Make parser functions members of state struct

Also some cleanup:
- removed unnecessary `typedef`s and `using`s
- removed unused TE_FUNCTION3
- separate types for function based on arity
This commit is contained in:
Juho Eerola 2021-07-26 20:46:58 +03:00
parent e27456df24
commit 73bc453eaf
No known key found for this signature in database
GPG key ID: 552C980FFBBED60E

View file

@ -50,7 +50,6 @@ enum {
TE_FUNCTION0,
TE_FUNCTION1,
TE_FUNCTION2,
TE_FUNCTION3,
TOK_NULL,
TOK_ERROR,
TOK_END,
@ -62,28 +61,32 @@ enum {
};
static int get_arity(const int type) {
if (type == TE_FUNCTION3) return 3;
if (type == TE_FUNCTION2) return 2;
if (type == TE_FUNCTION1) return 1;
return 0;
}
typedef struct te_expr {
struct te_expr_t {
int type;
union {
double value;
void *function;
te_fun0 fun0;
te_fun1 fun1;
te_fun2 fun2;
};
te_expr_t *parameters[];
};
te_expr *parameters[];
} te_expr;
using te_builtin = struct {
struct te_builtin {
const wchar_t *name;
void *address;
int type;
};
using state = struct {
struct state {
explicit state(const wchar_t *expr) : start{expr}, next{expr} { next_token(); }
te_expr_t *expr();
union {
double value;
void *function;
@ -91,28 +94,25 @@ using state = struct {
const wchar_t *start;
const wchar_t *next;
int type;
te_error_type_t error;
te_error_type_t error{TE_ERROR_NONE};
private:
void next_token();
te_expr_t *power();
te_expr_t *base();
te_expr_t *factor();
te_expr_t *term();
};
/* Parses the input expression. */
/* Returns NULL on error. */
te_expr *te_compile(const wchar_t *expression, te_error_t *error);
/* Evaluates the expression. */
double te_eval(const te_expr *n);
/* Frees the expression. */
/* This is safe to call on NULL pointers. */
void te_free(te_expr *n);
// TODO: That move there? Ouch. Replace with a proper class with a constructor.
#define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr *[]){__VA_ARGS__}))
#define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr_t *[]){__VA_ARGS__}))
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
static te_expr_t *new_expr(const int type, const te_expr_t *parameters[]) {
const int arity = get_arity(type);
const int psize = sizeof(te_expr *) * arity;
const int size = sizeof(te_expr) + psize;
auto ret = static_cast<te_expr *>(malloc(size));
const int psize = sizeof(te_expr_t *) * arity;
const int size = sizeof(te_expr_t) + psize;
auto ret = static_cast<te_expr_t *>(malloc(size));
// This sets float to 0, which depends on the implementation.
// We rely on IEEE-754 floats anyway, so it's okay.
std::memset(ret, 0, size);
@ -123,7 +123,11 @@ static te_expr *new_expr(const int type, const te_expr *parameters[]) {
return ret;
}
static void te_free_parameters(te_expr *n) {
/* Frees the expression. */
/* This is safe to call on NULL pointers. */
static void te_free(te_expr_t *n);
static void te_free_parameters(te_expr_t *n) {
if (!n) return;
int arity = get_arity(n->type);
// Free all parameters from the back to the front.
@ -133,7 +137,7 @@ static void te_free_parameters(te_expr *n) {
}
}
void te_free(te_expr *n) {
static void te_free(te_expr_t *n) {
if (!n) return;
te_free_parameters(n);
free(n);
@ -261,86 +265,84 @@ static constexpr double divide(double a, double b) {
static constexpr double negate(double a) { return -a; }
static void next_token(state *s) {
s->type = TOK_NULL;
void state::next_token() {
type = TOK_NULL;
do {
if (!*s->next) {
s->type = TOK_END;
if (!*next) {
type = TOK_END;
return;
}
/* Try reading a number. */
if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') {
s->value = fish_wcstod(s->next, const_cast<wchar_t **>(&s->next));
s->type = TOK_NUMBER;
if ((next[0] >= '0' && next[0] <= '9') || next[0] == '.') {
value = fish_wcstod(next, const_cast<wchar_t **>(&next));
type = TOK_NUMBER;
} else {
/* Look for a function call. */
// But not when it's an "x" followed by whitespace
// - that's the alternative multiplication operator.
if (s->next[0] >= 'a' && s->next[0] <= 'z' &&
!(s->next[0] == 'x' && isspace(s->next[1]))) {
if (next[0] >= 'a' && next[0] <= 'z' && !(next[0] == 'x' && isspace(next[1]))) {
const wchar_t *start;
start = s->next;
while ((s->next[0] >= 'a' && s->next[0] <= 'z') ||
(s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_'))
s->next++;
start = next;
while ((next[0] >= 'a' && next[0] <= 'z') || (next[0] >= '0' && next[0] <= '9') ||
(next[0] == '_'))
next++;
const te_builtin *var = find_builtin(start, s->next - start);
const te_builtin *var = find_builtin(start, next - start);
if (var) {
switch (var->type) {
case TE_FUNCTION0:
case TE_FUNCTION1:
case TE_FUNCTION2:
case TE_FUNCTION3:
s->type = var->type;
s->function = var->address;
type = var->type;
function = var->address;
break;
}
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
} else if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
// Our error is more specific, so it takes precedence.
s->type = TOK_ERROR;
s->error = TE_ERROR_UNKNOWN_FUNCTION;
type = TOK_ERROR;
error = TE_ERROR_UNKNOWN_FUNCTION;
}
} else {
/* Look for an operator or special character. */
switch (s->next++[0]) {
switch (next++[0]) {
// The "te_fun2" casts are necessary to pick the right overload.
case '+':
s->type = TOK_INFIX;
s->function = reinterpret_cast<void *>(static_cast<te_fun2>(add));
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(add));
break;
case '-':
s->type = TOK_INFIX;
s->function = reinterpret_cast<void *>(static_cast<te_fun2>(sub));
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(sub));
break;
case 'x':
case '*':
// We've already checked for whitespace above.
s->type = TOK_INFIX;
s->function = reinterpret_cast<void *>(static_cast<te_fun2>(mul));
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(mul));
break;
case '/':
s->type = TOK_INFIX;
s->function = reinterpret_cast<void *>(static_cast<te_fun2>(divide));
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(divide));
break;
case '^':
s->type = TOK_INFIX;
s->function = reinterpret_cast<void *>(static_cast<te_fun2>(pow));
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(pow));
break;
case '%':
s->type = TOK_INFIX;
s->function = reinterpret_cast<void *>(static_cast<te_fun2>(fmod));
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(fmod));
break;
case '(':
s->type = TOK_OPEN;
type = TOK_OPEN;
break;
case ')':
s->type = TOK_CLOSE;
type = TOK_CLOSE;
break;
case ',':
s->type = TOK_SEP;
type = TOK_SEP;
break;
case ' ':
case '\t':
@ -353,126 +355,122 @@ static void next_token(state *s) {
case '&':
case '|':
case '!':
s->type = TOK_ERROR;
s->error = TE_ERROR_LOGICAL_OPERATOR;
type = TOK_ERROR;
error = TE_ERROR_LOGICAL_OPERATOR;
break;
default:
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_OPERATOR;
type = TOK_ERROR;
error = TE_ERROR_MISSING_OPERATOR;
break;
}
}
}
} while (s->type == TOK_NULL);
} while (type == TOK_NULL);
}
static te_expr *expr(state *s);
static te_expr *power(state *s);
static te_expr *base(state *s) {
te_expr_t *state::base() {
/* <base> = <constant> | <function-0> {"(" ")"} | <function-1> <power> |
* <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
te_expr *ret;
te_expr_t *ret;
int arity;
auto previous = s->start;
auto next = s->next;
switch (s->type) {
auto previous = start;
auto next = this->next;
switch (type) {
case TOK_NUMBER:
ret = new_expr(TE_CONSTANT, nullptr);
ret->value = s->value;
next_token(s);
if (s->type == TOK_NUMBER || s->type == TE_FUNCTION0) {
ret->value = value;
next_token();
if (type == TOK_NUMBER || type == TE_FUNCTION0) {
// Two numbers after each other:
// math '5 2'
// math '3 pi'
// (of course 3 pi could also be interpreted as 3 x pi)
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_OPERATOR;
type = TOK_ERROR;
error = TE_ERROR_MISSING_OPERATOR;
// The error should be given *between*
// the last two tokens.
// Since these are two separate numbers there is at least
// one space between.
s->start = previous;
s->next = next + 1;
start = previous;
this->next = next + 1;
}
break;
case TE_FUNCTION0:
ret = new_expr(s->type, nullptr);
ret->function = s->function;
next_token(s);
if (s->type == TOK_OPEN) {
next_token(s);
if (s->type == TOK_CLOSE) {
next_token(s);
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
ret = new_expr(type, nullptr);
ret->fun0 = reinterpret_cast<te_fun0>(function);
next_token();
if (type == TOK_OPEN) {
next_token();
if (type == TOK_CLOSE) {
next_token();
} else if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type = TOK_ERROR;
error = TE_ERROR_MISSING_CLOSING_PAREN;
}
}
break;
case TE_FUNCTION1:
case TE_FUNCTION2:
case TE_FUNCTION3: {
arity = get_arity(s->type);
case TE_FUNCTION2: {
arity = get_arity(type);
ret = new_expr(s->type, nullptr);
ret->function = s->function;
next_token(s);
ret = new_expr(type, nullptr);
ret->fun0 = reinterpret_cast<te_fun0>(function);
next_token();
bool have_open = false;
if (s->type == TOK_OPEN) {
if (type == TOK_OPEN) {
// If we *have* an opening parenthesis,
// we need to consume it and
// expect a closing one.
have_open = true;
next_token(s);
next_token();
}
int i;
for (i = 0; i < arity; i++) {
ret->parameters[i] = expr(s);
if (s->type != TOK_SEP) {
ret->parameters[i] = expr();
if (type != TOK_SEP) {
break;
}
next_token(s);
next_token();
}
if (!have_open && i == arity - 1) {
break;
}
if (have_open && s->type == TOK_CLOSE && i == arity - 1) {
if (have_open && type == TOK_CLOSE && i == arity - 1) {
// We have an opening and a closing paren, consume the closing one and done.
next_token(s);
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNEXPECTED_TOKEN) {
next_token();
} else if (type != TOK_ERROR || error == TE_ERROR_UNEXPECTED_TOKEN) {
// If we had the right number of arguments, we're missing a closing paren.
if (have_open && i == arity - 1 && s->type != TOK_ERROR) {
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
if (have_open && i == arity - 1 && type != TOK_ERROR) {
error = TE_ERROR_MISSING_CLOSING_PAREN;
} else {
// Otherwise we complain about the number of arguments *first*,
// a closing parenthesis should be more obvious.
s->error = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS;
error = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS;
}
s->type = TOK_ERROR;
type = TOK_ERROR;
}
break;
}
case TOK_OPEN:
next_token(s);
ret = expr(s);
if (s->type == TOK_CLOSE) {
next_token(s);
} else if (s->type != TOK_ERROR && s->type != TOK_END && s->error == TE_ERROR_NONE) {
s->type = TOK_ERROR;
s->error = TE_ERROR_TOO_MANY_ARGS;
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
next_token();
ret = expr();
if (type == TOK_CLOSE) {
next_token();
} else if (type != TOK_ERROR && type != TOK_END && error == TE_ERROR_NONE) {
type = TOK_ERROR;
error = TE_ERROR_TOO_MANY_ARGS;
} else if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type = TOK_ERROR;
error = TE_ERROR_MISSING_CLOSING_PAREN;
}
break;
@ -483,15 +481,15 @@ static te_expr *base(state *s) {
// Instead of introducing another error, just call it
// "too few args".
ret = new_expr(0, nullptr);
s->type = TOK_ERROR;
s->error = TE_ERROR_TOO_FEW_ARGS;
type = TOK_ERROR;
error = TE_ERROR_TOO_FEW_ARGS;
ret->value = NAN;
break;
default:
ret = new_expr(0, nullptr);
if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
s->type = TOK_ERROR;
s->error = TE_ERROR_UNEXPECTED_TOKEN;
if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type = TOK_ERROR;
error = TE_ERROR_UNEXPECTED_TOKEN;
}
ret->value = NAN;
break;
@ -500,46 +498,45 @@ static te_expr *base(state *s) {
return ret;
}
static te_expr *power(state *s) {
te_expr_t *state::power() {
/* <power> = {("-" | "+")} <base> */
int sign = 1;
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
if (s->function == sub) sign = -sign;
next_token(s);
while (type == TOK_INFIX && (function == add || function == sub)) {
if (function == sub) sign = -sign;
next_token();
}
te_expr *ret;
te_expr_t *ret;
if (sign == 1) {
ret = base(s);
ret = base();
} else {
ret = NEW_EXPR(TE_FUNCTION1, base(s));
ret->function = reinterpret_cast<void *>(negate);
ret = NEW_EXPR(TE_FUNCTION1, base());
ret->fun1 = negate;
}
return ret;
}
static te_expr *factor(state *s) {
te_expr_t *state::factor() {
/* <factor> = <power> {"^" <power>} */
te_expr *ret = power(s);
te_expr_t *ret = power();
te_expr *insertion = nullptr;
te_expr_t *insertion = nullptr;
while (s->type == TOK_INFIX &&
(s->function == reinterpret_cast<void *>(static_cast<te_fun2>(pow)))) {
auto t = reinterpret_cast<te_fun2>(s->function);
next_token(s);
while (type == TOK_INFIX && (function == reinterpret_cast<void *>(static_cast<te_fun2>(pow)))) {
auto t = reinterpret_cast<te_fun2>(function);
next_token();
if (insertion) {
/* Make exponentiation go right-to-left. */
te_expr *insert = NEW_EXPR(TE_FUNCTION2, insertion->parameters[1], power(s));
insert->function = reinterpret_cast<void *>(t);
te_expr_t *insert = NEW_EXPR(TE_FUNCTION2, insertion->parameters[1], power());
insert->fun2 = t;
insertion->parameters[1] = insert;
insertion = insert;
} else {
ret = NEW_EXPR(TE_FUNCTION2, ret, power(s));
ret->function = reinterpret_cast<void *>(t);
ret = NEW_EXPR(TE_FUNCTION2, ret, power());
ret->fun2 = t;
insertion = ret;
}
}
@ -547,63 +544,60 @@ static te_expr *factor(state *s) {
return ret;
}
static te_expr *term(state *s) {
te_expr_t *state::term() {
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
te_expr *ret = factor(s);
te_expr_t *ret = factor();
while (s->type == TOK_INFIX &&
(s->function == reinterpret_cast<void *>(static_cast<te_fun2>(mul)) ||
s->function == reinterpret_cast<void *>(static_cast<te_fun2>(divide)) ||
s->function == reinterpret_cast<void *>(static_cast<te_fun2>(fmod)))) {
auto t = reinterpret_cast<te_fun2>(s->function);
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2, ret, factor(s));
ret->function = reinterpret_cast<void *>(t);
while (type == TOK_INFIX &&
(function == reinterpret_cast<void *>(static_cast<te_fun2>(mul)) ||
function == reinterpret_cast<void *>(static_cast<te_fun2>(divide)) ||
function == reinterpret_cast<void *>(static_cast<te_fun2>(fmod)))) {
auto t = reinterpret_cast<te_fun2>(function);
next_token();
ret = NEW_EXPR(TE_FUNCTION2, ret, factor());
ret->fun2 = t;
}
return ret;
}
static te_expr *expr(state *s) {
te_expr_t *state::expr() {
/* <expr> = <term> {("+" | "-") <term>} */
te_expr *ret = term(s);
te_expr_t *ret = term();
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
auto t = reinterpret_cast<te_fun2>(s->function);
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2, ret, term(s));
ret->function = reinterpret_cast<void *>(t);
while (type == TOK_INFIX && (function == add || function == sub)) {
auto t = reinterpret_cast<te_fun2>(function);
next_token();
ret = NEW_EXPR(TE_FUNCTION2, ret, term());
ret->fun2 = t;
}
return ret;
}
#define TE_FUN(...) ((double (*)(__VA_ARGS__))n->function)
#define M(e) te_eval(n->parameters[e])
double te_eval(const te_expr *n) {
/* Evaluates the expression. */
static double te_eval(const te_expr_t *n) {
if (!n) return NAN;
switch (n->type) {
case TE_CONSTANT:
return n->value;
case TE_FUNCTION0:
return TE_FUN(void)();
return n->fun0();
case TE_FUNCTION1:
return TE_FUN(double)(M(0));
return n->fun1(M(0));
case TE_FUNCTION2:
return TE_FUN(double, double)(M(0), M(1));
case TE_FUNCTION3:
return TE_FUN(double, double, double)(M(0), M(1), M(2));
return n->fun2(M(0), M(1));
default:
return NAN;
}
}
#undef TE_FUN
#undef M
static void optimize(te_expr *n) {
static void optimize(te_expr_t *n) {
/* Evaluates as much as possible. */
if (!n || n->type == TE_CONSTANT) return;
@ -623,13 +617,12 @@ static void optimize(te_expr *n) {
}
}
te_expr *te_compile(const wchar_t *expression, te_error_t *error) {
state s;
s.start = s.next = expression;
s.error = TE_ERROR_NONE;
/* Parses the input expression. */
/* Returns NULL on error. */
static te_expr_t *te_compile(const wchar_t *expression, te_error_t *error) {
state s{expression};
next_token(&s);
te_expr *root = expr(&s);
te_expr_t *root = s.expr();
if (s.type != TOK_END) {
te_free(root);
@ -652,7 +645,7 @@ te_expr *te_compile(const wchar_t *expression, te_error_t *error) {
}
double te_interp(const wchar_t *expression, te_error_t *error) {
te_expr *n = te_compile(expression, error);
te_expr_t *n = te_compile(expression, error);
double ret;
if (n) {
ret = te_eval(n);