
static value_type ValueOf(const char_type*)
{
return 123;
}
static value_type StrFun2(const char_type* v1, value_type v2) {
int val(0);
stringstream_type(v1) >> val;
return (value_type)(val + v2);
}
static value_type StrFun1(const char_type* v1)
{
int val(0);
stringstream_type(v1) >> val;
return (value_type)val;
}
static value_type StrFun3(const char_type* v1, value_type v2, value_type v3) {
int val(0);
stringstream_type(v1) >> val;
return val + v2 + v3;
}
static value_type StrFun2(const char_type* v1, value_type v2)
{
int val(0);
stringstream_type(v1) >> val;
return (value_type)(val + v2);
}
static value_type StrToFloat(const char_type* a_szMsg) {
value_type val(0);
stringstream_type(a_szMsg) >> val;
return val;
}
static value_type StrFun3(const char_type* v1, value_type v2, value_type v3)
{
int val(0);
stringstream_type(v1) >> val;
return val + v2 + v3;
}
// postfix operator callback
static value_type Mega(value_type a_fVal) { return a_fVal * (value_type)1e6; }
static value_type Micro(value_type a_fVal) { return a_fVal * (value_type)1e-6; }
static value_type Milli(value_type a_fVal) { return a_fVal / (value_type)1e3; }
static value_type StrToFloat(const char_type* a_szMsg)
{
value_type val(0);
stringstream_type(a_szMsg) >> val;
return val;
}
// Custom value recognition
static int IsHexVal(const char_type* a_szExpr, int* a_iPos, value_type* a_fVal);
// postfix operator callback
static value_type Mega(value_type a_fVal) { return a_fVal * (value_type)1e6; }
static value_type Micro(value_type a_fVal) { return a_fVal * (value_type)1e-6; }
static value_type Milli(value_type a_fVal) { return a_fVal / (value_type)1e3; }
int TestNames();
int TestSyntax();
int TestMultiArg();
int TestPostFix();
int TestExpression();
int TestInfixOprt();
int TestBinOprt();
int TestVarConst();
int TestInterface();
int TestException();
int TestStrArg();
int TestIfThenElse();
int TestBulkMode();
// Custom value recognition
static int IsHexVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal);
void Abort() const;
int TestNames();
int TestSyntax();
int TestMultiArg();
int TestPostFix();
int TestExpression();
int TestInfixOprt();
int TestBinOprt();
int TestVarConst();
int TestInterface();
int TestException();
int TestStrArg();
int TestIfThenElse();
int TestBulkMode();
public:
typedef int (ParserTester::*testfun_type)();
void Abort() const;
ParserTester();
void Run();
public:
typedef int (ParserTester::*testfun_type)();
private:
std::vector<testfun_type> m_vTestFun;
void AddTest(testfun_type a_pFun);
ParserTester();
void Run();
// Test Double Parser
int EqnTest(const string_type& a_str, double a_fRes, bool a_fPass);
int EqnTestWithVarChange(const string_type& a_str, double a_fRes1, double a_fVar1,
double a_fRes2, double a_fVar2);
int ThrowTest(const string_type& a_str, int a_iErrc, bool a_bFail = true);
private:
std::vector<testfun_type> m_vTestFun;
void AddTest(testfun_type a_pFun);
// Test Int Parser
int EqnTestInt(const string_type& a_str, double a_fRes, bool a_fPass);
// Test Double Parser
int EqnTest(const string_type& a_str, double a_fRes, bool a_fPass);
int EqnTestWithVarChange(const string_type& a_str,
double a_fRes1,
double a_fVar1,
double a_fRes2,
double a_fVar2);
int ThrowTest(const string_type& a_str, int a_iErrc, bool a_bFail = true);
// Test Int Parser
int EqnTestInt(const string_type& a_str, double a_fRes, bool a_fPass);
// Test Bulkmode
int EqnTestBulk(const string_type& a_str, double a_fRes[4], bool a_fPass);
};
} // namespace Test
} // namespace mu
// Test Bulkmode
int EqnTestBulk(const string_type& a_str, double a_fRes[4], bool a_fPass);
};
} // namespace Test
} // namespace mu
#endif

View file

@ -27,103 +27,93 @@
#define MU_PARSER_TOKEN_H
#include <cassert>
#include <string>
#include <stack>
#include <vector>
#include <memory>
#include <stack>
#include <string>
#include <vector>
#include "muParserError.h"
#include "muParserCallback.h"
#include "muParserError.h"
/** \file
\brief This file contains the parser token definition.
*/
namespace mu
{
/** \brief Encapsulation of the data for a single formula token.
namespace mu {
/** \brief Encapsulation of the data for a single formula token.
Formula token implementation. Part of the Math Parser Package.
Formula tokens can be either one of the following:
<ul>
<li>value</li>
<li>variable</li>
<li>function with numerical arguments</li>
<li>functions with a string as argument</li>
<li>prefix operators</li>
<li>infix operators</li>
<li>binary operator</li>
</ul>
Formula token implementation. Part of the Math Parser Package.
Formula tokens can be either one of the following:
<ul>
<li>value</li>
<li>variable</li>
<li>function with numerical arguments</li>
<li>functions with a string as argument</li>
<li>prefix operators</li>
<li>infix operators</li>
<li>binary operator</li>
</ul>
\author (C) 2004-2013 Ingo Berg
*/
template<typename TBase, typename TString>
class ParserToken
{
private:
\author (C) 2004-2013 Ingo Berg
*/
template <typename TBase, typename TString>
class ParserToken {
private:
ECmdCode m_iCode; ///< Type of the token; The token type is a constant of type #ECmdCode.
ETypeCode m_iType;
void *m_pTok; ///< Stores Token pointer; not applicable for all tokens
int m_iIdx; ///< An otional index to an external buffer storing the token data
TString m_strTok; ///< Token string
TString m_strVal; ///< Value for string variables
value_type m_fVal; ///< the value
std::auto_ptr<ParserCallback> m_pCallback;
ECmdCode m_iCode; ///< Type of the token; The token type is a constant of type #ECmdCode.
ETypeCode m_iType;
void *m_pTok; ///< Stores Token pointer; not applicable for all tokens
int m_iIdx; ///< An otional index to an external buffer storing the token data
TString m_strTok; ///< Token string
TString m_strVal; ///< Value for string variables
value_type m_fVal; ///< the value
std::auto_ptr<ParserCallback> m_pCallback;
public:
//---------------------------------------------------------------------------
/** \brief Constructor (default).
public:
Sets token to an neutral state of type cmUNKNOWN.
\throw nothrow
\sa ECmdCode
*/
ParserToken()
: m_iCode(cmUNKNOWN),
m_iType(tpVOID),
m_pTok(0),
m_iIdx(-1),
m_strTok(),
m_strVal(),
m_fVal(0),
m_pCallback() {}
//---------------------------------------------------------------------------
/** \brief Constructor (default).
//------------------------------------------------------------------------------
/** \brief Create token from another one.
Sets token to an neutral state of type cmUNKNOWN.
\throw nothrow
\sa ECmdCode
*/
ParserToken()
:m_iCode(cmUNKNOWN)
,m_iType(tpVOID)
,m_pTok(0)
,m_iIdx(-1)
,m_strTok()
,m_strVal()
,m_fVal(0)
,m_pCallback()
{}
Implemented by calling Assign(...)
\throw nothrow
\post m_iType==cmUNKNOWN
\sa #Assign
*/
ParserToken(const ParserToken &a_Tok) { Assign(a_Tok); }
//------------------------------------------------------------------------------
/** \brief Create token from another one.
//------------------------------------------------------------------------------
/** \brief Assignement operator.
Implemented by calling Assign(...)
\throw nothrow
\post m_iType==cmUNKNOWN
\sa #Assign
*/
ParserToken(const ParserToken &a_Tok)
{
Assign(a_Tok);
}
//------------------------------------------------------------------------------
/** \brief Assignement operator.
Copy token state from another token and return this.
Implemented by calling Assign(...).
\throw nothrow
*/
ParserToken& operator=(const ParserToken &a_Tok)
{
Copy token state from another token and return this.
Implemented by calling Assign(...).
\throw nothrow
*/
ParserToken &operator=(const ParserToken &a_Tok) {
Assign(a_Tok);
return *this;
}
}
//------------------------------------------------------------------------------
/** \brief Copy token information from argument.
//------------------------------------------------------------------------------
/** \brief Copy token information from argument.
\throw nothrow
*/
void Assign(const ParserToken &a_Tok)
{
\throw nothrow
*/
void Assign(const ParserToken &a_Tok) {
m_iCode = a_Tok.m_iCode;
m_pTok = a_Tok.m_pTok;
m_strTok = a_Tok.m_strTok;
@ -133,25 +123,24 @@ namespace mu
m_fVal = a_Tok.m_fVal;
// create new callback object if a_Tok has one
m_pCallback.reset(a_Tok.m_pCallback.get() ? a_Tok.m_pCallback->Clone() : 0);
}
}
//------------------------------------------------------------------------------
/** \brief Assign a token type.
//------------------------------------------------------------------------------
/** \brief Assign a token type.
Token may not be of type value, variable or function. Those have seperate set functions.
Token may not be of type value, variable or function. Those have seperate set functions.
\pre [assert] a_iType!=cmVAR
\pre [assert] a_iType!=cmVAL
\pre [assert] a_iType!=cmFUNC
\post m_fVal = 0
\post m_pTok = 0
*/
ParserToken& Set(ECmdCode a_iType, const TString &a_strTok=TString())
{
\pre [assert] a_iType!=cmVAR
\pre [assert] a_iType!=cmVAL
\pre [assert] a_iType!=cmFUNC
\post m_fVal = 0
\post m_pTok = 0
*/
ParserToken &Set(ECmdCode a_iType, const TString &a_strTok = TString()) {
// The following types cant be set this way, they have special Set functions
assert(a_iType!=cmVAR);
assert(a_iType!=cmVAL);
assert(a_iType!=cmFUNC);
assert(a_iType != cmVAR);
assert(a_iType != cmVAL);
assert(a_iType != cmFUNC);
m_iCode = a_iType;
m_iType = tpVOID;
@ -160,12 +149,11 @@ namespace mu
m_iIdx = -1;
return *this;
}
}
//------------------------------------------------------------------------------
/** \brief Set Callback type. */
ParserToken& Set(const ParserCallback &a_pCallback, const TString &a_sTok)
{
//------------------------------------------------------------------------------
/** \brief Set Callback type. */
ParserToken &Set(const ParserCallback &a_pCallback, const TString &a_sTok) {
assert(a_pCallback.GetAddr());
m_iCode = a_pCallback.GetCode();
@ -177,16 +165,15 @@ namespace mu
m_iIdx = -1;
return *this;
}
}
//------------------------------------------------------------------------------
/** \brief Make this token a value token.
//------------------------------------------------------------------------------
/** \brief Make this token a value token.
Member variables not necessary for value tokens will be invalidated.
\throw nothrow
*/
ParserToken& SetVal(TBase a_fVal, const TString &a_strTok=TString())
{
Member variables not necessary for value tokens will be invalidated.
\throw nothrow
*/
ParserToken &SetVal(TBase a_fVal, const TString &a_strTok = TString()) {
m_iCode = cmVAL;
m_iType = tpDBL;
m_fVal = a_fVal;
@ -197,33 +184,31 @@ namespace mu
m_pCallback.reset(0);
return *this;
}
}
//------------------------------------------------------------------------------
/** \brief make this token a variable token.
//------------------------------------------------------------------------------
/** \brief make this token a variable token.
Member variables not necessary for variable tokens will be invalidated.
\throw nothrow
*/
ParserToken& SetVar(TBase *a_pVar, const TString &a_strTok)
{
Member variables not necessary for variable tokens will be invalidated.
\throw nothrow
*/
ParserToken &SetVar(TBase *a_pVar, const TString &a_strTok) {
m_iCode = cmVAR;
m_iType = tpDBL;
m_strTok = a_strTok;
m_iIdx = -1;
m_pTok = (void*)a_pVar;
m_pTok = (void *)a_pVar;
m_pCallback.reset(0);
return *this;
}
}
//------------------------------------------------------------------------------
/** \brief Make this token a variable token.
//------------------------------------------------------------------------------
/** \brief Make this token a variable token.
Member variables not necessary for variable tokens will be invalidated.
\throw nothrow
*/
ParserToken& SetString(const TString &a_strTok, std::size_t a_iSize)
{
Member variables not necessary for variable tokens will be invalidated.
\throw nothrow
*/
ParserToken &SetString(const TString &a_strTok, std::size_t a_iSize) {
m_iCode = cmSTRING;
m_iType = tpSTR;
m_strTok = a_strTok;
@ -232,170 +217,148 @@ namespace mu
m_pTok = 0;
m_pCallback.reset(0);
return *this;
}
}
//------------------------------------------------------------------------------
/** \brief Set an index associated with the token related data.
//------------------------------------------------------------------------------
/** \brief Set an index associated with the token related data.
In cmSTRFUNC - This is the index to a string table in the main parser.
\param a_iIdx The index the string function result will take in the bytecode parser.
\throw exception_type if #a_iIdx<0 or #m_iType!=cmSTRING
*/
void SetIdx(int a_iIdx)
{
if (m_iCode!=cmSTRING || a_iIdx<0)
assert(0 && "muParser internal error");
In cmSTRFUNC - This is the index to a string table in the main parser.
\param a_iIdx The index the string function result will take in the bytecode parser.
\throw exception_type if #a_iIdx<0 or #m_iType!=cmSTRING
*/
void SetIdx(int a_iIdx) {
if (m_iCode != cmSTRING || a_iIdx < 0) assert(0 && "muParser internal error");
m_iIdx = a_iIdx;
}
}
//------------------------------------------------------------------------------
/** \brief Return Index associated with the token related data.
//------------------------------------------------------------------------------
/** \brief Return Index associated with the token related data.
In cmSTRFUNC - This is the index to a string table in the main parser.
In cmSTRFUNC - This is the index to a string table in the main parser.
\throw exception_type if #m_iIdx<0 or #m_iType!=cmSTRING
\return The index the result will take in the Bytecode calculatin array (#m_iIdx).
*/
int GetIdx() const
{
if (m_iIdx<0 || m_iCode!=cmSTRING )
assert(0 && "muParser internal error");
\throw exception_type if #m_iIdx<0 or #m_iType!=cmSTRING
\return The index the result will take in the Bytecode calculatin array (#m_iIdx).
*/
int GetIdx() const {
if (m_iIdx < 0 || m_iCode != cmSTRING) assert(0 && "muParser internal error");
return m_iIdx;
}
}
//------------------------------------------------------------------------------
/** \brief Return the token type.
//------------------------------------------------------------------------------
/** \brief Return the token type.
\return #m_iType
\throw nothrow
*/
ECmdCode GetCode() const
{
if (m_pCallback.get())
{
return m_pCallback->GetCode();
\return #m_iType
\throw nothrow
*/
ECmdCode GetCode() const {
if (m_pCallback.get()) {
return m_pCallback->GetCode();
} else {
return m_iCode;
}
else
{
return m_iCode;
}
}
}
//------------------------------------------------------------------------------
ETypeCode GetType() const
{
if (m_pCallback.get())
{
return m_pCallback->GetType();
//------------------------------------------------------------------------------
ETypeCode GetType() const {
if (m_pCallback.get()) {
return m_pCallback->GetType();
} else {
return m_iType;
}
else
{
return m_iType;
}
}
}
//------------------------------------------------------------------------------
int GetPri() const
{
if ( !m_pCallback.get())
assert(0 && "muParser internal error");
//------------------------------------------------------------------------------
int GetPri() const {
if (!m_pCallback.get()) assert(0 && "muParser internal error");
if ( m_pCallback->GetCode()!=cmOPRT_BIN && m_pCallback->GetCode()!=cmOPRT_INFIX)
assert(0 && "muParser internal error");
if (m_pCallback->GetCode() != cmOPRT_BIN && m_pCallback->GetCode() != cmOPRT_INFIX)
assert(0 && "muParser internal error");
return m_pCallback->GetPri();
}
}
//------------------------------------------------------------------------------
EOprtAssociativity GetAssociativity() const
{
if (m_pCallback.get()==NULL || m_pCallback->GetCode()!=cmOPRT_BIN)
assert(0 && "muParser internal error");
//------------------------------------------------------------------------------
EOprtAssociativity GetAssociativity() const {
if (m_pCallback.get() == NULL || m_pCallback->GetCode() != cmOPRT_BIN)
assert(0 && "muParser internal error");
return m_pCallback->GetAssociativity();
}
}
//------------------------------------------------------------------------------
/** \brief Return the address of the callback function assoziated with
function and operator tokens.
//------------------------------------------------------------------------------
/** \brief Return the address of the callback function assoziated with
function and operator tokens.
\return The pointer stored in #m_pTok.
\throw exception_type if token type is non of:
<ul>
<li>cmFUNC</li>
<li>cmSTRFUNC</li>
<li>cmPOSTOP</li>
<li>cmINFIXOP</li>
<li>cmOPRT_BIN</li>
</ul>
\sa ECmdCode
*/
generic_fun_type GetFuncAddr() const
{
\return The pointer stored in #m_pTok.
\throw exception_type if token type is non of:
<ul>
<li>cmFUNC</li>
<li>cmSTRFUNC</li>
<li>cmPOSTOP</li>
<li>cmINFIXOP</li>
<li>cmOPRT_BIN</li>
</ul>
\sa ECmdCode
*/
generic_fun_type GetFuncAddr() const {
return (m_pCallback.get()) ? (generic_fun_type)m_pCallback->GetAddr() : 0;
}
}
//------------------------------------------------------------------------------
/** \biref Get value of the token.
//------------------------------------------------------------------------------
/** \biref Get value of the token.
Only applicable to variable and value tokens.
\throw exception_type if token is no value/variable token.
*/
TBase GetVal() const
{
switch (m_iCode)
{
case cmVAL: return m_fVal;
case cmVAR: return *((TBase*)m_pTok);
default: throw ParserError(ecVAL_EXPECTED);
Only applicable to variable and value tokens.
\throw exception_type if token is no value/variable token.
*/
TBase GetVal() const {
switch (m_iCode) {
case cmVAL:
return m_fVal;
case cmVAR:
return *((TBase *)m_pTok);
default:
throw ParserError(ecVAL_EXPECTED);
}
}
}
//------------------------------------------------------------------------------
/** \brief Get address of a variable token.
//------------------------------------------------------------------------------
/** \brief Get address of a variable token.
Valid only if m_iType==CmdVar.
\throw exception_type if token is no variable token.
*/
TBase* GetVar() const
{
if (m_iCode!=cmVAR)
assert(0 && "muParser internal error");
Valid only if m_iType==CmdVar.
\throw exception_type if token is no variable token.
*/
TBase *GetVar() const {
if (m_iCode != cmVAR) assert(0 && "muParser internal error");
return (TBase*)m_pTok;
}
return (TBase *)m_pTok;
}
//------------------------------------------------------------------------------
/** \brief Return the number of function arguments.
//------------------------------------------------------------------------------
/** \brief Return the number of function arguments.
Valid only if m_iType==CmdFUNC.
*/
int GetArgCount() const
{
Valid only if m_iType==CmdFUNC.
*/
int GetArgCount() const {
assert(m_pCallback.get());
if (!m_pCallback->GetAddr())
assert(0 && "muParser internal error");
if (!m_pCallback->GetAddr()) assert(0 && "muParser internal error");
return m_pCallback->GetArgc();
}
}
//------------------------------------------------------------------------------
/** \brief Return the token identifier.
//------------------------------------------------------------------------------
/** \brief Return the token identifier.
If #m_iType is cmSTRING the token identifier is the value of the string argument
for a string function.
\return #m_strTok
\throw nothrow
\sa m_strTok
*/
const TString& GetAsString() const
{
return m_strTok;
}
};
} // namespace mu
If #m_iType is cmSTRING the token identifier is the value of the string argument
for a string function.
\return #m_strTok
\throw nothrow
\sa m_strTok
*/
const TString &GetAsString() const { return m_strTok; }
};
} // namespace mu
#endif

View file

@ -42,120 +42,108 @@
\brief This file contains the parser token reader definition.
*/
namespace mu {
// Forward declaration
class ParserBase;
namespace mu
{
// Forward declaration
class ParserBase;
/** \brief Token reader for the ParserBase class.
/** \brief Token reader for the ParserBase class.
*/
class ParserTokenReader {
private:
typedef ParserToken<value_type, string_type> token_type;
*/
class ParserTokenReader
{
private:
public:
ParserTokenReader(ParserBase *a_pParent);
ParserTokenReader *Clone(ParserBase *a_pParent) const;
typedef ParserToken<value_type, string_type> token_type;
void AddValIdent(identfun_type a_pCallback);
void SetVarCreator(facfun_type a_pFactory, void *pUserData);
void SetFormula(const string_type &a_strFormula);
void SetArgSep(char_type cArgSep);
public:
int GetPos() const;
const string_type &GetExpr() const;
varmap_type &GetUsedVar();
char_type GetArgSep() const;
ParserTokenReader(ParserBase *a_pParent);
ParserTokenReader* Clone(ParserBase *a_pParent) const;
void IgnoreUndefVar(bool bIgnore);
void ReInit();
token_type ReadNextToken();
void AddValIdent(identfun_type a_pCallback);
void SetVarCreator(facfun_type a_pFactory, void *pUserData);
void SetFormula(const string_type &a_strFormula);
void SetArgSep(char_type cArgSep);
private:
/** \brief Syntax codes.
int GetPos() const;
const string_type& GetExpr() const;
varmap_type& GetUsedVar();
char_type GetArgSep() const;
void IgnoreUndefVar(bool bIgnore);
void ReInit();
token_type ReadNextToken();
private:
/** \brief Syntax codes.
The syntax codes control the syntax check done during the first time parsing of
the expression string. They are flags that indicate which tokens are allowed next
if certain tokens are identified.
*/
enum ESynCodes
{
noBO = 1 << 0, ///< to avoid i.e. "cos(7)("
noBC = 1 << 1, ///< to avoid i.e. "sin)" or "()"
noVAL = 1 << 2, ///< to avoid i.e. "tan 2" or "sin(8)3.14"
noVAR = 1 << 3, ///< to avoid i.e. "sin a" or "sin(8)a"
The syntax codes control the syntax check done during the first time parsing of
the expression string. They are flags that indicate which tokens are allowed next
if certain tokens are identified.
*/
enum ESynCodes {
noBO = 1 << 0, ///< to avoid i.e. "cos(7)("
noBC = 1 << 1, ///< to avoid i.e. "sin)" or "()"
noVAL = 1 << 2, ///< to avoid i.e. "tan 2" or "sin(8)3.14"
noVAR = 1 << 3, ///< to avoid i.e. "sin a" or "sin(8)a"
noARG_SEP = 1 << 4, ///< to avoid i.e. ",," or "+," ...
noFUN = 1 << 5, ///< to avoid i.e. "sqrt cos" or "(1)sin"
noOPT = 1 << 6, ///< to avoid i.e. "(+)"
noPOSTOP = 1 << 7, ///< to avoid i.e. "(5!!)" "sin!"
noINFIXOP = 1 << 8, ///< to avoid i.e. "++4" "!!4"
noEND = 1 << 9, ///< to avoid unexpected end of formula
noSTR = 1 << 10, ///< to block numeric arguments on string functions
noASSIGN = 1 << 11, ///< to block assignement to constant i.e. "4=7"
noIF = 1 << 12,
noELSE = 1 << 13,
noFUN = 1 << 5, ///< to avoid i.e. "sqrt cos" or "(1)sin"
noOPT = 1 << 6, ///< to avoid i.e. "(+)"
noPOSTOP = 1 << 7, ///< to avoid i.e. "(5!!)" "sin!"
noINFIXOP = 1 << 8, ///< to avoid i.e. "++4" "!!4"
noEND = 1 << 9, ///< to avoid unexpected end of formula
noSTR = 1 << 10, ///< to block numeric arguments on string functions
noASSIGN = 1 << 11, ///< to block assignement to constant i.e. "4=7"
noIF = 1 << 12,
noELSE = 1 << 13,
sfSTART_OF_LINE = noOPT | noBC | noPOSTOP | noASSIGN | noIF | noELSE | noARG_SEP,
noANY = ~0 ///< All of he above flags set
};
noANY = ~0 ///< All of he above flags set
};
ParserTokenReader(const ParserTokenReader &a_Reader);
ParserTokenReader& operator=(const ParserTokenReader &a_Reader);
void Assign(const ParserTokenReader &a_Reader);
ParserTokenReader(const ParserTokenReader &a_Reader);
ParserTokenReader &operator=(const ParserTokenReader &a_Reader);
void Assign(const ParserTokenReader &a_Reader);
void SetParent(ParserBase *a_pParent);
int ExtractToken(const char_type *a_szCharSet,
string_type &a_strTok,
int a_iPos) const;
int ExtractOperatorToken(string_type &a_sTok, int a_iPos) const;
void SetParent(ParserBase *a_pParent);
int ExtractToken(const char_type *a_szCharSet, string_type &a_strTok, int a_iPos) const;
int ExtractOperatorToken(string_type &a_sTok, int a_iPos) const;
bool IsBuiltIn(token_type &a_Tok);
bool IsArgSep(token_type &a_Tok);
bool IsEOF(token_type &a_Tok);
bool IsInfixOpTok(token_type &a_Tok);
bool IsFunTok(token_type &a_Tok);
bool IsPostOpTok(token_type &a_Tok);
bool IsOprt(token_type &a_Tok);
bool IsValTok(token_type &a_Tok);
bool IsVarTok(token_type &a_Tok);
bool IsStrVarTok(token_type &a_Tok);
bool IsUndefVarTok(token_type &a_Tok);
bool IsString(token_type &a_Tok);
void Error(EErrorCodes a_iErrc,
int a_iPos = -1,
const string_type &a_sTok = string_type() ) const;
bool IsBuiltIn(token_type &a_Tok);
bool IsArgSep(token_type &a_Tok);
bool IsEOF(token_type &a_Tok);
bool IsInfixOpTok(token_type &a_Tok);
bool IsFunTok(token_type &a_Tok);
bool IsPostOpTok(token_type &a_Tok);
bool IsOprt(token_type &a_Tok);
bool IsValTok(token_type &a_Tok);
bool IsVarTok(token_type &a_Tok);
bool IsStrVarTok(token_type &a_Tok);
bool IsUndefVarTok(token_type &a_Tok);
bool IsString(token_type &a_Tok);
void Error(EErrorCodes a_iErrc, int a_iPos = -1,
const string_type &a_sTok = string_type()) const;
token_type& SaveBeforeReturn(const token_type &tok);
token_type &SaveBeforeReturn(const token_type &tok);
ParserBase *m_pParser;
string_type m_strFormula;
int m_iPos;
int m_iSynFlags;
bool m_bIgnoreUndefVar;
ParserBase *m_pParser;
string_type m_strFormula;
int m_iPos;
int m_iSynFlags;
bool m_bIgnoreUndefVar;
const funmap_type *m_pFunDef;
const funmap_type *m_pPostOprtDef;
const funmap_type *m_pInfixOprtDef;
const funmap_type *m_pOprtDef;
const valmap_type *m_pConstDef;
const strmap_type *m_pStrVarDef;
varmap_type *m_pVarDef; ///< The only non const pointer to parser internals
facfun_type m_pFactory;
void *m_pFactoryData;
std::list<identfun_type> m_vIdentFun; ///< Value token identification function
varmap_type m_UsedVar;
value_type m_fZero; ///< Dummy value of zero, referenced by undefined variables
int m_iBrackets;
token_type m_lastTok;
char_type m_cArgSep; ///< The character used for separating function arguments
};
} // namespace mu
const funmap_type *m_pFunDef;
const funmap_type *m_pPostOprtDef;
const funmap_type *m_pInfixOprtDef;
const funmap_type *m_pOprtDef;
const valmap_type *m_pConstDef;
const strmap_type *m_pStrVarDef;
varmap_type *m_pVarDef; ///< The only non const pointer to parser internals
facfun_type m_pFactory;
void *m_pFactoryData;
std::list<identfun_type> m_vIdentFun; ///< Value token identification function
varmap_type m_UsedVar;
value_type m_fZero; ///< Dummy value of zero, referenced by undefined variables
int m_iBrackets;
token_type m_lastTok;
char_type m_cArgSep; ///< The character used for separating function arguments
};
} // namespace mu
#endif

View file

@ -27,15 +27,15 @@
#include "muParserTemplateMagic.h"
//--- Standard includes ------------------------------------------------------------------------
#include <cmath>
#include <algorithm>
#include <cmath>
#include <numeric>
/** \brief Pi (what else?). */
#define PARSER_CONST_PI 3.141592653589793238462643
#define PARSER_CONST_PI 3.141592653589793238462643
/** \brief The Eulerian number. */
#define PARSER_CONST_E 2.718281828459045235360287
#define PARSER_CONST_E 2.718281828459045235360287
using namespace std;
@ -43,299 +43,258 @@ using namespace std;
\brief Implementation of the standard floating point parser.
*/
/** \brief Namespace for mathematical applications. */
namespace mu
{
namespace mu {
//---------------------------------------------------------------------------
// Trigonometric function
value_type Parser::Sin(value_type v) { return MathImpl<value_type>::Sin(v); }
value_type Parser::Cos(value_type v) { return MathImpl<value_type>::Cos(v); }
value_type Parser::Tan(value_type v) { return MathImpl<value_type>::Tan(v); }
value_type Parser::ASin(value_type v) { return MathImpl<value_type>::ASin(v); }
value_type Parser::ACos(value_type v) { return MathImpl<value_type>::ACos(v); }
value_type Parser::ATan(value_type v) { return MathImpl<value_type>::ATan(v); }
value_type Parser::ATan2(value_type v1, value_type v2) {
return MathImpl<value_type>::ATan2(v1, v2);
}
value_type Parser::Sinh(value_type v) { return MathImpl<value_type>::Sinh(v); }
value_type Parser::Cosh(value_type v) { return MathImpl<value_type>::Cosh(v); }
value_type Parser::Tanh(value_type v) { return MathImpl<value_type>::Tanh(v); }
value_type Parser::ASinh(value_type v) { return MathImpl<value_type>::ASinh(v); }
value_type Parser::ACosh(value_type v) { return MathImpl<value_type>::ACosh(v); }
value_type Parser::ATanh(value_type v) { return MathImpl<value_type>::ATanh(v); }
//---------------------------------------------------------------------------
// Trigonometric function
value_type Parser::Sin(value_type v) { return MathImpl<value_type>::Sin(v); }
value_type Parser::Cos(value_type v) { return MathImpl<value_type>::Cos(v); }
value_type Parser::Tan(value_type v) { return MathImpl<value_type>::Tan(v); }
value_type Parser::ASin(value_type v) { return MathImpl<value_type>::ASin(v); }
value_type Parser::ACos(value_type v) { return MathImpl<value_type>::ACos(v); }
value_type Parser::ATan(value_type v) { return MathImpl<value_type>::ATan(v); }
value_type Parser::ATan2(value_type v1, value_type v2) { return MathImpl<value_type>::ATan2(v1, v2); }
value_type Parser::Sinh(value_type v) { return MathImpl<value_type>::Sinh(v); }
value_type Parser::Cosh(value_type v) { return MathImpl<value_type>::Cosh(v); }
value_type Parser::Tanh(value_type v) { return MathImpl<value_type>::Tanh(v); }
value_type Parser::ASinh(value_type v) { return MathImpl<value_type>::ASinh(v); }
value_type Parser::ACosh(value_type v) { return MathImpl<value_type>::ACosh(v); }
value_type Parser::ATanh(value_type v) { return MathImpl<value_type>::ATanh(v); }
//---------------------------------------------------------------------------
// Logarithm functions
//---------------------------------------------------------------------------
// Logarithm functions
// Logarithm base 2
value_type Parser::Log2(value_type v)
{
#ifdef MUP_MATH_EXCEPTIONS
if (v<=0)
throw ParserError(ecDOMAIN_ERROR, _T("Log2"));
#endif
// Logarithm base 2
value_type Parser::Log2(value_type v) {
#ifdef MUP_MATH_EXCEPTIONS
if (v <= 0) throw ParserError(ecDOMAIN_ERROR, _T("Log2"));
#endif
return MathImpl<value_type>::Log2(v);
}
}
// Logarithm base 10
value_type Parser::Log10(value_type v)
{
#ifdef MUP_MATH_EXCEPTIONS
if (v<=0)
throw ParserError(ecDOMAIN_ERROR, _T("Log10"));
#endif
// Logarithm base 10
value_type Parser::Log10(value_type v) {
#ifdef MUP_MATH_EXCEPTIONS
if (v <= 0) throw ParserError(ecDOMAIN_ERROR, _T("Log10"));
#endif
return MathImpl<value_type>::Log10(v);
}
}
// Logarithm base e (natural logarithm)
value_type Parser::Ln(value_type v)
{
#ifdef MUP_MATH_EXCEPTIONS
if (v<=0)
throw ParserError(ecDOMAIN_ERROR, _T("Ln"));
#endif
value_type Parser::Ln(value_type v) {
#ifdef MUP_MATH_EXCEPTIONS
if (v <= 0) throw ParserError(ecDOMAIN_ERROR, _T("Ln"));
#endif
return MathImpl<value_type>::Log(v);
}
}
//---------------------------------------------------------------------------
// misc
value_type Parser::Exp(value_type v) { return MathImpl<value_type>::Exp(v); }
value_type Parser::Abs(value_type v) { return MathImpl<value_type>::Abs(v); }
value_type Parser::Sqrt(value_type v)
{
#ifdef MUP_MATH_EXCEPTIONS
if (v<0)
throw ParserError(ecDOMAIN_ERROR, _T("sqrt"));
#endif
//---------------------------------------------------------------------------
// misc
value_type Parser::Exp(value_type v) { return MathImpl<value_type>::Exp(v); }
value_type Parser::Abs(value_type v) { return MathImpl<value_type>::Abs(v); }
value_type Parser::Sqrt(value_type v) {
#ifdef MUP_MATH_EXCEPTIONS
if (v < 0) throw ParserError(ecDOMAIN_ERROR, _T("sqrt"));
#endif
return MathImpl<value_type>::Sqrt(v);
}
value_type Parser::Rint(value_type v) { return MathImpl<value_type>::Rint(v); }
value_type Parser::Sign(value_type v) { return MathImpl<value_type>::Sign(v); }
}
value_type Parser::Rint(value_type v) { return MathImpl<value_type>::Rint(v); }
value_type Parser::Sign(value_type v) { return MathImpl<value_type>::Sign(v); }
//---------------------------------------------------------------------------
/** \brief Callback for the unary minus operator.
\param v The value to negate
\return -v
*/
value_type Parser::UnaryMinus(value_type v)
{
return -v;
}
//---------------------------------------------------------------------------
/** \brief Callback for the unary minus operator.
\param v The value to negate
\return -v
*/
value_type Parser::UnaryMinus(value_type v) { return -v; }
//---------------------------------------------------------------------------
/** \brief Callback for the unary minus operator.
\param v The value to negate
\return -v
*/
value_type Parser::UnaryPlus(value_type v)
{
return v;
}
//---------------------------------------------------------------------------
/** \brief Callback for the unary minus operator.
\param v The value to negate
\return -v
*/
value_type Parser::UnaryPlus(value_type v) { return v; }
//---------------------------------------------------------------------------
/** \brief Callback for adding multiple values.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Sum(const value_type *a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw exception_type(_T("too few arguments for function sum."));
//---------------------------------------------------------------------------
/** \brief Callback for adding multiple values.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Sum(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw exception_type(_T("too few arguments for function sum."));
value_type fRes=0;
for (int i=0; i<a_iArgc; ++i) fRes += a_afArg[i];
value_type fRes = 0;
for (int i = 0; i < a_iArgc; ++i) fRes += a_afArg[i];
return fRes;
}
}
//---------------------------------------------------------------------------
/** \brief Callback for averaging multiple values.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Avg(const value_type *a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw exception_type(_T("too few arguments for function sum."));
//---------------------------------------------------------------------------
/** \brief Callback for averaging multiple values.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Avg(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw exception_type(_T("too few arguments for function sum."));
value_type fRes=0;
for (int i=0; i<a_iArgc; ++i) fRes += a_afArg[i];
return fRes/(value_type)a_iArgc;
}
value_type fRes = 0;
for (int i = 0; i < a_iArgc; ++i) fRes += a_afArg[i];
return fRes / (value_type)a_iArgc;
}
//---------------------------------------------------------------------------
/** \brief Callback for determining the minimum value out of a vector.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Min(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw exception_type(_T("too few arguments for function min."));
//---------------------------------------------------------------------------
/** \brief Callback for determining the minimum value out of a vector.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Min(const value_type *a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw exception_type(_T("too few arguments for function min."));
value_type fRes=a_afArg[0];
for (int i=0; i<a_iArgc; ++i)
fRes = std::min(fRes, a_afArg[i]);
value_type fRes = a_afArg[0];
for (int i = 0; i < a_iArgc; ++i) fRes = std::min(fRes, a_afArg[i]);
return fRes;
}
}
//---------------------------------------------------------------------------
/** \brief Callback for determining the maximum value out of a vector.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Max(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw exception_type(_T("too few arguments for function min."));
//---------------------------------------------------------------------------
/** \brief Callback for determining the maximum value out of a vector.
\param [in] a_afArg Vector with the function arguments
\param [in] a_iArgc The size of a_afArg
*/
value_type Parser::Max(const value_type *a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw exception_type(_T("too few arguments for function min."));
value_type fRes=a_afArg[0];
for (int i=0; i<a_iArgc; ++i) fRes = std::max(fRes, a_afArg[i]);
value_type fRes = a_afArg[0];
for (int i = 0; i < a_iArgc; ++i) fRes = std::max(fRes, a_afArg[i]);
return fRes;
}
}
//---------------------------------------------------------------------------
/** \brief Default value recognition callback.
\param [in] a_szExpr Pointer to the expression
\param [in, out] a_iPos Pointer to an index storing the current position within the expression
\param [out] a_fVal Pointer where the value should be stored in case one is found.
\return 1 if a value was found 0 otherwise.
*/
int Parser::IsVal(const char_type* a_szExpr, int *a_iPos, value_type *a_fVal)
{
//---------------------------------------------------------------------------
/** \brief Default value recognition callback.
\param [in] a_szExpr Pointer to the expression
\param [in, out] a_iPos Pointer to an index storing the current position within the expression
\param [out] a_fVal Pointer where the value should be stored in case one is found.
\return 1 if a value was found 0 otherwise.
*/
int Parser::IsVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal) {
value_type fVal(0);
stringstream_type stream(a_szExpr);
stream.seekg(0); // todo: check if this really is necessary
stream.seekg(0); // todo: check if this really is necessary
stream.imbue(Parser::s_locale);
stream >> fVal;
stringstream_type::pos_type iEnd = stream.tellg(); // Position after reading
stringstream_type::pos_type iEnd = stream.tellg(); // Position after reading
if (iEnd==(stringstream_type::pos_type)-1)
return 0;
if (iEnd == (stringstream_type::pos_type)-1) return 0;
*a_iPos += (int)iEnd;
*a_fVal = fVal;
return 1;
}
}
//---------------------------------------------------------------------------
/** \brief Constructor.
//---------------------------------------------------------------------------
/** \brief Constructor.
Call ParserBase class constructor and trigger Function, Operator and Constant initialization.
*/
Parser::Parser()
:ParserBase()
{
Call ParserBase class constructor and trigger Function, Operator and Constant initialization.
*/
Parser::Parser() : ParserBase() {
AddValIdent(IsVal);
InitCharSets();
InitFun();
InitConst();
InitOprt();
}
}
//---------------------------------------------------------------------------
/** \brief Define the character sets.
\sa DefineNameChars, DefineOprtChars, DefineInfixOprtChars
//---------------------------------------------------------------------------
/** \brief Define the character sets.
\sa DefineNameChars, DefineOprtChars, DefineInfixOprtChars
This function is used for initializing the default character sets that define
the characters to be useable in function and variable names and operators.
*/
void Parser::InitCharSets()
{
DefineNameChars( _T("0123456789_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ") );
DefineOprtChars( _T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ+-*^/?<>=#!$%&|~'_{}") );
DefineInfixOprtChars( _T("/+-*^?<>=#!$%&|~'_") );
}
This function is used for initializing the default character sets that define
the characters to be useable in function and variable names and operators.
*/
void Parser::InitCharSets() {
DefineNameChars(_T("0123456789_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"));
DefineOprtChars(_T("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ+-*^/?<>=#!$%&|~'_{}"));
DefineInfixOprtChars(_T("/+-*^?<>=#!$%&|~'_"));
}
//---------------------------------------------------------------------------
/** \brief Initialize the default functions. */
void Parser::InitFun()
{
if (mu::TypeInfo<mu::value_type>::IsInteger())
{
// When setting MUP_BASETYPE to an integer type
// Place functions for dealing with integer values here
// ...
// ...
// ...
//---------------------------------------------------------------------------
/** \brief Initialize the default functions. */
void Parser::InitFun() {
if (mu::TypeInfo<mu::value_type>::IsInteger()) {
// When setting MUP_BASETYPE to an integer type
// Place functions for dealing with integer values here
// ...
// ...
// ...
} else {
// trigonometric functions
DefineFun(_T("sin"), Sin);
DefineFun(_T("cos"), Cos);
DefineFun(_T("tan"), Tan);
// arcus functions
DefineFun(_T("asin"), ASin);
DefineFun(_T("acos"), ACos);
DefineFun(_T("atan"), ATan);
DefineFun(_T("atan2"), ATan2);
// hyperbolic functions
DefineFun(_T("sinh"), Sinh);
DefineFun(_T("cosh"), Cosh);
DefineFun(_T("tanh"), Tanh);
// arcus hyperbolic functions
DefineFun(_T("asinh"), ASinh);
DefineFun(_T("acosh"), ACosh);
DefineFun(_T("atanh"), ATanh);
// Logarithm functions
DefineFun(_T("log2"), Log2);
DefineFun(_T("log10"), Log10);
DefineFun(_T("log"), Ln);
DefineFun(_T("ln"), Ln);
// misc
DefineFun(_T("exp"), Exp);
DefineFun(_T("sqrt"), Sqrt);
DefineFun(_T("sign"), Sign);
DefineFun(_T("rint"), Rint);
DefineFun(_T("abs"), Abs);
// Functions with variable number of arguments
DefineFun(_T("sum"), Sum);
DefineFun(_T("avg"), Avg);
DefineFun(_T("min"), Min);
DefineFun(_T("max"), Max);
}
else
{
// trigonometric functions
DefineFun(_T("sin"), Sin);
DefineFun(_T("cos"), Cos);
DefineFun(_T("tan"), Tan);
// arcus functions
DefineFun(_T("asin"), ASin);
DefineFun(_T("acos"), ACos);
DefineFun(_T("atan"), ATan);
DefineFun(_T("atan2"), ATan2);
// hyperbolic functions
DefineFun(_T("sinh"), Sinh);
DefineFun(_T("cosh"), Cosh);
DefineFun(_T("tanh"), Tanh);
// arcus hyperbolic functions
DefineFun(_T("asinh"), ASinh);
DefineFun(_T("acosh"), ACosh);
DefineFun(_T("atanh"), ATanh);
// Logarithm functions
DefineFun(_T("log2"), Log2);
DefineFun(_T("log10"), Log10);
DefineFun(_T("log"), Ln);
DefineFun(_T("ln"), Ln);
// misc
DefineFun(_T("exp"), Exp);
DefineFun(_T("sqrt"), Sqrt);
DefineFun(_T("sign"), Sign);
DefineFun(_T("rint"), Rint);
DefineFun(_T("abs"), Abs);
// Functions with variable number of arguments
DefineFun(_T("sum"), Sum);
DefineFun(_T("avg"), Avg);
DefineFun(_T("min"), Min);
DefineFun(_T("max"), Max);
}
}
}
//---------------------------------------------------------------------------
/** \brief Initialize constants.
//---------------------------------------------------------------------------
/** \brief Initialize constants.
By default the parser recognizes two constants. Pi ("pi") and the Eulerian
number ("_e").
*/
void Parser::InitConst()
{
By default the parser recognizes two constants. Pi ("pi") and the Eulerian
number ("_e").
*/
void Parser::InitConst() {
DefineConst(_T("_pi"), (value_type)PARSER_CONST_PI);
DefineConst(_T("_e"), (value_type)PARSER_CONST_E);
}
}
//---------------------------------------------------------------------------
/** \brief Initialize operators.
//---------------------------------------------------------------------------
/** \brief Initialize operators.
By default only the unary minus operator is added.
*/
void Parser::InitOprt()
{
By default only the unary minus operator is added.
*/
void Parser::InitOprt() {
DefineInfixOprt(_T("-"), UnaryMinus);
DefineInfixOprt(_T("+"), UnaryPlus);
}
}
//---------------------------------------------------------------------------
void Parser::OnDetectVar(string_type * /*pExpr*/, int & /*nStart*/, int & /*nEnd*/)
{
//---------------------------------------------------------------------------
void Parser::OnDetectVar(string_type * /*pExpr*/, int & /*nStart*/, int & /*nEnd*/) {
// this is just sample code to illustrate modifying variable names on the fly.
// I'm not sure anyone really needs such a feature...
/*
@ -356,42 +315,39 @@ namespace mu
pExpr->replace(pExpr->begin()+nStart, pExpr->begin()+nOrigVarEnd, sRepl);
cout << " New expr: " << *pExpr << "\n";
*/
}
}
//---------------------------------------------------------------------------
/** \brief Numerically differentiate with regard to a variable.
\param [in] a_Var Pointer to the differentiation variable.
\param [in] a_fPos Position at which the differentiation should take place.
\param [in] a_fEpsilon Epsilon used for the numerical differentiation.
//---------------------------------------------------------------------------
/** \brief Numerically differentiate with regard to a variable.
\param [in] a_Var Pointer to the differentiation variable.
\param [in] a_fPos Position at which the differentiation should take place.
\param [in] a_fEpsilon Epsilon used for the numerical differentiation.
Numerical differentiation uses a 5 point operator yielding a 4th order
formula. The default value for epsilon is 0.00074 which is
numeric_limits<double>::epsilon() ^ (1/5) as suggested in the muparser
forum:
Numerical differentiation uses a 5 point operator yielding a 4th order
formula. The default value for epsilon is 0.00074 which is
numeric_limits<double>::epsilon() ^ (1/5) as suggested in the muparser
forum:
http://sourceforge.net/forum/forum.php?thread_id=1994611&forum_id=462843
*/
value_type Parser::Diff(value_type *a_Var,
value_type a_fPos,
value_type a_fEpsilon) const
{
value_type fRes(0),
fBuf(*a_Var),
f[4] = {0,0,0,0},
fEpsilon(a_fEpsilon);
http://sourceforge.net/forum/forum.php?thread_id=1994611&forum_id=462843
*/
value_type Parser::Diff(value_type *a_Var, value_type a_fPos, value_type a_fEpsilon) const {
value_type fRes(0), fBuf(*a_Var), f[4] = {0, 0, 0, 0}, fEpsilon(a_fEpsilon);
// Backwards compatible calculation of epsilon inc case the user doesn't provide
// his own epsilon
if (fEpsilon==0)
fEpsilon = (a_fPos==0) ? (value_type)1e-10 : (value_type)1e-7 * a_fPos;
if (fEpsilon == 0) fEpsilon = (a_fPos == 0) ? (value_type)1e-10 : (value_type)1e-7 * a_fPos;
*a_Var = a_fPos+2 * fEpsilon; f[0] = Eval();
*a_Var = a_fPos+1 * fEpsilon; f[1] = Eval();
*a_Var = a_fPos-1 * fEpsilon; f[2] = Eval();
*a_Var = a_fPos-2 * fEpsilon; f[3] = Eval();
*a_Var = fBuf; // restore variable
*a_Var = a_fPos + 2 * fEpsilon;
f[0] = Eval();
*a_Var = a_fPos + 1 * fEpsilon;
f[1] = Eval();
*a_Var = a_fPos - 1 * fEpsilon;
f[2] = Eval();
*a_Var = a_fPos - 2 * fEpsilon;
f[3] = Eval();
*a_Var = fBuf; // restore variable
fRes = (-f[0] + 8*f[1] - 8*f[2] + f[3]) / (12*fEpsilon);
fRes = (-f[0] + 8 * f[1] - 8 * f[2] + f[3]) / (12 * fEpsilon);
return fRes;
}
} // namespace mu
}
} // namespace mu

File diff suppressed because it is too large Load diff

View file

@ -27,345 +27,350 @@
#include <algorithm>
#include <cassert>
#include <string>
#include <stack>
#include <vector>
#include <iostream>
#include <stack>
#include <string>
#include <vector>
#include "muParserDef.h"
#include "muParserError.h"
#include "muParserToken.h"
#include "muParserStack.h"
#include "muParserTemplateMagic.h"
#include "muParserToken.h"
namespace mu
{
//---------------------------------------------------------------------------
/** \brief Bytecode default constructor. */
ParserByteCode::ParserByteCode()
:m_iStackPos(0)
,m_iMaxStackSize(0)
,m_vRPN()
,m_bEnableOptimizer(true)
{
namespace mu {
//---------------------------------------------------------------------------
/** \brief Bytecode default constructor. */
ParserByteCode::ParserByteCode()
: m_iStackPos(0), m_iMaxStackSize(0), m_vRPN(), m_bEnableOptimizer(true) {
m_vRPN.reserve(50);
}
}
//---------------------------------------------------------------------------
/** \brief Copy constructor.
//---------------------------------------------------------------------------
/** \brief Copy constructor.
Implemented in Terms of Assign(const ParserByteCode &a_ByteCode)
*/
ParserByteCode::ParserByteCode(const ParserByteCode &a_ByteCode)
{
Assign(a_ByteCode);
}
Implemented in Terms of Assign(const ParserByteCode &a_ByteCode)
*/
ParserByteCode::ParserByteCode(const ParserByteCode &a_ByteCode) { Assign(a_ByteCode); }
//---------------------------------------------------------------------------
/** \brief Assignment operator.
//---------------------------------------------------------------------------
/** \brief Assignment operator.
Implemented in Terms of Assign(const ParserByteCode &a_ByteCode)
*/
ParserByteCode& ParserByteCode::operator=(const ParserByteCode &a_ByteCode)
{
Implemented in Terms of Assign(const ParserByteCode &a_ByteCode)
*/
ParserByteCode &ParserByteCode::operator=(const ParserByteCode &a_ByteCode) {
Assign(a_ByteCode);
return *this;
}
}
//---------------------------------------------------------------------------
void ParserByteCode::EnableOptimizer(bool bStat)
{
m_bEnableOptimizer = bStat;
}
//---------------------------------------------------------------------------
void ParserByteCode::EnableOptimizer(bool bStat) { m_bEnableOptimizer = bStat; }
//---------------------------------------------------------------------------
/** \brief Copy state of another object to this.
//---------------------------------------------------------------------------
/** \brief Copy state of another object to this.
\throw nowthrow
*/
void ParserByteCode::Assign(const ParserByteCode &a_ByteCode)
{
if (this==&a_ByteCode)
return;
\throw nowthrow
*/
void ParserByteCode::Assign(const ParserByteCode &a_ByteCode) {
if (this == &a_ByteCode) return;
m_iStackPos = a_ByteCode.m_iStackPos;
m_vRPN = a_ByteCode.m_vRPN;
m_iMaxStackSize = a_ByteCode.m_iMaxStackSize;
m_bEnableOptimizer = a_ByteCode.m_bEnableOptimizer;
}
m_bEnableOptimizer = a_ByteCode.m_bEnableOptimizer;
}
//---------------------------------------------------------------------------
/** \brief Add a Variable pointer to bytecode.
\param a_pVar Pointer to be added.
\throw nothrow
*/
void ParserByteCode::AddVar(value_type *a_pVar)
{
//---------------------------------------------------------------------------
/** \brief Add a Variable pointer to bytecode.
\param a_pVar Pointer to be added.
\throw nothrow
*/
void ParserByteCode::AddVar(value_type *a_pVar) {
++m_iStackPos;
m_iMaxStackSize = std::max(m_iMaxStackSize, (size_t)m_iStackPos);
// optimization does not apply
SToken tok;
tok.Cmd = cmVAR;
tok.Val.ptr = a_pVar;
tok.Val.data = 1;
tok.Cmd = cmVAR;
tok.Val.ptr = a_pVar;
tok.Val.data = 1;
tok.Val.data2 = 0;
m_vRPN.push_back(tok);
}
}
//---------------------------------------------------------------------------
/** \brief Add a Variable pointer to bytecode.
//---------------------------------------------------------------------------
/** \brief Add a Variable pointer to bytecode.
Value entries in byte code consist of:
<ul>
<li>value array position of the value</li>
<li>the operator code according to ParserToken::cmVAL</li>
<li>the value stored in #mc_iSizeVal number of bytecode entries.</li>
</ul>
Value entries in byte code consist of:
<ul>
<li>value array position of the value</li>
<li>the operator code according to ParserToken::cmVAL</li>
<li>the value stored in #mc_iSizeVal number of bytecode entries.</li>
</ul>
\param a_pVal Value to be added.
\throw nothrow
*/
void ParserByteCode::AddVal(value_type a_fVal)
{
\param a_pVal Value to be added.
\throw nothrow
*/
void ParserByteCode::AddVal(value_type a_fVal) {
++m_iStackPos;
m_iMaxStackSize = std::max(m_iMaxStackSize, (size_t)m_iStackPos);
// If optimization does not apply
SToken tok;
tok.Cmd = cmVAL;
tok.Val.ptr = NULL;
tok.Val.data = 0;
tok.Val.ptr = NULL;
tok.Val.data = 0;
tok.Val.data2 = a_fVal;
m_vRPN.push_back(tok);
}
}
//---------------------------------------------------------------------------
void ParserByteCode::ConstantFolding(ECmdCode a_Oprt)
{
//---------------------------------------------------------------------------
void ParserByteCode::ConstantFolding(ECmdCode a_Oprt) {
std::size_t sz = m_vRPN.size();
value_type &x = m_vRPN[sz-2].Val.data2,
&y = m_vRPN[sz-1].Val.data2;
switch (a_Oprt)
{
case cmLAND: x = (int)x && (int)y; m_vRPN.pop_back(); break;
case cmLOR: x = (int)x || (int)y; m_vRPN.pop_back(); break;
case cmLT: x = x < y; m_vRPN.pop_back(); break;
case cmGT: x = x > y; m_vRPN.pop_back(); break;
case cmLE: x = x <= y; m_vRPN.pop_back(); break;
case cmGE: x = x >= y; m_vRPN.pop_back(); break;
case cmNEQ: x = x != y; m_vRPN.pop_back(); break;
case cmEQ: x = x == y; m_vRPN.pop_back(); break;
case cmADD: x = x + y; m_vRPN.pop_back(); break;
case cmSUB: x = x - y; m_vRPN.pop_back(); break;
case cmMUL: x = x * y; m_vRPN.pop_back(); break;
case cmDIV:
value_type &x = m_vRPN[sz - 2].Val.data2, &y = m_vRPN[sz - 1].Val.data2;
switch (a_Oprt) {
case cmLAND:
x = (int)x && (int)y;
m_vRPN.pop_back();
break;
case cmLOR:
x = (int)x || (int)y;
m_vRPN.pop_back();
break;
case cmLT:
x = x < y;
m_vRPN.pop_back();
break;
case cmGT:
x = x > y;
m_vRPN.pop_back();
break;
case cmLE:
x = x <= y;
m_vRPN.pop_back();
break;
case cmGE:
x = x >= y;
m_vRPN.pop_back();
break;
case cmNEQ:
x = x != y;
m_vRPN.pop_back();
break;
case cmEQ:
x = x == y;
m_vRPN.pop_back();
break;
case cmADD:
x = x + y;
m_vRPN.pop_back();
break;
case cmSUB:
x = x - y;
m_vRPN.pop_back();
break;
case cmMUL:
x = x * y;
m_vRPN.pop_back();
break;
case cmDIV:
#if defined(MUP_MATH_EXCEPTIONS)
if (y==0)
throw ParserError(ecDIV_BY_ZERO, _T("0"));
if (y == 0) throw ParserError(ecDIV_BY_ZERO, _T("0"));
#endif
x = x / y;
m_vRPN.pop_back();
break;
x = x / y;
m_vRPN.pop_back();
break;
case cmPOW: x = MathImpl<value_type>::Pow(x, y);
m_vRPN.pop_back();
break;
case cmPOW:
x = MathImpl<value_type>::Pow(x, y);
m_vRPN.pop_back();
break;
default:
break;
} // switch opcode
}
default:
break;
} // switch opcode
}
//---------------------------------------------------------------------------
/** \brief Add an operator identifier to bytecode.
//---------------------------------------------------------------------------
/** \brief Add an operator identifier to bytecode.
Operator entries in byte code consist of:
<ul>
<li>value array position of the result</li>
<li>the operator code according to ParserToken::ECmdCode</li>
</ul>
Operator entries in byte code consist of:
<ul>
<li>value array position of the result</li>
<li>the operator code according to ParserToken::ECmdCode</li>
</ul>
\sa ParserToken::ECmdCode
*/
void ParserByteCode::AddOp(ECmdCode a_Oprt)
{
\sa ParserToken::ECmdCode
*/
void ParserByteCode::AddOp(ECmdCode a_Oprt) {
bool bOptimized = false;
if (m_bEnableOptimizer)
{
std::size_t sz = m_vRPN.size();
if (m_bEnableOptimizer) {
std::size_t sz = m_vRPN.size();
// Check for foldable constants like:
// cmVAL cmVAL cmADD
// where cmADD can stand fopr any binary operator applied to
// two constant values.
if (sz>=2 && m_vRPN[sz-2].Cmd == cmVAL && m_vRPN[sz-1].Cmd == cmVAL)
{
ConstantFolding(a_Oprt);
bOptimized = true;
}
else
{
switch(a_Oprt)
{
case cmPOW:
// Optimization for polynomials of low order
if (m_vRPN[sz-2].Cmd == cmVAR && m_vRPN[sz-1].Cmd == cmVAL)
{
if (m_vRPN[sz-1].Val.data2==2)
m_vRPN[sz-2].Cmd = cmVARPOW2;
else if (m_vRPN[sz-1].Val.data2==3)
m_vRPN[sz-2].Cmd = cmVARPOW3;
else if (m_vRPN[sz-1].Val.data2==4)
m_vRPN[sz-2].Cmd = cmVARPOW4;
else
break;
// Check for foldable constants like:
// cmVAL cmVAL cmADD
// where cmADD can stand fopr any binary operator applied to
// two constant values.
if (sz >= 2 && m_vRPN[sz - 2].Cmd == cmVAL && m_vRPN[sz - 1].Cmd == cmVAL) {
ConstantFolding(a_Oprt);
bOptimized = true;
} else {
switch (a_Oprt) {
case cmPOW:
// Optimization for polynomials of low order
if (m_vRPN[sz - 2].Cmd == cmVAR && m_vRPN[sz - 1].Cmd == cmVAL) {
if (m_vRPN[sz - 1].Val.data2 == 2)
m_vRPN[sz - 2].Cmd = cmVARPOW2;
else if (m_vRPN[sz - 1].Val.data2 == 3)
m_vRPN[sz - 2].Cmd = cmVARPOW3;
else if (m_vRPN[sz - 1].Val.data2 == 4)
m_vRPN[sz - 2].Cmd = cmVARPOW4;
else
break;
m_vRPN.pop_back();
bOptimized = true;
}
break;
m_vRPN.pop_back();
bOptimized = true;
}
break;
case cmSUB:
case cmADD:
// Simple optimization based on pattern recognition for a shitload of different
// bytecode combinations of addition/subtraction
if ( (m_vRPN[sz-1].Cmd == cmVAR && m_vRPN[sz-2].Cmd == cmVAL) ||
(m_vRPN[sz-1].Cmd == cmVAL && m_vRPN[sz-2].Cmd == cmVAR) ||
(m_vRPN[sz-1].Cmd == cmVAL && m_vRPN[sz-2].Cmd == cmVARMUL) ||
(m_vRPN[sz-1].Cmd == cmVARMUL && m_vRPN[sz-2].Cmd == cmVAL) ||
(m_vRPN[sz-1].Cmd == cmVAR && m_vRPN[sz-2].Cmd == cmVAR && m_vRPN[sz-2].Val.ptr == m_vRPN[sz-1].Val.ptr) ||
(m_vRPN[sz-1].Cmd == cmVAR && m_vRPN[sz-2].Cmd == cmVARMUL && m_vRPN[sz-2].Val.ptr == m_vRPN[sz-1].Val.ptr) ||
(m_vRPN[sz-1].Cmd == cmVARMUL && m_vRPN[sz-2].Cmd == cmVAR && m_vRPN[sz-2].Val.ptr == m_vRPN[sz-1].Val.ptr) ||
(m_vRPN[sz-1].Cmd == cmVARMUL && m_vRPN[sz-2].Cmd == cmVARMUL && m_vRPN[sz-2].Val.ptr == m_vRPN[sz-1].Val.ptr) )
{
assert( (m_vRPN[sz-2].Val.ptr==NULL && m_vRPN[sz-1].Val.ptr!=NULL) ||
(m_vRPN[sz-2].Val.ptr!=NULL && m_vRPN[sz-1].Val.ptr==NULL) ||
(m_vRPN[sz-2].Val.ptr == m_vRPN[sz-1].Val.ptr) );
case cmSUB:
case cmADD:
// Simple optimization based on pattern recognition for a shitload of different
// bytecode combinations of addition/subtraction
if ((m_vRPN[sz - 1].Cmd == cmVAR && m_vRPN[sz - 2].Cmd == cmVAL) ||
(m_vRPN[sz - 1].Cmd == cmVAL && m_vRPN[sz - 2].Cmd == cmVAR) ||
(m_vRPN[sz - 1].Cmd == cmVAL && m_vRPN[sz - 2].Cmd == cmVARMUL) ||
(m_vRPN[sz - 1].Cmd == cmVARMUL && m_vRPN[sz - 2].Cmd == cmVAL) ||
(m_vRPN[sz - 1].Cmd == cmVAR && m_vRPN[sz - 2].Cmd == cmVAR &&
m_vRPN[sz - 2].Val.ptr == m_vRPN[sz - 1].Val.ptr) ||
(m_vRPN[sz - 1].Cmd == cmVAR && m_vRPN[sz - 2].Cmd == cmVARMUL &&
m_vRPN[sz - 2].Val.ptr == m_vRPN[sz - 1].Val.ptr) ||
(m_vRPN[sz - 1].Cmd == cmVARMUL && m_vRPN[sz - 2].Cmd == cmVAR &&
m_vRPN[sz - 2].Val.ptr == m_vRPN[sz - 1].Val.ptr) ||
(m_vRPN[sz - 1].Cmd == cmVARMUL && m_vRPN[sz - 2].Cmd == cmVARMUL &&
m_vRPN[sz - 2].Val.ptr == m_vRPN[sz - 1].Val.ptr)) {
assert((m_vRPN[sz - 2].Val.ptr == NULL && m_vRPN[sz - 1].Val.ptr != NULL) ||
(m_vRPN[sz - 2].Val.ptr != NULL && m_vRPN[sz - 1].Val.ptr == NULL) ||
(m_vRPN[sz - 2].Val.ptr == m_vRPN[sz - 1].Val.ptr));
m_vRPN[sz-2].Cmd = cmVARMUL;
m_vRPN[sz-2].Val.ptr = (value_type*)((long long)(m_vRPN[sz-2].Val.ptr) | (long long)(m_vRPN[sz-1].Val.ptr)); // variable
m_vRPN[sz-2].Val.data2 += ((a_Oprt==cmSUB) ? -1 : 1) * m_vRPN[sz-1].Val.data2; // offset
m_vRPN[sz-2].Val.data += ((a_Oprt==cmSUB) ? -1 : 1) * m_vRPN[sz-1].Val.data; // multiplicand
m_vRPN.pop_back();
bOptimized = true;
}
break;
m_vRPN[sz - 2].Cmd = cmVARMUL;
m_vRPN[sz - 2].Val.ptr =
(value_type *)((long long)(m_vRPN[sz - 2].Val.ptr) |
(long long)(m_vRPN[sz - 1].Val.ptr)); // variable
m_vRPN[sz - 2].Val.data2 +=
((a_Oprt == cmSUB) ? -1 : 1) * m_vRPN[sz - 1].Val.data2; // offset
m_vRPN[sz - 2].Val.data +=
((a_Oprt == cmSUB) ? -1 : 1) * m_vRPN[sz - 1].Val.data; // multiplicand
m_vRPN.pop_back();
bOptimized = true;
}
break;
case cmMUL:
if ( (m_vRPN[sz-1].Cmd == cmVAR && m_vRPN[sz-2].Cmd == cmVAL) ||
(m_vRPN[sz-1].Cmd == cmVAL && m_vRPN[sz-2].Cmd == cmVAR) )
{
m_vRPN[sz-2].Cmd = cmVARMUL;
m_vRPN[sz-2].Val.ptr = (value_type*)((long long)(m_vRPN[sz-2].Val.ptr) | (long long)(m_vRPN[sz-1].Val.ptr));
m_vRPN[sz-2].Val.data = m_vRPN[sz-2].Val.data2 + m_vRPN[sz-1].Val.data2;
m_vRPN[sz-2].Val.data2 = 0;
m_vRPN.pop_back();
bOptimized = true;
}
else if ( (m_vRPN[sz-1].Cmd == cmVAL && m_vRPN[sz-2].Cmd == cmVARMUL) ||
(m_vRPN[sz-1].Cmd == cmVARMUL && m_vRPN[sz-2].Cmd == cmVAL) )
{
// Optimization: 2*(3*b+1) or (3*b+1)*2 -> 6*b+2
m_vRPN[sz-2].Cmd = cmVARMUL;
m_vRPN[sz-2].Val.ptr = (value_type*)((long long)(m_vRPN[sz-2].Val.ptr) | (long long)(m_vRPN[sz-1].Val.ptr));
if (m_vRPN[sz-1].Cmd == cmVAL)
{
m_vRPN[sz-2].Val.data *= m_vRPN[sz-1].Val.data2;
m_vRPN[sz-2].Val.data2 *= m_vRPN[sz-1].Val.data2;
}
else
{
m_vRPN[sz-2].Val.data = m_vRPN[sz-1].Val.data * m_vRPN[sz-2].Val.data2;
m_vRPN[sz-2].Val.data2 = m_vRPN[sz-1].Val.data2 * m_vRPN[sz-2].Val.data2;
}
m_vRPN.pop_back();
bOptimized = true;
}
else if (m_vRPN[sz-1].Cmd == cmVAR && m_vRPN[sz-2].Cmd == cmVAR &&
m_vRPN[sz-1].Val.ptr == m_vRPN[sz-2].Val.ptr)
{
// Optimization: a*a -> a^2
m_vRPN[sz-2].Cmd = cmVARPOW2;
m_vRPN.pop_back();
bOptimized = true;
}
break;
case cmMUL:
if ((m_vRPN[sz - 1].Cmd == cmVAR && m_vRPN[sz - 2].Cmd == cmVAL) ||
(m_vRPN[sz - 1].Cmd == cmVAL && m_vRPN[sz - 2].Cmd == cmVAR)) {
m_vRPN[sz - 2].Cmd = cmVARMUL;
m_vRPN[sz - 2].Val.ptr =
(value_type *)((long long)(m_vRPN[sz - 2].Val.ptr) |
(long long)(m_vRPN[sz - 1].Val.ptr));
m_vRPN[sz - 2].Val.data =
m_vRPN[sz - 2].Val.data2 + m_vRPN[sz - 1].Val.data2;
m_vRPN[sz - 2].Val.data2 = 0;
m_vRPN.pop_back();
bOptimized = true;
} else if ((m_vRPN[sz - 1].Cmd == cmVAL && m_vRPN[sz - 2].Cmd == cmVARMUL) ||
(m_vRPN[sz - 1].Cmd == cmVARMUL && m_vRPN[sz - 2].Cmd == cmVAL)) {
// Optimization: 2*(3*b+1) or (3*b+1)*2 -> 6*b+2
m_vRPN[sz - 2].Cmd = cmVARMUL;
m_vRPN[sz - 2].Val.ptr =
(value_type *)((long long)(m_vRPN[sz - 2].Val.ptr) |
(long long)(m_vRPN[sz - 1].Val.ptr));
if (m_vRPN[sz - 1].Cmd == cmVAL) {
m_vRPN[sz - 2].Val.data *= m_vRPN[sz - 1].Val.data2;
m_vRPN[sz - 2].Val.data2 *= m_vRPN[sz - 1].Val.data2;
} else {
m_vRPN[sz - 2].Val.data =
m_vRPN[sz - 1].Val.data * m_vRPN[sz - 2].Val.data2;
m_vRPN[sz - 2].Val.data2 =
m_vRPN[sz - 1].Val.data2 * m_vRPN[sz - 2].Val.data2;
}
m_vRPN.pop_back();
bOptimized = true;
} else if (m_vRPN[sz - 1].Cmd == cmVAR && m_vRPN[sz - 2].Cmd == cmVAR &&
m_vRPN[sz - 1].Val.ptr == m_vRPN[sz - 2].Val.ptr) {
// Optimization: a*a -> a^2
m_vRPN[sz - 2].Cmd = cmVARPOW2;
m_vRPN.pop_back();
bOptimized = true;
}
break;
case cmDIV:
if (m_vRPN[sz-1].Cmd == cmVAL && m_vRPN[sz-2].Cmd == cmVARMUL && m_vRPN[sz-1].Val.data2!=0)
{
// Optimization: 4*a/2 -> 2*a
m_vRPN[sz-2].Val.data /= m_vRPN[sz-1].Val.data2;
m_vRPN[sz-2].Val.data2 /= m_vRPN[sz-1].Val.data2;
m_vRPN.pop_back();
bOptimized = true;
}
break;
case cmDIV:
if (m_vRPN[sz - 1].Cmd == cmVAL && m_vRPN[sz - 2].Cmd == cmVARMUL &&
m_vRPN[sz - 1].Val.data2 != 0) {
// Optimization: 4*a/2 -> 2*a
m_vRPN[sz - 2].Val.data /= m_vRPN[sz - 1].Val.data2;
m_vRPN[sz - 2].Val.data2 /= m_vRPN[sz - 1].Val.data2;
m_vRPN.pop_back();
bOptimized = true;
}
break;
} // switch a_Oprt
}
} // switch a_Oprt
}
}
// If optimization can't be applied just write the value
if (!bOptimized)
{
--m_iStackPos;
SToken tok;
tok.Cmd = a_Oprt;
m_vRPN.push_back(tok);
if (!bOptimized) {
--m_iStackPos;
SToken tok;
tok.Cmd = a_Oprt;
m_vRPN.push_back(tok);
}
}
}
//---------------------------------------------------------------------------
void ParserByteCode::AddIfElse(ECmdCode a_Oprt)
{
//---------------------------------------------------------------------------
void ParserByteCode::AddIfElse(ECmdCode a_Oprt) {
SToken tok;
tok.Cmd = a_Oprt;
m_vRPN.push_back(tok);
}
}
//---------------------------------------------------------------------------
/** \brief Add an assignment operator
//---------------------------------------------------------------------------
/** \brief Add an assignment operator
Operator entries in byte code consist of:
<ul>
<li>cmASSIGN code</li>
<li>the pointer of the destination variable</li>
</ul>
Operator entries in byte code consist of:
<ul>
<li>cmASSIGN code</li>
<li>the pointer of the destination variable</li>
</ul>
\sa ParserToken::ECmdCode
*/
void ParserByteCode::AddAssignOp(value_type *a_pVar)
{
\sa ParserToken::ECmdCode
*/
void ParserByteCode::AddAssignOp(value_type *a_pVar) {
--m_iStackPos;
SToken tok;
tok.Cmd = cmASSIGN;
tok.Oprt.ptr = a_pVar;
m_vRPN.push_back(tok);
}
}
//---------------------------------------------------------------------------
/** \brief Add function to bytecode.
//---------------------------------------------------------------------------
/** \brief Add function to bytecode.
\param a_iArgc Number of arguments, negative numbers indicate multiarg functions.
\param a_pFun Pointer to function callback.
*/
void ParserByteCode::AddFun(generic_fun_type a_pFun, int a_iArgc)
{
if (a_iArgc>=0)
{
m_iStackPos = m_iStackPos - a_iArgc + 1;
}
else
{
// function with unlimited number of arguments
m_iStackPos = m_iStackPos + a_iArgc + 1;
\param a_iArgc Number of arguments, negative numbers indicate multiarg functions.
\param a_pFun Pointer to function callback.
*/
void ParserByteCode::AddFun(generic_fun_type a_pFun, int a_iArgc) {
if (a_iArgc >= 0) {
m_iStackPos = m_iStackPos - a_iArgc + 1;
} else {
// function with unlimited number of arguments
m_iStackPos = m_iStackPos + a_iArgc + 1;
}
m_iMaxStackSize = std::max(m_iMaxStackSize, (size_t)m_iStackPos);
@ -374,16 +379,15 @@ namespace mu
tok.Fun.argc = a_iArgc;
tok.Fun.ptr = a_pFun;
m_vRPN.push_back(tok);
}
}
//---------------------------------------------------------------------------
/** \brief Add a bulk function to bytecode.
//---------------------------------------------------------------------------
/** \brief Add a bulk function to bytecode.
\param a_iArgc Number of arguments, negative numbers indicate multiarg functions.
\param a_pFun Pointer to function callback.
*/
void ParserByteCode::AddBulkFun(generic_fun_type a_pFun, int a_iArgc)
{
\param a_iArgc Number of arguments, negative numbers indicate multiarg functions.
\param a_pFun Pointer to function callback.
*/
void ParserByteCode::AddBulkFun(generic_fun_type a_pFun, int a_iArgc) {
m_iStackPos = m_iStackPos - a_iArgc + 1;
m_iMaxStackSize = std::max(m_iMaxStackSize, (size_t)m_iStackPos);
@ -392,18 +396,17 @@ namespace mu
tok.Fun.argc = a_iArgc;
tok.Fun.ptr = a_pFun;
m_vRPN.push_back(tok);
}
}
//---------------------------------------------------------------------------
/** \brief Add Strung function entry to the parser bytecode.
\throw nothrow
//---------------------------------------------------------------------------
/** \brief Add Strung function entry to the parser bytecode.
\throw nothrow
A string function entry consists of the stack position of the return value,
followed by a cmSTRFUNC code, the function pointer and an index into the
string buffer maintained by the parser.
*/
void ParserByteCode::AddStrFun(generic_fun_type a_pFun, int a_iArgc, int a_iIdx)
{
A string function entry consists of the stack position of the return value,
followed by a cmSTRFUNC code, the function pointer and an index into the
string buffer maintained by the parser.
*/
void ParserByteCode::AddStrFun(generic_fun_type a_pFun, int a_iArgc, int a_iIdx) {
m_iStackPos = m_iStackPos - a_iArgc + 1;
SToken tok;
@ -414,174 +417,196 @@ namespace mu
m_vRPN.push_back(tok);
m_iMaxStackSize = std::max(m_iMaxStackSize, (size_t)m_iStackPos);
}
}
//---------------------------------------------------------------------------
/** \brief Add end marker to bytecode.
//---------------------------------------------------------------------------
/** \brief Add end marker to bytecode.
\throw nothrow
*/
void ParserByteCode::Finalize()
{
\throw nothrow
*/
void ParserByteCode::Finalize() {
SToken tok;
tok.Cmd = cmEND;
m_vRPN.push_back(tok);
rpn_type(m_vRPN).swap(m_vRPN); // shrink bytecode vector to fit
rpn_type(m_vRPN).swap(m_vRPN); // shrink bytecode vector to fit
// Determine the if-then-else jump offsets
ParserStack<int> stIf, stElse;
int idx;
for (int i=0; i<(int)m_vRPN.size(); ++i)
{
switch(m_vRPN[i].Cmd)
{
case cmIF:
stIf.push(i);
break;
for (int i = 0; i < (int)m_vRPN.size(); ++i) {
switch (m_vRPN[i].Cmd) {
case cmIF:
stIf.push(i);
break;
case cmELSE:
stElse.push(i);
idx = stIf.pop();
m_vRPN[idx].Oprt.offset = i - idx;
break;
case cmELSE:
stElse.push(i);
idx = stIf.pop();
m_vRPN[idx].Oprt.offset = i - idx;
break;
case cmENDIF:
idx = stElse.pop();
m_vRPN[idx].Oprt.offset = i - idx;
break;
case cmENDIF:
idx = stElse.pop();
m_vRPN[idx].Oprt.offset = i - idx;
break;
default:
break;
}
default:
break;
}
}
}
}
//---------------------------------------------------------------------------
const SToken* ParserByteCode::GetBase() const
{
if (m_vRPN.size()==0)
assert(0 && "muParser internal error");
//---------------------------------------------------------------------------
const SToken *ParserByteCode::GetBase() const {
if (m_vRPN.size() == 0) assert(0 && "muParser internal error");
return &m_vRPN[0];
}
}
//---------------------------------------------------------------------------
std::size_t ParserByteCode::GetMaxStackSize() const
{
return m_iMaxStackSize+1;
}
//---------------------------------------------------------------------------
std::size_t ParserByteCode::GetMaxStackSize() const { return m_iMaxStackSize + 1; }
//---------------------------------------------------------------------------
/** \brief Returns the number of entries in the bytecode. */
std::size_t ParserByteCode::GetSize() const
{
return m_vRPN.size();
}
//---------------------------------------------------------------------------
/** \brief Returns the number of entries in the bytecode. */
std::size_t ParserByteCode::GetSize() const { return m_vRPN.size(); }
//---------------------------------------------------------------------------
/** \brief Delete the bytecode.
//---------------------------------------------------------------------------
/** \brief Delete the bytecode.
\throw nothrow
\throw nothrow
The name of this function is a violation of my own coding guidelines
but this way it's more in line with the STL functions thus more
intuitive.
*/
void ParserByteCode::clear()
{
The name of this function is a violation of my own coding guidelines
but this way it's more in line with the STL functions thus more
intuitive.
*/
void ParserByteCode::clear() {
m_vRPN.clear();
m_iStackPos = 0;
m_iMaxStackSize = 0;
}
}
//---------------------------------------------------------------------------
/** \brief Dump bytecode (for debugging only!). */
void ParserByteCode::AsciiDump()
{
if (!m_vRPN.size())
{
mu::console() << _T("No bytecode available\n");
return;
//---------------------------------------------------------------------------
/** \brief Dump bytecode (for debugging only!). */
void ParserByteCode::AsciiDump() {
if (!m_vRPN.size()) {
mu::console() << _T("No bytecode available\n");
return;
}
mu::console() << _T("Number of RPN tokens:") << (int)m_vRPN.size() << _T("\n");
for (std::size_t i=0; i<m_vRPN.size() && m_vRPN[i].Cmd!=cmEND; ++i)
{
mu::console() << std::dec << i << _T(" : \t");
switch (m_vRPN[i].Cmd)
{
case cmVAL: mu::console() << _T("VAL \t");
mu::console() << _T("[") << m_vRPN[i].Val.data2 << _T("]\n");
break;
for (std::size_t i = 0; i < m_vRPN.size() && m_vRPN[i].Cmd != cmEND; ++i) {
mu::console() << std::dec << i << _T(" : \t");
switch (m_vRPN[i].Cmd) {
case cmVAL:
mu::console() << _T("VAL \t");
mu::console() << _T("[") << m_vRPN[i].Val.data2 << _T("]\n");
break;
case cmVAR: mu::console() << _T("VAR \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVAR:
mu::console() << _T("VAR \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARPOW2: mu::console() << _T("VARPOW2 \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARPOW2:
mu::console() << _T("VARPOW2 \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARPOW3: mu::console() << _T("VARPOW3 \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARPOW3:
mu::console() << _T("VARPOW3 \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARPOW4: mu::console() << _T("VARPOW4 \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARPOW4:
mu::console() << _T("VARPOW4 \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]\n");
break;
case cmVARMUL: mu::console() << _T("VARMUL \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]");
mu::console() << _T(" * [") << m_vRPN[i].Val.data << _T("]");
mu::console() << _T(" + [") << m_vRPN[i].Val.data2 << _T("]\n");
break;
case cmVARMUL:
mu::console() << _T("VARMUL \t");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Val.ptr << _T("]");
mu::console() << _T(" * [") << m_vRPN[i].Val.data << _T("]");
mu::console() << _T(" + [") << m_vRPN[i].Val.data2 << _T("]\n");
break;
case cmFUNC: mu::console() << _T("CALL\t");
mu::console() << _T("[ARG:") << std::dec << m_vRPN[i].Fun.argc << _T("]");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Fun.ptr << _T("]");
mu::console() << _T("\n");
break;
case cmFUNC:
mu::console() << _T("CALL\t");
mu::console() << _T("[ARG:") << std::dec << m_vRPN[i].Fun.argc << _T("]");
mu::console() << _T("[ADDR: 0x") << std::hex << m_vRPN[i].Fun.ptr << _T("]");
mu::console() << _T("\n");
break;
case cmFUNC_STR:
mu::console() << _T("CALL STRFUNC\t");
mu::console() << _T("[ARG:") << std::dec << m_vRPN[i].Fun.argc << _T("]");
mu::console() << _T("[IDX:") << std::dec << m_vRPN[i].Fun.idx << _T("]");
mu::console() << _T("[ADDR: 0x") << m_vRPN[i].Fun.ptr << _T("]\n");
break;
case cmFUNC_STR:
mu::console() << _T("CALL STRFUNC\t");
mu::console() << _T("[ARG:") << std::dec << m_vRPN[i].Fun.argc << _T("]");
mu::console() << _T("[IDX:") << std::dec << m_vRPN[i].Fun.idx << _T("]");
mu::console() << _T("[ADDR: 0x") << m_vRPN[i].Fun.ptr << _T("]\n");
break;
case cmLT: mu::console() << _T("LT\n"); break;
case cmGT: mu::console() << _T("GT\n"); break;
case cmLE: mu::console() << _T("LE\n"); break;
case cmGE: mu::console() << _T("GE\n"); break;
case cmEQ: mu::console() << _T("EQ\n"); break;
case cmNEQ: mu::console() << _T("NEQ\n"); break;
case cmADD: mu::console() << _T("ADD\n"); break;
case cmLAND: mu::console() << _T("&&\n"); break;
case cmLOR: mu::console() << _T("||\n"); break;
case cmSUB: mu::console() << _T("SUB\n"); break;
case cmMUL: mu::console() << _T("MUL\n"); break;
case cmDIV: mu::console() << _T("DIV\n"); break;
case cmPOW: mu::console() << _T("POW\n"); break;
case cmLT:
mu::console() << _T("LT\n");
break;
case cmGT:
mu::console() << _T("GT\n");
break;
case cmLE:
mu::console() << _T("LE\n");
break;
case cmGE:
mu::console() << _T("GE\n");
break;
case cmEQ:
mu::console() << _T("EQ\n");
break;
case cmNEQ:
mu::console() << _T("NEQ\n");
break;
case cmADD:
mu::console() << _T("ADD\n");
break;
case cmLAND:
mu::console() << _T("&&\n");
break;
case cmLOR:
mu::console() << _T("||\n");
break;
case cmSUB:
mu::console() << _T("SUB\n");
break;
case cmMUL:
mu::console() << _T("MUL\n");
break;
case cmDIV:
mu::console() << _T("DIV\n");
break;
case cmPOW:
mu::console() << _T("POW\n");
break;
case cmIF: mu::console() << _T("IF\t");
mu::console() << _T("[OFFSET:") << std::dec << m_vRPN[i].Oprt.offset << _T("]\n");
break;
case cmIF:
mu::console() << _T("IF\t");
mu::console() << _T("[OFFSET:") << std::dec << m_vRPN[i].Oprt.offset << _T("]\n");
break;
case cmELSE: mu::console() << _T("ELSE\t");
mu::console() << _T("[OFFSET:") << std::dec << m_vRPN[i].Oprt.offset << _T("]\n");
break;
case cmELSE:
mu::console() << _T("ELSE\t");
mu::console() << _T("[OFFSET:") << std::dec << m_vRPN[i].Oprt.offset << _T("]\n");
break;
case cmENDIF: mu::console() << _T("ENDIF\n"); break;
case cmENDIF:
mu::console() << _T("ENDIF\n");
break;
case cmASSIGN:
mu::console() << _T("ASSIGN\t");
mu::console() << _T("[ADDR: 0x") << m_vRPN[i].Oprt.ptr << _T("]\n");
break;
case cmASSIGN:
mu::console() << _T("ASSIGN\t");
mu::console() << _T("[ADDR: 0x") << m_vRPN[i].Oprt.ptr << _T("]\n");
break;
default: mu::console() << _T("(unknown code: ") << m_vRPN[i].Cmd << _T(")\n");
break;
} // switch cmdCode
} // while bytecode
default:
mu::console() << _T("(unknown code: ") << m_vRPN[i].Cmd << _T(")\n");
break;
} // switch cmdCode
} // while bytecode
mu::console() << _T("END") << std::endl;
}
} // namespace mu
}
} // namespace mu

View file

@ -29,435 +29,365 @@
\brief Implementation of the parser callback class.
*/
namespace mu {
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type0 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(0),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
namespace mu
{
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type0 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(0)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type1 a_pFun, bool a_bAllowOpti, int a_iPrec, ECmdCode a_iCode)
: m_pFun((void*)a_pFun),
m_iArgc(1),
m_iPri(a_iPrec),
m_eOprtAsct(oaNONE),
m_iCode(a_iCode),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type1 a_pFun, bool a_bAllowOpti, int a_iPrec, ECmdCode a_iCode)
:m_pFun((void*)a_pFun)
,m_iArgc(1)
,m_iPri(a_iPrec)
,m_eOprtAsct(oaNONE)
,m_iCode(a_iCode)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
/** \brief Constructor for constructing function callbacks taking two arguments.
\throw nothrow
*/
ParserCallback::ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(2),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
/** \brief Constructor for constructing binary operator callbacks.
\param a_pFun Pointer to a static function taking two arguments
\param a_bAllowOpti A flag indicating this function can be optimized
\param a_iPrec The operator precedence
\param a_eOprtAsct The operators associativity
\throw nothrow
*/
ParserCallback::ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti, int a_iPrec,
EOprtAssociativity a_eOprtAsct)
: m_pFun((void*)a_pFun),
m_iArgc(2),
m_iPri(a_iPrec),
m_eOprtAsct(a_eOprtAsct),
m_iCode(cmOPRT_BIN),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
/** \brief Constructor for constructing function callbacks taking two arguments.
\throw nothrow
*/
ParserCallback::ParserCallback(fun_type2 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(2)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type3 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(3),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
/** \brief Constructor for constructing binary operator callbacks.
\param a_pFun Pointer to a static function taking two arguments
\param a_bAllowOpti A flag indicating this function can be optimized
\param a_iPrec The operator precedence
\param a_eOprtAsct The operators associativity
\throw nothrow
*/
ParserCallback::ParserCallback(fun_type2 a_pFun,
bool a_bAllowOpti,
int a_iPrec,
EOprtAssociativity a_eOprtAsct)
:m_pFun((void*)a_pFun)
,m_iArgc(2)
,m_iPri(a_iPrec)
,m_eOprtAsct(a_eOprtAsct)
,m_iCode(cmOPRT_BIN)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type4 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(4),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type3 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(3)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type5 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(5),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type6 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(6),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type4 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(4)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type7 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(7),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type8 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(8),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type5 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(5)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type9 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(9),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type6 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(6)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type10 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(10),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type7 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(7)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type0 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(0),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type8 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(8)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type1 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(1),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type9 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(9)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
/** \brief Constructor for constructing function callbacks taking two arguments.
\throw nothrow
*/
ParserCallback::ParserCallback(bulkfun_type2 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(2),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(fun_type10 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(10)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type3 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(3),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type0 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(0)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type4 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(4),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type1 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(1)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type5 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(5),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type6 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(6),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
/** \brief Constructor for constructing function callbacks taking two arguments.
\throw nothrow
*/
ParserCallback::ParserCallback(bulkfun_type2 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(2)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type7 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(7),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type3 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(3)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type8 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(8),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type9 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(9),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type4 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(4)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type10 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(10),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_BULK),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(multfun_type a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(-1),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC),
m_iType(tpDBL),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type5 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(5)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(strfun_type1 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(0),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_STR),
m_iType(tpSTR),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type6 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(6)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(strfun_type2 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(1),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_STR),
m_iType(tpSTR),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type7 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(7)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(strfun_type3 a_pFun, bool a_bAllowOpti)
: m_pFun((void*)a_pFun),
m_iArgc(2),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmFUNC_STR),
m_iType(tpSTR),
m_bAllowOpti(a_bAllowOpti) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type8 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(8)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
/** \brief Default constructor.
\throw nothrow
*/
ParserCallback::ParserCallback()
: m_pFun(0),
m_iArgc(0),
m_iPri(-1),
m_eOprtAsct(oaNONE),
m_iCode(cmUNKNOWN),
m_iType(tpVOID),
m_bAllowOpti(0) {}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type9 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(9)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(bulkfun_type10 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(10)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_BULK)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(multfun_type a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(-1)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC)
,m_iType(tpDBL)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(strfun_type1 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(0)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_STR)
,m_iType(tpSTR)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(strfun_type2 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(1)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_STR)
,m_iType(tpSTR)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
ParserCallback::ParserCallback(strfun_type3 a_pFun, bool a_bAllowOpti)
:m_pFun((void*)a_pFun)
,m_iArgc(2)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmFUNC_STR)
,m_iType(tpSTR)
,m_bAllowOpti(a_bAllowOpti)
{}
//---------------------------------------------------------------------------
/** \brief Default constructor.
\throw nothrow
*/
ParserCallback::ParserCallback()
:m_pFun(0)
,m_iArgc(0)
,m_iPri(-1)
,m_eOprtAsct(oaNONE)
,m_iCode(cmUNKNOWN)
,m_iType(tpVOID)
,m_bAllowOpti(0)
{}
//---------------------------------------------------------------------------
/** \brief Copy constructor.
\throw nothrow
*/
ParserCallback::ParserCallback(const ParserCallback &ref)
{
m_pFun = ref.m_pFun;
m_iArgc = ref.m_iArgc;
//---------------------------------------------------------------------------
/** \brief Copy constructor.
\throw nothrow
*/
ParserCallback::ParserCallback(const ParserCallback& ref) {
m_pFun = ref.m_pFun;
m_iArgc = ref.m_iArgc;
m_bAllowOpti = ref.m_bAllowOpti;
m_iCode = ref.m_iCode;
m_iType = ref.m_iType;
m_iPri = ref.m_iPri;
m_eOprtAsct = ref.m_eOprtAsct;
}
m_iCode = ref.m_iCode;
m_iType = ref.m_iType;
m_iPri = ref.m_iPri;
m_eOprtAsct = ref.m_eOprtAsct;
}
//---------------------------------------------------------------------------
/** \brief Clone this instance and return a pointer to the new instance. */
ParserCallback* ParserCallback::Clone() const
{
return new ParserCallback(*this);
}
//---------------------------------------------------------------------------
/** \brief Clone this instance and return a pointer to the new instance. */
ParserCallback* ParserCallback::Clone() const { return new ParserCallback(*this); }
//---------------------------------------------------------------------------
/** \brief Return tru if the function is conservative.
//---------------------------------------------------------------------------
/** \brief Return tru if the function is conservative.
Conservative functions return always the same result for the same argument.
\throw nothrow
*/
bool ParserCallback::IsOptimizable() const
{
return m_bAllowOpti;
}
Conservative functions return always the same result for the same argument.
\throw nothrow
*/
bool ParserCallback::IsOptimizable() const { return m_bAllowOpti; }
//---------------------------------------------------------------------------
/** \brief Get the callback address for the parser function.
//---------------------------------------------------------------------------
/** \brief Get the callback address for the parser function.
The type of the address is void. It needs to be recasted according to the
argument number to the right type.
The type of the address is void. It needs to be recasted according to the
argument number to the right type.
\throw nothrow
\return #pFun
*/
void* ParserCallback::GetAddr() const
{
return m_pFun;
}
\throw nothrow
\return #pFun
*/
void* ParserCallback::GetAddr() const { return m_pFun; }
//---------------------------------------------------------------------------
/** \brief Return the callback code. */
ECmdCode ParserCallback::GetCode() const
{
return m_iCode;
}
//---------------------------------------------------------------------------
/** \brief Return the callback code. */
ECmdCode ParserCallback::GetCode() const { return m_iCode; }
//---------------------------------------------------------------------------
ETypeCode ParserCallback::GetType() const
{
return m_iType;
}
//---------------------------------------------------------------------------
ETypeCode ParserCallback::GetType() const { return m_iType; }
//---------------------------------------------------------------------------
/** \brief Return the operator precedence.
\throw nothrown
//---------------------------------------------------------------------------
/** \brief Return the operator precedence.
\throw nothrown
Only valid if the callback token is an operator token (binary or infix).
*/
int ParserCallback::GetPri() const { return m_iPri; }
Only valid if the callback token is an operator token (binary or infix).
*/
int ParserCallback::GetPri() const
{
return m_iPri;
}
//---------------------------------------------------------------------------
/** \brief Return the operators associativity.
\throw nothrown
//---------------------------------------------------------------------------
/** \brief Return the operators associativity.
\throw nothrown
Only valid if the callback token is a binary operator token.
*/
EOprtAssociativity ParserCallback::GetAssociativity() const { return m_eOprtAsct; }
Only valid if the callback token is a binary operator token.
*/
EOprtAssociativity ParserCallback::GetAssociativity() const
{
return m_eOprtAsct;
}
//---------------------------------------------------------------------------
/** \brief Returns the number of function Arguments. */
int ParserCallback::GetArgc() const
{
return m_iArgc;
}
} // namespace mu
//---------------------------------------------------------------------------
/** \brief Returns the number of function Arguments. */
int ParserCallback::GetArgc() const { return m_iArgc; }
} // namespace mu

File diff suppressed because it is too large Load diff

View file

@ -24,220 +24,202 @@
*/
#include "muParserError.h"
namespace mu {
const ParserErrorMsg ParserErrorMsg::m_Instance;
namespace mu
{
const ParserErrorMsg ParserErrorMsg::m_Instance;
//------------------------------------------------------------------------------
const ParserErrorMsg &ParserErrorMsg::Instance() { return m_Instance; }
//------------------------------------------------------------------------------
const ParserErrorMsg& ParserErrorMsg::Instance()
{
return m_Instance;
}
//------------------------------------------------------------------------------
string_type ParserErrorMsg::operator[](unsigned a_iIdx) const {
return (a_iIdx < m_vErrMsg.size()) ? m_vErrMsg[a_iIdx] : string_type();
}
//------------------------------------------------------------------------------
string_type ParserErrorMsg::operator[](unsigned a_iIdx) const
{
return (a_iIdx<m_vErrMsg.size()) ? m_vErrMsg[a_iIdx] : string_type();
}
//---------------------------------------------------------------------------
ParserErrorMsg::~ParserErrorMsg() {}
//---------------------------------------------------------------------------
ParserErrorMsg::~ParserErrorMsg()
{}
//---------------------------------------------------------------------------
/** \brief Assignement operator is deactivated.
*/
ParserErrorMsg& ParserErrorMsg::operator=(const ParserErrorMsg& )
{
//---------------------------------------------------------------------------
/** \brief Assignement operator is deactivated.
*/
ParserErrorMsg &ParserErrorMsg::operator=(const ParserErrorMsg &) {
assert(false);
return *this;
}
}
//---------------------------------------------------------------------------
ParserErrorMsg::ParserErrorMsg(const ParserErrorMsg&)
{}
//---------------------------------------------------------------------------
ParserErrorMsg::ParserErrorMsg(const ParserErrorMsg &) {}
//---------------------------------------------------------------------------
ParserErrorMsg::ParserErrorMsg()
:m_vErrMsg(0)
{
//---------------------------------------------------------------------------
ParserErrorMsg::ParserErrorMsg() : m_vErrMsg(0) {
m_vErrMsg.resize(ecCOUNT);
m_vErrMsg[ecUNASSIGNABLE_TOKEN] = _T("Unexpected token \"$TOK$\" found at position $POS$.");
m_vErrMsg[ecINVALID_NAME] = _T("Invalid function-, variable- or constant name: \"$TOK$\".");
m_vErrMsg[ecINVALID_BINOP_IDENT] = _T("Invalid binary operator identifier: \"$TOK$\".");
m_vErrMsg[ecINVALID_INFIX_IDENT] = _T("Invalid infix operator identifier: \"$TOK$\".");
m_vErrMsg[ecINVALID_POSTFIX_IDENT] = _T("Invalid postfix operator identifier: \"$TOK$\".");
m_vErrMsg[ecINVALID_FUN_PTR] = _T("Invalid pointer to callback function.");
m_vErrMsg[ecEMPTY_EXPRESSION] = _T("Expression is empty.");
m_vErrMsg[ecINVALID_VAR_PTR] = _T("Invalid pointer to variable.");
m_vErrMsg[ecUNEXPECTED_OPERATOR] = _T("Unexpected operator \"$TOK$\" found at position $POS$");
m_vErrMsg[ecUNEXPECTED_EOF] = _T("Unexpected end of expression at position $POS$");
m_vErrMsg[ecUNEXPECTED_ARG_SEP] = _T("Unexpected argument separator at position $POS$");
m_vErrMsg[ecUNEXPECTED_PARENS] = _T("Unexpected parenthesis \"$TOK$\" at position $POS$");
m_vErrMsg[ecUNEXPECTED_FUN] = _T("Unexpected function \"$TOK$\" at position $POS$");
m_vErrMsg[ecUNEXPECTED_VAL] = _T("Unexpected value \"$TOK$\" found at position $POS$");
m_vErrMsg[ecUNEXPECTED_VAR] = _T("Unexpected variable \"$TOK$\" found at position $POS$");
m_vErrMsg[ecUNEXPECTED_ARG] = _T("Function arguments used without a function (position: $POS$)");
m_vErrMsg[ecMISSING_PARENS] = _T("Missing parenthesis");
m_vErrMsg[ecTOO_MANY_PARAMS] = _T("Too many parameters for function \"$TOK$\" at expression position $POS$");
m_vErrMsg[ecTOO_FEW_PARAMS] = _T("Too few parameters for function \"$TOK$\" at expression position $POS$");
m_vErrMsg[ecDIV_BY_ZERO] = _T("Divide by zero");
m_vErrMsg[ecDOMAIN_ERROR] = _T("Domain error");
m_vErrMsg[ecNAME_CONFLICT] = _T("Name conflict");
m_vErrMsg[ecOPT_PRI] = _T("Invalid value for operator priority (must be greater or equal to zero).");
m_vErrMsg[ecBUILTIN_OVERLOAD] = _T("user defined binary operator \"$TOK$\" conflicts with a built in operator.");
m_vErrMsg[ecUNEXPECTED_STR] = _T("Unexpected string token found at position $POS$.");
m_vErrMsg[ecUNTERMINATED_STRING] = _T("Unterminated string starting at position $POS$.");
m_vErrMsg[ecSTRING_EXPECTED] = _T("String function called with a non string type of argument.");
m_vErrMsg[ecVAL_EXPECTED] = _T("String value used where a numerical argument is expected.");
m_vErrMsg[ecOPRT_TYPE_CONFLICT] = _T("No suitable overload for operator \"$TOK$\" at position $POS$.");
m_vErrMsg[ecSTR_RESULT] = _T("Function result is a string.");
m_vErrMsg[ecGENERIC] = _T("Parser error.");
m_vErrMsg[ecLOCALE] = _T("Decimal separator is identic to function argument separator.");
m_vErrMsg[ecUNEXPECTED_CONDITIONAL] = _T("The \"$TOK$\" operator must be preceeded by a closing bracket.");
m_vErrMsg[ecMISSING_ELSE_CLAUSE] = _T("If-then-else operator is missing an else clause");
m_vErrMsg[ecMISPLACED_COLON] = _T("Misplaced colon at position $POS$");
m_vErrMsg[ecUNREASONABLE_NUMBER_OF_COMPUTATIONS] = _T("Number of computations to small for bulk mode. (Vectorisation overhead too costly)");
m_vErrMsg[ecUNASSIGNABLE_TOKEN] = _T("Unexpected token \"$TOK$\" found at position $POS$.");
m_vErrMsg[ecINVALID_NAME] = _T("Invalid function-, variable- or constant name: \"$TOK$\".");
m_vErrMsg[ecINVALID_BINOP_IDENT] = _T("Invalid binary operator identifier: \"$TOK$\".");
m_vErrMsg[ecINVALID_INFIX_IDENT] = _T("Invalid infix operator identifier: \"$TOK$\".");
m_vErrMsg[ecINVALID_POSTFIX_IDENT] = _T("Invalid postfix operator identifier: \"$TOK$\".");
m_vErrMsg[ecINVALID_FUN_PTR] = _T("Invalid pointer to callback function.");
m_vErrMsg[ecEMPTY_EXPRESSION] = _T("Expression is empty.");
m_vErrMsg[ecINVALID_VAR_PTR] = _T("Invalid pointer to variable.");
m_vErrMsg[ecUNEXPECTED_OPERATOR] = _T("Unexpected operator \"$TOK$\" found at position $POS$");
m_vErrMsg[ecUNEXPECTED_EOF] = _T("Unexpected end of expression at position $POS$");
m_vErrMsg[ecUNEXPECTED_ARG_SEP] = _T("Unexpected argument separator at position $POS$");
m_vErrMsg[ecUNEXPECTED_PARENS] = _T("Unexpected parenthesis \"$TOK$\" at position $POS$");
m_vErrMsg[ecUNEXPECTED_FUN] = _T("Unexpected function \"$TOK$\" at position $POS$");
m_vErrMsg[ecUNEXPECTED_VAL] = _T("Unexpected value \"$TOK$\" found at position $POS$");
m_vErrMsg[ecUNEXPECTED_VAR] = _T("Unexpected variable \"$TOK$\" found at position $POS$");
m_vErrMsg[ecUNEXPECTED_ARG] =
_T("Function arguments used without a function (position: $POS$)");
m_vErrMsg[ecMISSING_PARENS] = _T("Missing parenthesis");
m_vErrMsg[ecTOO_MANY_PARAMS] =
_T("Too many parameters for function \"$TOK$\" at expression position $POS$");
m_vErrMsg[ecTOO_FEW_PARAMS] =
_T("Too few parameters for function \"$TOK$\" at expression position $POS$");
m_vErrMsg[ecDIV_BY_ZERO] = _T("Divide by zero");
m_vErrMsg[ecDOMAIN_ERROR] = _T("Domain error");
m_vErrMsg[ecNAME_CONFLICT] = _T("Name conflict");
m_vErrMsg[ecOPT_PRI] =
_T("Invalid value for operator priority (must be greater or equal to zero).");
m_vErrMsg[ecBUILTIN_OVERLOAD] =
_T("user defined binary operator \"$TOK$\" conflicts with a built in operator.");
m_vErrMsg[ecUNEXPECTED_STR] = _T("Unexpected string token found at position $POS$.");
m_vErrMsg[ecUNTERMINATED_STRING] = _T("Unterminated string starting at position $POS$.");
m_vErrMsg[ecSTRING_EXPECTED] = _T("String function called with a non string type of argument.");
m_vErrMsg[ecVAL_EXPECTED] = _T("String value used where a numerical argument is expected.");
m_vErrMsg[ecOPRT_TYPE_CONFLICT] =
_T("No suitable overload for operator \"$TOK$\" at position $POS$.");
m_vErrMsg[ecSTR_RESULT] = _T("Function result is a string.");
m_vErrMsg[ecGENERIC] = _T("Parser error.");
m_vErrMsg[ecLOCALE] = _T("Decimal separator is identic to function argument separator.");
m_vErrMsg[ecUNEXPECTED_CONDITIONAL] =
_T("The \"$TOK$\" operator must be preceeded by a closing bracket.");
m_vErrMsg[ecMISSING_ELSE_CLAUSE] = _T("If-then-else operator is missing an else clause");
m_vErrMsg[ecMISPLACED_COLON] = _T("Misplaced colon at position $POS$");
m_vErrMsg[ecUNREASONABLE_NUMBER_OF_COMPUTATIONS] =
_T("Number of computations to small for bulk mode. (Vectorisation overhead too costly)");
#if defined(_DEBUG)
for (int i=0; i<ecCOUNT; ++i)
if (!m_vErrMsg[i].length())
assert(false);
#endif
}
#if defined(_DEBUG)
for (int i = 0; i < ecCOUNT; ++i)
if (!m_vErrMsg[i].length()) assert(false);
#endif
}
//---------------------------------------------------------------------------
//
// ParserError class
//
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//
// ParserError class
//
//---------------------------------------------------------------------------
/** \brief Default constructor. */
ParserError::ParserError()
:m_strMsg()
,m_strFormula()
,m_strTok()
,m_iPos(-1)
,m_iErrc(ecUNDEFINED)
,m_ErrMsg(ParserErrorMsg::Instance())
{
}
/** \brief Default constructor. */
ParserError::ParserError()
: m_strMsg(),
m_strFormula(),
m_strTok(),
m_iPos(-1),
m_iErrc(ecUNDEFINED),
m_ErrMsg(ParserErrorMsg::Instance()) {}
//------------------------------------------------------------------------------
/** \brief This Constructor is used for internal exceptions only.
//------------------------------------------------------------------------------
/** \brief This Constructor is used for internal exceptions only.
It does not contain any information but the error code.
*/
ParserError::ParserError(EErrorCodes a_iErrc)
:m_strMsg()
,m_strFormula()
,m_strTok()
,m_iPos(-1)
,m_iErrc(a_iErrc)
,m_ErrMsg(ParserErrorMsg::Instance())
{
It does not contain any information but the error code.
*/
ParserError::ParserError(EErrorCodes a_iErrc)
: m_strMsg(),
m_strFormula(),
m_strTok(),
m_iPos(-1),
m_iErrc(a_iErrc),
m_ErrMsg(ParserErrorMsg::Instance()) {
m_strMsg = m_ErrMsg[m_iErrc];
stringstream_type stream;
stream << (int)m_iPos;
ReplaceSubString(m_strMsg, _T("$POS$"), stream.str());
ReplaceSubString(m_strMsg, _T("$TOK$"), m_strTok);
}
}
//------------------------------------------------------------------------------
/** \brief Construct an error from a message text. */
ParserError::ParserError(const string_type &sMsg)
:m_ErrMsg(ParserErrorMsg::Instance())
{
//------------------------------------------------------------------------------
/** \brief Construct an error from a message text. */
ParserError::ParserError(const string_type &sMsg) : m_ErrMsg(ParserErrorMsg::Instance()) {
Reset();
m_strMsg = sMsg;
}
}
//------------------------------------------------------------------------------
/** \brief Construct an error object.
\param [in] a_iErrc the error code.
\param [in] sTok The token string related to this error.
\param [in] sExpr The expression related to the error.
\param [in] a_iPos the position in the expression where the error occurred.
*/
ParserError::ParserError( EErrorCodes iErrc,
const string_type &sTok,
const string_type &sExpr,
int iPos )
:m_strMsg()
,m_strFormula(sExpr)
,m_strTok(sTok)
,m_iPos(iPos)
,m_iErrc(iErrc)
,m_ErrMsg(ParserErrorMsg::Instance())
{
//------------------------------------------------------------------------------
/** \brief Construct an error object.
\param [in] a_iErrc the error code.
\param [in] sTok The token string related to this error.
\param [in] sExpr The expression related to the error.
\param [in] a_iPos the position in the expression where the error occurred.
*/
ParserError::ParserError(EErrorCodes iErrc, const string_type &sTok, const string_type &sExpr,
int iPos)
: m_strMsg(),
m_strFormula(sExpr),
m_strTok(sTok),
m_iPos(iPos),
m_iErrc(iErrc),
m_ErrMsg(ParserErrorMsg::Instance()) {
m_strMsg = m_ErrMsg[m_iErrc];
stringstream_type stream;
stream << (int)m_iPos;
ReplaceSubString(m_strMsg, _T("$POS$"), stream.str());
ReplaceSubString(m_strMsg, _T("$TOK$"), m_strTok);
}
}
//------------------------------------------------------------------------------
/** \brief Construct an error object.
\param [in] iErrc the error code.
\param [in] iPos the position in the expression where the error occurred.
\param [in] sTok The token string related to this error.
*/
ParserError::ParserError(EErrorCodes iErrc, int iPos, const string_type &sTok)
:m_strMsg()
,m_strFormula()
,m_strTok(sTok)
,m_iPos(iPos)
,m_iErrc(iErrc)
,m_ErrMsg(ParserErrorMsg::Instance())
{
//------------------------------------------------------------------------------
/** \brief Construct an error object.
\param [in] iErrc the error code.
\param [in] iPos the position in the expression where the error occurred.
\param [in] sTok The token string related to this error.
*/
ParserError::ParserError(EErrorCodes iErrc, int iPos, const string_type &sTok)
: m_strMsg(),
m_strFormula(),
m_strTok(sTok),
m_iPos(iPos),
m_iErrc(iErrc),
m_ErrMsg(ParserErrorMsg::Instance()) {
m_strMsg = m_ErrMsg[m_iErrc];
stringstream_type stream;
stream << (int)m_iPos;
ReplaceSubString(m_strMsg, _T("$POS$"), stream.str());
ReplaceSubString(m_strMsg, _T("$TOK$"), m_strTok);
}
}
//------------------------------------------------------------------------------
/** \brief Construct an error object.
\param [in] szMsg The error message text.
\param [in] iPos the position related to the error.
\param [in] sTok The token string related to this error.
*/
ParserError::ParserError(const char_type *szMsg, int iPos, const string_type &sTok)
:m_strMsg(szMsg)
,m_strFormula()
,m_strTok(sTok)
,m_iPos(iPos)
,m_iErrc(ecGENERIC)
,m_ErrMsg(ParserErrorMsg::Instance())
{
//------------------------------------------------------------------------------
/** \brief Construct an error object.
\param [in] szMsg The error message text.
\param [in] iPos the position related to the error.
\param [in] sTok The token string related to this error.
*/
ParserError::ParserError(const char_type *szMsg, int iPos, const string_type &sTok)
: m_strMsg(szMsg),
m_strFormula(),
m_strTok(sTok),
m_iPos(iPos),
m_iErrc(ecGENERIC),
m_ErrMsg(ParserErrorMsg::Instance()) {
stringstream_type stream;
stream << (int)m_iPos;
ReplaceSubString(m_strMsg, _T("$POS$"), stream.str());
ReplaceSubString(m_strMsg, _T("$TOK$"), m_strTok);
}
}
//------------------------------------------------------------------------------
/** \brief Copy constructor. */
ParserError::ParserError(const ParserError &a_Obj)
:m_strMsg(a_Obj.m_strMsg)
,m_strFormula(a_Obj.m_strFormula)
,m_strTok(a_Obj.m_strTok)
,m_iPos(a_Obj.m_iPos)
,m_iErrc(a_Obj.m_iErrc)
,m_ErrMsg(ParserErrorMsg::Instance())
{
}
//------------------------------------------------------------------------------
/** \brief Copy constructor. */
ParserError::ParserError(const ParserError &a_Obj)
: m_strMsg(a_Obj.m_strMsg),
m_strFormula(a_Obj.m_strFormula),
m_strTok(a_Obj.m_strTok),
m_iPos(a_Obj.m_iPos),
m_iErrc(a_Obj.m_iErrc),
m_ErrMsg(ParserErrorMsg::Instance()) {}
//------------------------------------------------------------------------------
/** \brief Assignment operator. */
ParserError& ParserError::operator=(const ParserError &a_Obj)
{
if (this==&a_Obj)
return *this;
//------------------------------------------------------------------------------
/** \brief Assignment operator. */
ParserError &ParserError::operator=(const ParserError &a_Obj) {
if (this == &a_Obj) return *this;
m_strMsg = a_Obj.m_strMsg;
m_strFormula = a_Obj.m_strFormula;
@ -245,92 +227,68 @@ namespace mu
m_iPos = a_Obj.m_iPos;
m_iErrc = a_Obj.m_iErrc;
return *this;
}
}
//------------------------------------------------------------------------------
ParserError::~ParserError()
{}
//------------------------------------------------------------------------------
ParserError::~ParserError() {}
//------------------------------------------------------------------------------
/** \brief Replace all occurrences of a substring with another string.
\param strFind The string that shall be replaced.
\param strReplaceWith The string that should be inserted instead of strFind
*/
void ParserError::ReplaceSubString( string_type &strSource,
const string_type &strFind,
const string_type &strReplaceWith)
{
//------------------------------------------------------------------------------
/** \brief Replace all occurrences of a substring with another string.
\param strFind The string that shall be replaced.
\param strReplaceWith The string that should be inserted instead of strFind
*/
void ParserError::ReplaceSubString(string_type &strSource, const string_type &strFind,
const string_type &strReplaceWith) {
string_type strResult;
string_type::size_type iPos(0), iNext(0);
for(;;)
{
iNext = strSource.find(strFind, iPos);
strResult.append(strSource, iPos, iNext-iPos);
for (;;) {
iNext = strSource.find(strFind, iPos);
strResult.append(strSource, iPos, iNext - iPos);
if( iNext==string_type::npos )
break;
if (iNext == string_type::npos) break;
strResult.append(strReplaceWith);
iPos = iNext + strFind.length();
strResult.append(strReplaceWith);
iPos = iNext + strFind.length();
}
strSource.swap(strResult);
}
}
//------------------------------------------------------------------------------
/** \brief Reset the erro object. */
void ParserError::Reset()
{
//------------------------------------------------------------------------------
/** \brief Reset the erro object. */
void ParserError::Reset() {
m_strMsg = _T("");
m_strFormula = _T("");
m_strTok = _T("");
m_iPos = -1;
m_iErrc = ecUNDEFINED;
}
}
//------------------------------------------------------------------------------
/** \brief Set the expression related to this error. */
void ParserError::SetFormula(const string_type &a_strFormula)
{
m_strFormula = a_strFormula;
}
//------------------------------------------------------------------------------
/** \brief Set the expression related to this error. */
void ParserError::SetFormula(const string_type &a_strFormula) { m_strFormula = a_strFormula; }
//------------------------------------------------------------------------------
/** \brief gets the expression related tp this error.*/
const string_type& ParserError::GetExpr() const
{
return m_strFormula;
}
//------------------------------------------------------------------------------
/** \brief gets the expression related tp this error.*/
const string_type &ParserError::GetExpr() const { return m_strFormula; }
//------------------------------------------------------------------------------
/** \brief Returns the message string for this error. */
const string_type& ParserError::GetMsg() const
{
return m_strMsg;
}
//------------------------------------------------------------------------------
/** \brief Returns the message string for this error. */
const string_type &ParserError::GetMsg() const { return m_strMsg; }
//------------------------------------------------------------------------------
/** \brief Return the formula position related to the error.
//------------------------------------------------------------------------------
/** \brief Return the formula position related to the error.
If the error is not related to a distinct position this will return -1
*/
int ParserError::GetPos() const
{
return m_iPos;
}
If the error is not related to a distinct position this will return -1
*/
int ParserError::GetPos() const { return m_iPos; }
//------------------------------------------------------------------------------
/** \brief Return string related with this token (if available). */
const string_type& ParserError::GetToken() const
{
return m_strTok;
}
//------------------------------------------------------------------------------
/** \brief Return string related with this token (if available). */
const string_type &ParserError::GetToken() const { return m_strTok; }
//------------------------------------------------------------------------------
/** \brief Return the error code. */
EErrorCodes ParserError::GetCode() const
{
return m_iErrc;
}
} // namespace mu
//------------------------------------------------------------------------------
/** \brief Return the error code. */
EErrorCodes ParserError::GetCode() const { return m_iErrc; }
} // namespace mu

View file

@ -25,8 +25,8 @@
#include "muParserInt.h"
#include <cmath>
#include <algorithm>
#include <cmath>
#include <numeric>
using namespace std;
@ -36,110 +36,91 @@ using namespace std;
*/
/** \brief Namespace for mathematical applications. */
namespace mu
{
value_type ParserInt::Abs(value_type v) { return (value_type)Round(fabs((double)v)); }
value_type ParserInt::Sign(value_type v) { return (Round(v)<0) ? -1 : (Round(v)>0) ? 1 : 0; }
value_type ParserInt::Ite(value_type v1,
value_type v2,
value_type v3) { return (Round(v1)==1) ? Round(v2) : Round(v3); }
value_type ParserInt::Add(value_type v1, value_type v2) { return Round(v1) + Round(v2); }
value_type ParserInt::Sub(value_type v1, value_type v2) { return Round(v1) - Round(v2); }
value_type ParserInt::Mul(value_type v1, value_type v2) { return Round(v1) * Round(v2); }
value_type ParserInt::Div(value_type v1, value_type v2) { return Round(v1) / Round(v2); }
value_type ParserInt::Mod(value_type v1, value_type v2) { return Round(v1) % Round(v2); }
namespace mu {
value_type ParserInt::Abs(value_type v) { return (value_type)Round(fabs((double)v)); }
value_type ParserInt::Sign(value_type v) { return (Round(v) < 0) ? -1 : (Round(v) > 0) ? 1 : 0; }
value_type ParserInt::Ite(value_type v1, value_type v2, value_type v3) {
return (Round(v1) == 1) ? Round(v2) : Round(v3);
}
value_type ParserInt::Add(value_type v1, value_type v2) { return Round(v1) + Round(v2); }
value_type ParserInt::Sub(value_type v1, value_type v2) { return Round(v1) - Round(v2); }
value_type ParserInt::Mul(value_type v1, value_type v2) { return Round(v1) * Round(v2); }
value_type ParserInt::Div(value_type v1, value_type v2) { return Round(v1) / Round(v2); }
value_type ParserInt::Mod(value_type v1, value_type v2) { return Round(v1) % Round(v2); }
value_type ParserInt::Shr(value_type v1, value_type v2) { return Round(v1) >> Round(v2); }
value_type ParserInt::Shl(value_type v1, value_type v2) { return Round(v1) << Round(v2); }
value_type ParserInt::LogAnd(value_type v1, value_type v2) { return Round(v1) & Round(v2); }
value_type ParserInt::LogOr(value_type v1, value_type v2) { return Round(v1) | Round(v2); }
value_type ParserInt::LogOr(value_type v1, value_type v2) { return Round(v1) | Round(v2); }
value_type ParserInt::And(value_type v1, value_type v2) { return Round(v1) && Round(v2); }
value_type ParserInt::Or(value_type v1, value_type v2) { return Round(v1) || Round(v2); }
value_type ParserInt::Less(value_type v1, value_type v2) { return Round(v1) < Round(v2); }
value_type ParserInt::Greater(value_type v1, value_type v2) { return Round(v1) > Round(v2); }
value_type ParserInt::LessEq(value_type v1, value_type v2) { return Round(v1) <= Round(v2); }
value_type ParserInt::Or(value_type v1, value_type v2) { return Round(v1) || Round(v2); }
value_type ParserInt::Less(value_type v1, value_type v2) { return Round(v1) < Round(v2); }
value_type ParserInt::Greater(value_type v1, value_type v2) { return Round(v1) > Round(v2); }
value_type ParserInt::LessEq(value_type v1, value_type v2) { return Round(v1) <= Round(v2); }
value_type ParserInt::GreaterEq(value_type v1, value_type v2) { return Round(v1) >= Round(v2); }
value_type ParserInt::Equal(value_type v1, value_type v2) { return Round(v1) == Round(v2); }
value_type ParserInt::NotEqual(value_type v1, value_type v2) { return Round(v1) != Round(v2); }
value_type ParserInt::Equal(value_type v1, value_type v2) { return Round(v1) == Round(v2); }
value_type ParserInt::NotEqual(value_type v1, value_type v2) { return Round(v1) != Round(v2); }
value_type ParserInt::Not(value_type v) { return !Round(v); }
value_type ParserInt::Pow(value_type v1, value_type v2)
{
return std::pow((double)Round(v1), (double)Round(v2));
value_type ParserInt::Pow(value_type v1, value_type v2) {
return std::pow((double)Round(v1), (double)Round(v2));
}
//---------------------------------------------------------------------------
// Unary operator Callbacks: Infix operators
value_type ParserInt::UnaryMinus(value_type v)
{
return -Round(v);
value_type ParserInt::UnaryMinus(value_type v) { return -Round(v); }
//---------------------------------------------------------------------------
value_type ParserInt::Sum(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw ParserError(_T("too few arguments for function sum."));
value_type fRes = 0;
for (int i = 0; i < a_iArgc; ++i) fRes += a_afArg[i];
return fRes;
}
//---------------------------------------------------------------------------
value_type ParserInt::Sum(const value_type* a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw ParserError(_T("too few arguments for function sum."));
value_type ParserInt::Min(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw ParserError(_T("too few arguments for function min."));
value_type fRes=0;
for (int i=0; i<a_iArgc; ++i)
fRes += a_afArg[i];
value_type fRes = a_afArg[0];
for (int i = 0; i < a_iArgc; ++i) fRes = std::min(fRes, a_afArg[i]);
return fRes;
return fRes;
}
//---------------------------------------------------------------------------
value_type ParserInt::Min(const value_type* a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw ParserError( _T("too few arguments for function min.") );
value_type ParserInt::Max(const value_type *a_afArg, int a_iArgc) {
if (!a_iArgc) throw ParserError(_T("too few arguments for function min."));
value_type fRes=a_afArg[0];
for (int i=0; i<a_iArgc; ++i)
fRes = std::min(fRes, a_afArg[i]);
value_type fRes = a_afArg[0];
for (int i = 0; i < a_iArgc; ++i) fRes = std::max(fRes, a_afArg[i]);
return fRes;
}
//---------------------------------------------------------------------------
value_type ParserInt::Max(const value_type* a_afArg, int a_iArgc)
{
if (!a_iArgc)
throw ParserError(_T("too few arguments for function min."));
value_type fRes=a_afArg[0];
for (int i=0; i<a_iArgc; ++i)
fRes = std::max(fRes, a_afArg[i]);
return fRes;
return fRes;
}
//---------------------------------------------------------------------------
// Default value recognition callback
int ParserInt::IsVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal)
{
string_type buf(a_szExpr);
std::size_t pos = buf.find_first_not_of(_T("0123456789"));
int ParserInt::IsVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal) {
string_type buf(a_szExpr);
std::size_t pos = buf.find_first_not_of(_T("0123456789"));
if (pos==std::string::npos)
return 0;
if (pos == std::string::npos) return 0;
stringstream_type stream( buf.substr(0, pos ) );
int iVal(0);
stringstream_type stream(buf.substr(0, pos));
int iVal(0);
stream >> iVal;
if (stream.fail())
return 0;
stream >> iVal;
if (stream.fail()) return 0;
stringstream_type::pos_type iEnd = stream.tellg(); // Position after reading
if (stream.fail())
iEnd = stream.str().length();
stringstream_type::pos_type iEnd = stream.tellg(); // Position after reading
if (stream.fail()) iEnd = stream.str().length();
if (iEnd==(stringstream_type::pos_type)-1)
return 0;
if (iEnd == (stringstream_type::pos_type)-1) return 0;
*a_iPos += (int)iEnd;
*a_fVal = (value_type)iVal;
return 1;
*a_iPos += (int)iEnd;
*a_fVal = (value_type)iVal;
return 1;
}
//---------------------------------------------------------------------------
@ -152,50 +133,41 @@ int ParserInt::IsVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal)
Hey values must be prefixed with "0x" in order to be detected properly.
*/
int ParserInt::IsHexVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal)
{
if (a_szExpr[1]==0 || (a_szExpr[0]!='0' || a_szExpr[1]!='x') )
return 0;
int ParserInt::IsHexVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal) {
if (a_szExpr[1] == 0 || (a_szExpr[0] != '0' || a_szExpr[1] != 'x')) return 0;
unsigned iVal(0);
unsigned iVal(0);
// New code based on streams for UNICODE compliance:
stringstream_type::pos_type nPos(0);
stringstream_type ss(a_szExpr + 2);
ss >> std::hex >> iVal;
nPos = ss.tellg();
// New code based on streams for UNICODE compliance:
stringstream_type::pos_type nPos(0);
stringstream_type ss(a_szExpr + 2);
ss >> std::hex >> iVal;
nPos = ss.tellg();
if (nPos==(stringstream_type::pos_type)0)
if (nPos == (stringstream_type::pos_type)0) return 1;
*a_iPos += (int)(2 + nPos);
*a_fVal = (value_type)iVal;
return 1;
*a_iPos += (int)(2 + nPos);
*a_fVal = (value_type)iVal;
return 1;
}
//---------------------------------------------------------------------------
int ParserInt::IsBinVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal)
{
if (a_szExpr[0]!='#')
return 0;
int ParserInt::IsBinVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fVal) {
if (a_szExpr[0] != '#') return 0;
unsigned iVal(0),
iBits(sizeof(iVal)*8),
i(0);
unsigned iVal(0), iBits(sizeof(iVal) * 8), i(0);
for (i=0; (a_szExpr[i+1]=='0' || a_szExpr[i+1]=='1') && i<iBits; ++i)
iVal |= (int)(a_szExpr[i+1]=='1') << ((iBits-1)-i);
for (i = 0; (a_szExpr[i + 1] == '0' || a_szExpr[i + 1] == '1') && i < iBits; ++i)
iVal |= (int)(a_szExpr[i + 1] == '1') << ((iBits - 1) - i);
if (i==0)
return 0;
if (i == 0) return 0;
if (i==iBits)
throw exception_type(_T("Binary to integer conversion error (overflow)."));
if (i == iBits) throw exception_type(_T("Binary to integer conversion error (overflow)."));
*a_fVal = (unsigned)(iVal >> (iBits-i) );
*a_iPos += i+1;
*a_fVal = (unsigned)(iVal >> (iBits - i));
*a_iPos += i + 1;
return 1;
return 1;
}
//---------------------------------------------------------------------------
@ -203,78 +175,71 @@ int ParserInt::IsBinVal(const char_type *a_szExpr, int *a_iPos, value_type *a_fV
Call ParserBase class constructor and trigger Function, Operator and Constant initialization.
*/
ParserInt::ParserInt()
:ParserBase()
{
AddValIdent(IsVal); // lowest priority
AddValIdent(IsBinVal);
AddValIdent(IsHexVal); // highest priority
ParserInt::ParserInt() : ParserBase() {
AddValIdent(IsVal); // lowest priority
AddValIdent(IsBinVal);
AddValIdent(IsHexVal); // highest priority
InitCharSets();
InitFun();
InitOprt();
InitCharSets();
InitFun();
InitOprt();
}
//---------------------------------------------------------------------------
void ParserInt::InitConst()
{
}
void ParserInt::InitConst() {}
//---------------------------------------------------------------------------
void ParserInt::InitCharSets()
{
DefineNameChars( _T("0123456789_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ") );
DefineOprtChars( _T("+-*^/?<>=!%&|~'_") );
DefineInfixOprtChars( _T("/+-*^?<>=!%&|~'_") );
void ParserInt::InitCharSets() {
DefineNameChars(_T("0123456789_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"));
DefineOprtChars(_T("+-*^/?<>=!%&|~'_"));
DefineInfixOprtChars(_T("/+-*^?<>=!%&|~'_"));
}
//---------------------------------------------------------------------------
/** \brief Initialize the default functions. */
void ParserInt::InitFun()
{
DefineFun( _T("sign"), Sign);
DefineFun( _T("abs"), Abs);
DefineFun( _T("if"), Ite);
DefineFun( _T("sum"), Sum);
DefineFun( _T("min"), Min);
DefineFun( _T("max"), Max);
void ParserInt::InitFun() {
DefineFun(_T("sign"), Sign);
DefineFun(_T("abs"), Abs);
DefineFun(_T("if"), Ite);
DefineFun(_T("sum"), Sum);
DefineFun(_T("min"), Min);
DefineFun(_T("max"), Max);
}
//---------------------------------------------------------------------------
/** \brief Initialize operators. */
void ParserInt::InitOprt()
{
// disable all built in operators, not all of them useful for integer numbers
// (they don't do rounding of values)
EnableBuiltInOprt(false);
void ParserInt::InitOprt() {
// disable all built in operators, not all of them useful for integer numbers
// (they don't do rounding of values)
EnableBuiltInOprt(false);
// Disable all built in operators, they wont work with integer numbers
// since they are designed for floating point numbers
DefineInfixOprt( _T("-"), UnaryMinus);
DefineInfixOprt( _T("!"), Not);
// Disable all built in operators, they wont work with integer numbers
// since they are designed for floating point numbers
DefineInfixOprt(_T("-"), UnaryMinus);
DefineInfixOprt(_T("!"), Not);
DefineOprt( _T("&"), LogAnd, prLOGIC);
DefineOprt( _T("|"), LogOr, prLOGIC);
DefineOprt( _T("&&"), And, prLOGIC);
DefineOprt( _T("||"), Or, prLOGIC);
DefineOprt(_T("&"), LogAnd, prLOGIC);
DefineOprt(_T("|"), LogOr, prLOGIC);
DefineOprt(_T("&&"), And, prLOGIC);
DefineOprt(_T("||"), Or, prLOGIC);
DefineOprt( _T("<"), Less, prCMP);
DefineOprt( _T(">"), Greater, prCMP);
DefineOprt( _T("<="), LessEq, prCMP);
DefineOprt( _T(">="), GreaterEq, prCMP);
DefineOprt( _T("=="), Equal, prCMP);
DefineOprt( _T("!="), NotEqual, prCMP);
DefineOprt(_T("<"), Less, prCMP);
DefineOprt(_T(">"), Greater, prCMP);
DefineOprt(_T("<="), LessEq, prCMP);
DefineOprt(_T(">="), GreaterEq, prCMP);
DefineOprt(_T("=="), Equal, prCMP);
DefineOprt(_T("!="), NotEqual, prCMP);
DefineOprt( _T("+"), Add, prADD_SUB);
DefineOprt( _T("-"), Sub, prADD_SUB);
DefineOprt(_T("+"), Add, prADD_SUB);
DefineOprt(_T("-"), Sub, prADD_SUB);
DefineOprt( _T("*"), Mul, prMUL_DIV);
DefineOprt( _T("/"), Div, prMUL_DIV);
DefineOprt( _T("%"), Mod, prMUL_DIV);
DefineOprt(_T("*"), Mul, prMUL_DIV);
DefineOprt(_T("/"), Div, prMUL_DIV);
DefineOprt(_T("%"), Mod, prMUL_DIV);
DefineOprt( _T("^"), Pow, prPOW, oaRIGHT);
DefineOprt( _T(">>"), Shr, prMUL_DIV+1);
DefineOprt( _T("<<"), Shl, prMUL_DIV+1);
DefineOprt(_T("^"), Pow, prPOW, oaRIGHT);
DefineOprt(_T(">>"), Shr, prMUL_DIV + 1);
DefineOprt(_T("<<"), Shl, prMUL_DIV + 1);
}
} // namespace mu
} // namespace mu

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff