Simplify scoped_push and ScopedGuard

This makes some simplifications to scoped_push and ScopeGuard:

1. ScopeGuard no longer uses ManuallyDrop; the memory management is now
   trivial and no longer requires `unsafe`.

2. The functions `cancel` and `rollback` have been removed, as
   these were unused. They can be added back later if needed.

3. `scoped_push` has been simplified in both signature and implementation.

4. `Projection` is no longer required and has been removed.

Also add some tests.
This commit is contained in:
ridiculousfish 2023-05-27 14:13:09 -07:00 committed by Peter Ammon
parent 777ba6f9d8
commit cfdcaf880f

View file

@ -24,7 +24,7 @@ use num_traits::ToPrimitive;
use once_cell::sync::Lazy;
use std::env;
use std::ffi::{CStr, CString, OsString};
use std::mem::{self, ManuallyDrop};
use std::mem;
use std::ops::{Deref, DerefMut};
use std::os::fd::{AsRawFd, RawFd};
use std::os::unix::prelude::OsStringExt;
@ -1717,16 +1717,6 @@ fn get_executable_path(argv0: &str) -> PathBuf {
std::env::current_exe().unwrap_or_else(|_| PathBuf::from_str(argv0).unwrap())
}
/// Like [`std::mem::replace()`] but provides a reference to the old value in a callback to obtain
/// the replacement value. Useful to avoid errors about multiple references (`&mut T` for `old` then
/// `&T` again in the `new` expression).
pub fn replace_with<T, F: FnOnce(&T) -> T>(old: &mut T, with: F) -> T {
let new = with(old);
std::mem::replace(old, new)
}
pub type Cleanup<T, F> = ScopeGuard<T, F>;
/// A RAII cleanup object. Unlike in C++ where there is no borrow checker, we can't just provide a
/// callback that modifies live objects willy-nilly because then there would be two &mut references
/// to the same object - the original variables we keep around to use and their captured references
@ -1752,47 +1742,19 @@ pub type Cleanup<T, F> = ScopeGuard<T, F>;
///
/// // hello will be written first, then goodbye.
/// ```
pub struct ScopeGuard<T, F: FnOnce(&mut T)> {
captured: ManuallyDrop<T>,
on_drop: Option<F>,
}
pub struct ScopeGuard<T, F: FnOnce(&mut T)>(Option<(T, F)>);
impl<T, F> ScopeGuard<T, F>
where
F: FnOnce(&mut T),
{
impl<T, F: FnOnce(&mut T)> ScopeGuard<T, F> {
/// Creates a new `ScopeGuard` wrapping `value`. The `on_drop` callback is executed when the
/// ScopeGuard's lifetime expires or when it is manually dropped.
pub fn new(value: T, on_drop: F) -> Self {
Self {
captured: ManuallyDrop::new(value),
on_drop: Some(on_drop),
}
Self(Some((value, on_drop)))
}
/// Cancel the unwind operation, e.g. do not call the previously passed-in `on_drop` callback
/// when the current scope expires.
pub fn cancel(guard: &mut Self) {
guard.on_drop.take();
}
/// Cancels the unwind operation like [`ScopeGuard::cancel()`] but also returns the captured
/// value (consuming the `ScopeGuard` in the process).
pub fn rollback(mut guard: Self) -> T {
guard.on_drop.take();
// Safety: we're about to forget the guard altogether
let value = unsafe { ManuallyDrop::take(&mut guard.captured) };
std::mem::forget(guard);
value
}
/// Commits the unwind operation (i.e. applies the provided callback) and returns the captured
/// value (consuming the `ScopeGuard` in the process).
/// Invokes the callback and returns the wrapped value, consuming the ScopeGuard.
pub fn commit(mut guard: Self) -> T {
(guard.on_drop.take().expect("ScopeGuard already canceled!"))(&mut guard.captured);
// Safety: we're about to forget the guard altogether
let value = unsafe { ManuallyDrop::take(&mut guard.captured) };
std::mem::forget(guard);
let (mut value, on_drop) = guard.0.take().expect("Should always have Some value");
on_drop(&mut value);
value
}
}
@ -1801,23 +1763,35 @@ impl<T, F: FnOnce(&mut T)> Deref for ScopeGuard<T, F> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.captured
&self.0.as_ref().unwrap().0
}
}
impl<T, F: FnOnce(&mut T)> DerefMut for ScopeGuard<T, F> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.captured
&mut self.0.as_mut().unwrap().0
}
}
impl<T, F: FnOnce(&mut T)> Drop for ScopeGuard<T, F> {
fn drop(&mut self) {
if let Some(on_drop) = self.on_drop.take() {
on_drop(&mut self.captured);
if let Some((mut value, on_drop)) = self.0.take() {
on_drop(&mut value);
}
// Safety: we're in the Drop so `self` will never be accessed again.
unsafe { ManuallyDrop::drop(&mut self.captured) };
}
}
/// A trait expressing what ScopeGuard can do. This is necessary because scoped_push returns an
/// `impl Trait` object and therefore methods on ScopeGuard which take a self parameter cannot be
/// used.
pub trait ScopeGuarding: DerefMut {
/// Invokes the callback and returns the wrapped value, consuming the ScopeGuard.
fn commit(guard: Self) -> Self::Target;
}
impl<T, F: FnOnce(&mut T)> ScopeGuarding for ScopeGuard<T, F> {
fn commit(guard: Self) -> T {
ScopeGuard::commit(guard)
}
}
@ -1827,22 +1801,15 @@ pub fn scoped_push<Context, Accessor, T>(
mut ctx: Context,
accessor: Accessor,
new_value: T,
) -> impl Deref<Target = Context> + DerefMut<Target = Context>
) -> impl ScopeGuarding<Target = Context>
where
Accessor: Fn(&mut Context) -> &mut T,
T: Copy,
{
let saved_value = mem::replace(accessor(&mut ctx), new_value);
// Store the original/root value, the function to map from the original value to the variables
// we are changing, and a saved snapshot of the previous values of those variables in a tuple,
// then use ScopeGuard's `on_drop` parameter to restore the saved values when the scope ends.
let scope_guard = ScopeGuard::new((ctx, accessor, saved_value), |data| {
let (ref mut ctx, accessor, saved_value) = data;
*accessor(ctx) = *saved_value;
});
// `scope_guard` would deref to the tuple we gave it, so use Projection<T> to map from the tuple
// `(ctx, accessor, saved_value)` to the result of `accessor(ctx)`.
Projection::new(scope_guard, |sg| &sg.0, |sg| &mut sg.0)
let saved = mem::replace(accessor(&mut ctx), new_value);
let restore_saved = move |ctx: &mut Context| {
*accessor(ctx) = saved;
};
ScopeGuard::new(ctx, restore_saved)
}
pub const fn assert_send<T: Send>() {}
@ -1958,56 +1925,6 @@ pub fn get_by_sorted_name<T: Named>(name: &wstr, vals: &'static [T]) -> Option<&
}
}
/// Takes ownership of a variable and `Deref`s/`DerefMut`s into a projection of that variable.
///
/// Can be used as a workaround for the lack of `MutexGuard::map()` to return a `MutexGuard`
/// exposing only a variable of the Mutex-owned object.
pub struct Projection<T, V, F1, F2>
where
F1: Fn(&T) -> &V,
F2: Fn(&mut T) -> &mut V,
{
value: T,
view: F1,
view_mut: F2,
}
impl<T, V, F1, F2> Projection<T, V, F1, F2>
where
F1: Fn(&T) -> &V,
F2: Fn(&mut T) -> &mut V,
{
pub fn new(owned: T, project: F1, project_mut: F2) -> Self {
Projection {
value: owned,
view: project,
view_mut: project_mut,
}
}
}
impl<T, V, F1, F2> Deref for Projection<T, V, F1, F2>
where
F1: Fn(&T) -> &V,
F2: Fn(&mut T) -> &mut V,
{
type Target = V;
fn deref(&self) -> &Self::Target {
(self.view)(&self.value)
}
}
impl<T, V, F1, F2> DerefMut for Projection<T, V, F1, F2>
where
F1: Fn(&T) -> &V,
F2: Fn(&mut T) -> &mut V,
{
fn deref_mut(&mut self) -> &mut Self::Target {
(self.view_mut)(&mut self.value)
}
}
/// A trait to make it more convenient to pass ascii/Unicode strings to functions that can take
/// non-Unicode values. The result is nul-terminated and can be passed to OS functions.
///
@ -2180,6 +2097,7 @@ mod tests {
s[i] = saved;
}
}
/// fish uses the private-use range to encode bytes that could not be decoded using the
/// user's locale. If the input could be decoded, but decoded to private-use codepoints,
/// then fish should also use the direct encoding for those bytes. Verify that characters
@ -2213,6 +2131,76 @@ mod tests {
assert_eq!(wcs2string(&ws), s);
}
}
#[test]
fn test_scoped_push() {
use super::scoped_push;
struct Context {
value: i32,
}
let mut value = 0;
let mut ctx = Context { value };
{
let mut ctx = scoped_push(&mut ctx, |ctx| &mut ctx.value, value + 1);
value = ctx.value;
assert_eq!(value, 1);
{
let mut ctx = scoped_push(&mut ctx, |ctx| &mut ctx.value, value + 1);
assert_eq!(ctx.value, 2);
ctx.value = 5;
assert_eq!(ctx.value, 5);
}
assert_eq!(ctx.value, 1);
}
assert_eq!(ctx.value, 0);
}
#[test]
fn test_scope_guard() {
use super::ScopeGuard;
let relaxed = std::sync::atomic::Ordering::Relaxed;
let counter = std::sync::atomic::AtomicUsize::new(0);
{
let guard = ScopeGuard::new(123, |arg| {
assert_eq!(*arg, 123);
counter.fetch_add(1, relaxed);
});
assert_eq!(counter.load(relaxed), 0);
std::mem::drop(guard);
assert_eq!(counter.load(relaxed), 1);
}
// commit also invokes the callback.
{
let guard = ScopeGuard::new(123, |arg| {
assert_eq!(*arg, 123);
counter.fetch_add(1, relaxed);
});
assert_eq!(counter.load(relaxed), 1);
let val = ScopeGuard::commit(guard);
assert_eq!(counter.load(relaxed), 2);
assert_eq!(val, 123);
}
}
#[test]
fn test_scope_guard_consume() {
// The following pattern works.
use super::{scoped_push, ScopeGuarding};
struct Storage {
value: &'static str,
}
let obj = Storage { value: "nu" };
assert_eq!(obj.value, "nu");
let obj = scoped_push(obj, |obj| &mut obj.value, "mu");
assert_eq!(obj.value, "mu");
let obj = scoped_push(obj, |obj| &mut obj.value, "mu2");
assert_eq!(obj.value, "mu2");
let obj = ScopeGuarding::commit(obj);
assert_eq!(obj.value, "mu");
let obj = ScopeGuarding::commit(obj);
assert_eq!(obj.value, "nu");
}
}
crate::ffi_tests::add_test!("escape_string", tests::test_escape_string);