Switch to direct evaluation

Both constant values and functions are represented as `te_fun_t`.
This struct defines `operator()` which evaluates the function with the
given arguments.
This commit is contained in:
Juho Eerola 2021-07-27 01:41:12 +03:00
parent 73bc453eaf
commit 074537a8ac
No known key found for this signature in database
GPG key ID: 552C980FFBBED60E

View file

@ -27,29 +27,68 @@
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iterator>
#include <utility>
#include <vector>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "wutil.h"
// TODO: It would be nice not to rely on a typedef for this, especially one that can only do
// functions with two args.
using te_fun2 = double (*)(double, double);
using te_fun1 = double (*)(double);
using te_fun0 = double (*)();
struct te_fun_t {
using fn_2 = double (*)(double, double);
using fn_1 = double (*)(double);
using fn_0 = double (*)();
enum {
TE_CONSTANT = 0,
TE_FUNCTION0,
TE_FUNCTION1,
TE_FUNCTION2,
te_fun_t(double val) : type_{CONSTANT}, arity_{0}, value{val} {}
te_fun_t(fn_0 fn) : type_{FUNCTION}, arity_{0}, fun0{fn} {}
te_fun_t(fn_1 fn) : type_{FUNCTION}, arity_{1}, fun1{fn} {}
te_fun_t(fn_2 fn) : type_{FUNCTION}, arity_{2}, fun2{fn} {}
bool operator==(fn_2 fn) const { return arity_ == 2 && fun2 == fn; }
[[nodiscard]] int arity() const { return arity_; }
double operator()() const {
assert(arity_ == 0);
return type_ == CONSTANT ? value : fun0();
}
double operator()(double a, double b) const {
assert(arity_ == 2);
return fun2(a, b);
}
double operator()(const std::vector<double> &args) const {
if (arity_ != static_cast<int>(args.size())) return NAN;
switch (arity_) {
case 0:
return type_ == CONSTANT ? value : fun0();
case 1:
return fun1(args[0]);
case 2:
return fun2(args[0], args[1]);
}
return NAN;
}
private:
enum {
CONSTANT,
FUNCTION,
} type_;
int arity_;
union {
double value;
fn_0 fun0;
fn_1 fun1;
fn_2 fun2;
};
};
enum te_state_type_t {
TOK_NULL,
TOK_ERROR,
TOK_END,
@ -57,96 +96,42 @@ enum {
TOK_OPEN,
TOK_CLOSE,
TOK_NUMBER,
TOK_FUNCTION,
TOK_INFIX
};
static int get_arity(const int type) {
if (type == TE_FUNCTION2) return 2;
if (type == TE_FUNCTION1) return 1;
return 0;
}
struct te_expr_t {
int type;
union {
double value;
te_fun0 fun0;
te_fun1 fun1;
te_fun2 fun2;
};
te_expr_t *parameters[];
};
struct te_builtin {
const wchar_t *name;
void *address;
int type;
};
struct state {
explicit state(const wchar_t *expr) : start{expr}, next{expr} { next_token(); }
te_expr_t *expr();
explicit state(const wchar_t *expr) : start_{expr}, next_{expr} { next_token(); }
double eval() { return expr(); }
union {
double value;
void *function;
};
const wchar_t *start;
const wchar_t *next;
int type;
te_error_type_t error{TE_ERROR_NONE};
[[nodiscard]] te_error_t error() const {
if (type_ == TOK_END) return {TE_ERROR_NONE, 0};
te_error_t err{error_, static_cast<int>(next_ - start_) + 1};
if (error_ == TE_ERROR_NONE) {
// If we're not at the end but there's no error, then that means we have a
// superfluous token that we have no idea what to do with.
err.type = TE_ERROR_TOO_MANY_ARGS;
}
return err;
}
private:
te_state_type_t type_{TOK_NULL};
te_error_type_t error_{TE_ERROR_NONE};
const wchar_t *start_;
const wchar_t *next_;
te_fun_t current_{NAN};
void next_token();
te_expr_t *power();
te_expr_t *base();
te_expr_t *factor();
te_expr_t *term();
double expr();
double power();
double base();
double factor();
double term();
};
// TODO: That move there? Ouch. Replace with a proper class with a constructor.
#define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr_t *[]){__VA_ARGS__}))
static te_expr_t *new_expr(const int type, const te_expr_t *parameters[]) {
const int arity = get_arity(type);
const int psize = sizeof(te_expr_t *) * arity;
const int size = sizeof(te_expr_t) + psize;
auto ret = static_cast<te_expr_t *>(malloc(size));
// This sets float to 0, which depends on the implementation.
// We rely on IEEE-754 floats anyway, so it's okay.
std::memset(ret, 0, size);
if (arity && parameters) {
std::memcpy(ret->parameters, parameters, psize);
}
ret->type = type;
return ret;
}
/* Frees the expression. */
/* This is safe to call on NULL pointers. */
static void te_free(te_expr_t *n);
static void te_free_parameters(te_expr_t *n) {
if (!n) return;
int arity = get_arity(n->type);
// Free all parameters from the back to the front.
while (arity > 0) {
te_free(n->parameters[arity - 1]);
arity--;
}
}
static void te_free(te_expr_t *n) {
if (!n) return;
te_free_parameters(n);
free(n);
}
static constexpr double pi() { return M_PI; }
static constexpr double tau() { return 2 * M_PI; }
static constexpr double e() { return M_E; }
static double fac(double a) { /* simplest version of fac */
if (a < 0.0) return NAN;
if (a > UINT_MAX) return INFINITY;
@ -203,40 +188,47 @@ static double min(double a, double b) {
return a < b ? a : b;
}
struct te_builtin {
const wchar_t *name;
te_fun_t fn;
};
static const te_builtin functions[] = {
/* must be in alphabetical order */
{L"abs", reinterpret_cast<void *>(static_cast<te_fun1>(std::fabs)), TE_FUNCTION1},
{L"acos", reinterpret_cast<void *>(static_cast<te_fun1>(std::acos)), TE_FUNCTION1},
{L"asin", reinterpret_cast<void *>(static_cast<te_fun1>(std::asin)), TE_FUNCTION1},
{L"atan", reinterpret_cast<void *>(static_cast<te_fun1>(std::atan)), TE_FUNCTION1},
{L"atan2", reinterpret_cast<void *>(static_cast<te_fun2>(std::atan2)), TE_FUNCTION2},
{L"bitand", reinterpret_cast<void *>(static_cast<te_fun2>(bit_and)), TE_FUNCTION2},
{L"bitor", reinterpret_cast<void *>(static_cast<te_fun2>(bit_or)), TE_FUNCTION2},
{L"bitxor", reinterpret_cast<void *>(static_cast<te_fun2>(bit_xor)), TE_FUNCTION2},
{L"ceil", reinterpret_cast<void *>(static_cast<te_fun1>(std::ceil)), TE_FUNCTION1},
{L"cos", reinterpret_cast<void *>(static_cast<te_fun1>(std::cos)), TE_FUNCTION1},
{L"cosh", reinterpret_cast<void *>(static_cast<te_fun1>(std::cosh)), TE_FUNCTION1},
{L"e", reinterpret_cast<void *>(static_cast<te_fun0>(e)), TE_FUNCTION0},
{L"exp", reinterpret_cast<void *>(static_cast<te_fun1>(std::exp)), TE_FUNCTION1},
{L"fac", reinterpret_cast<void *>(static_cast<te_fun1>(fac)), TE_FUNCTION1},
{L"floor", reinterpret_cast<void *>(static_cast<te_fun1>(std::floor)), TE_FUNCTION1},
{L"ln", reinterpret_cast<void *>(static_cast<te_fun1>(std::log)), TE_FUNCTION1},
{L"log", reinterpret_cast<void *>(static_cast<te_fun1>(std::log10)), TE_FUNCTION1},
{L"log10", reinterpret_cast<void *>(static_cast<te_fun1>(std::log10)), TE_FUNCTION1},
{L"log2", reinterpret_cast<void *>(static_cast<te_fun1>(std::log2)), TE_FUNCTION1},
{L"max", reinterpret_cast<void *>(static_cast<te_fun2>(max)), TE_FUNCTION2},
{L"min", reinterpret_cast<void *>(static_cast<te_fun2>(min)), TE_FUNCTION2},
{L"ncr", reinterpret_cast<void *>(static_cast<te_fun2>(ncr)), TE_FUNCTION2},
{L"npr", reinterpret_cast<void *>(static_cast<te_fun2>(npr)), TE_FUNCTION2},
{L"pi", reinterpret_cast<void *>(static_cast<te_fun0>(pi)), TE_FUNCTION0},
{L"pow", reinterpret_cast<void *>(static_cast<te_fun2>(std::pow)), TE_FUNCTION2},
{L"round", reinterpret_cast<void *>(static_cast<te_fun1>(std::round)), TE_FUNCTION1},
{L"sin", reinterpret_cast<void *>(static_cast<te_fun1>(std::sin)), TE_FUNCTION1},
{L"sinh", reinterpret_cast<void *>(static_cast<te_fun1>(std::sinh)), TE_FUNCTION1},
{L"sqrt", reinterpret_cast<void *>(static_cast<te_fun1>(std::sqrt)), TE_FUNCTION1},
{L"tan", reinterpret_cast<void *>(static_cast<te_fun1>(std::tan)), TE_FUNCTION1},
{L"tanh", reinterpret_cast<void *>(static_cast<te_fun1>(std::tanh)), TE_FUNCTION1},
{L"tau", reinterpret_cast<void *>(static_cast<te_fun0>(tau)), TE_FUNCTION0},
// clang-format off
{L"abs", std::fabs},
{L"acos", std::acos},
{L"asin", std::asin},
{L"atan", std::atan},
{L"atan2", std::atan2},
{L"bitand", bit_and},
{L"bitor", bit_or},
{L"bitxor", bit_xor},
{L"ceil", std::ceil},
{L"cos", std::cos},
{L"cosh", std::cosh},
{L"e", M_E},
{L"exp", std::exp},
{L"fac", fac},
{L"floor", std::floor},
{L"ln", std::log},
{L"log", std::log10},
{L"log10", std::log10},
{L"log2", std::log2},
{L"max", max},
{L"min", min},
{L"ncr", ncr},
{L"npr", npr},
{L"pi", M_PI},
{L"pow", std::pow},
{L"round", std::round},
{L"sin", std::sin},
{L"sinh", std::sinh},
{L"sqrt", std::sqrt},
{L"tan", std::tan},
{L"tanh", std::tanh},
{L"tau", 2 * M_PI},
// clang-format on
};
static const te_builtin *find_builtin(const wchar_t *name, int len) {
@ -263,86 +255,76 @@ static constexpr double divide(double a, double b) {
return b ? a / b : a ? copysign(1, a) * copysign(1, b) * INFINITY : NAN;
}
static constexpr double negate(double a) { return -a; }
void state::next_token() {
type = TOK_NULL;
type_ = TOK_NULL;
do {
if (!*next) {
type = TOK_END;
if (!*next_) {
type_ = TOK_END;
return;
}
/* Try reading a number. */
if ((next[0] >= '0' && next[0] <= '9') || next[0] == '.') {
value = fish_wcstod(next, const_cast<wchar_t **>(&next));
type = TOK_NUMBER;
if ((next_[0] >= '0' && next_[0] <= '9') || next_[0] == '.') {
current_ = fish_wcstod(next_, const_cast<wchar_t **>(&next_));
type_ = TOK_NUMBER;
} else {
/* Look for a function call. */
// But not when it's an "x" followed by whitespace
// - that's the alternative multiplication operator.
if (next[0] >= 'a' && next[0] <= 'z' && !(next[0] == 'x' && isspace(next[1]))) {
const wchar_t *start;
start = next;
while ((next[0] >= 'a' && next[0] <= 'z') || (next[0] >= '0' && next[0] <= '9') ||
(next[0] == '_'))
next++;
if (next_[0] >= 'a' && next_[0] <= 'z' && !(next_[0] == 'x' && isspace(next_[1]))) {
const wchar_t *start = next_;
while ((next_[0] >= 'a' && next_[0] <= 'z') ||
(next_[0] >= '0' && next_[0] <= '9') || (next_[0] == '_'))
next_++;
const te_builtin *var = find_builtin(start, next - start);
const te_builtin *var = find_builtin(start, next_ - start);
if (var) {
switch (var->type) {
case TE_FUNCTION0:
case TE_FUNCTION1:
case TE_FUNCTION2:
type = var->type;
function = var->address;
break;
}
} else if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type_ = TOK_FUNCTION;
current_ = var->fn;
} else if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
// Our error is more specific, so it takes precedence.
type = TOK_ERROR;
error = TE_ERROR_UNKNOWN_FUNCTION;
type_ = TOK_ERROR;
error_ = TE_ERROR_UNKNOWN_FUNCTION;
}
} else {
/* Look for an operator or special character. */
switch (next++[0]) {
// The "te_fun2" casts are necessary to pick the right overload.
switch (next_++[0]) {
case '+':
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(add));
type_ = TOK_INFIX;
current_ = add;
break;
case '-':
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(sub));
type_ = TOK_INFIX;
current_ = sub;
break;
case 'x':
case '*':
// We've already checked for whitespace above.
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(mul));
type_ = TOK_INFIX;
current_ = mul;
break;
case '/':
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(divide));
type_ = TOK_INFIX;
current_ = divide;
break;
case '^':
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(pow));
type_ = TOK_INFIX;
current_ = pow;
break;
case '%':
type = TOK_INFIX;
function = reinterpret_cast<void *>(static_cast<te_fun2>(fmod));
type_ = TOK_INFIX;
current_ = fmod;
break;
case '(':
type = TOK_OPEN;
type_ = TOK_OPEN;
break;
case ')':
type = TOK_CLOSE;
type_ = TOK_CLOSE;
break;
case ',':
type = TOK_SEP;
type_ = TOK_SEP;
break;
case ' ':
case '\t':
@ -355,124 +337,121 @@ void state::next_token() {
case '&':
case '|':
case '!':
type = TOK_ERROR;
error = TE_ERROR_LOGICAL_OPERATOR;
type_ = TOK_ERROR;
error_ = TE_ERROR_LOGICAL_OPERATOR;
break;
default:
type = TOK_ERROR;
error = TE_ERROR_MISSING_OPERATOR;
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_OPERATOR;
break;
}
}
}
} while (type == TOK_NULL);
} while (type_ == TOK_NULL);
}
te_expr_t *state::base() {
double state::base() {
/* <base> = <constant> | <function-0> {"(" ")"} | <function-1> <power> |
* <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
te_expr_t *ret;
int arity;
auto previous = start;
auto next = this->next;
switch (type) {
case TOK_NUMBER:
ret = new_expr(TE_CONSTANT, nullptr);
ret->value = value;
auto previous = start_;
auto next = next_;
switch (type_) {
case TOK_NUMBER: {
auto val = current_();
next_token();
if (type == TOK_NUMBER || type == TE_FUNCTION0) {
if (type_ == TOK_NUMBER || type_ == TOK_FUNCTION) {
// Two numbers after each other:
// math '5 2'
// math '3 pi'
// (of course 3 pi could also be interpreted as 3 x pi)
type = TOK_ERROR;
error = TE_ERROR_MISSING_OPERATOR;
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_OPERATOR;
// The error should be given *between*
// the last two tokens.
// Since these are two separate numbers there is at least
// one space between.
start = previous;
this->next = next + 1;
start_ = previous;
next_ = next + 1;
}
break;
return val;
}
case TE_FUNCTION0:
ret = new_expr(type, nullptr);
ret->fun0 = reinterpret_cast<te_fun0>(function);
next_token();
if (type == TOK_OPEN) {
next_token();
if (type == TOK_CLOSE) {
next_token();
} else if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type = TOK_ERROR;
error = TE_ERROR_MISSING_CLOSING_PAREN;
}
}
break;
case TE_FUNCTION1:
case TE_FUNCTION2: {
arity = get_arity(type);
ret = new_expr(type, nullptr);
ret->fun0 = reinterpret_cast<te_fun0>(function);
case TOK_FUNCTION: {
auto fn = current_;
int arity = fn.arity();
next_token();
bool have_open = false;
if (type == TOK_OPEN) {
const bool have_open = type_ == TOK_OPEN;
if (have_open) {
// If we *have* an opening parenthesis,
// we need to consume it and
// expect a closing one.
have_open = true;
next_token();
}
if (arity == 0) {
if (have_open) {
if (type_ == TOK_CLOSE) {
next_token();
} else if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_CLOSING_PAREN;
break;
}
}
return fn();
}
std::vector<double> parameters;
int i;
for (i = 0; i < arity; i++) {
ret->parameters[i] = expr();
if (type != TOK_SEP) {
parameters.push_back(expr());
if (type_ != TOK_SEP) {
break;
}
next_token();
}
if (!have_open && i == arity - 1) {
break;
return fn(parameters);
}
if (have_open && type == TOK_CLOSE && i == arity - 1) {
if (have_open && type_ == TOK_CLOSE && i == arity - 1) {
// We have an opening and a closing paren, consume the closing one and done.
next_token();
} else if (type != TOK_ERROR || error == TE_ERROR_UNEXPECTED_TOKEN) {
return fn(parameters);
}
if (type_ != TOK_ERROR || error_ == TE_ERROR_UNEXPECTED_TOKEN) {
// If we had the right number of arguments, we're missing a closing paren.
if (have_open && i == arity - 1 && type != TOK_ERROR) {
error = TE_ERROR_MISSING_CLOSING_PAREN;
if (have_open && i == arity - 1 && type_ != TOK_ERROR) {
error_ = TE_ERROR_MISSING_CLOSING_PAREN;
} else {
// Otherwise we complain about the number of arguments *first*,
// a closing parenthesis should be more obvious.
error = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS;
error_ = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS;
}
type = TOK_ERROR;
type_ = TOK_ERROR;
}
break;
}
case TOK_OPEN:
case TOK_OPEN: {
next_token();
ret = expr();
if (type == TOK_CLOSE) {
auto ret = expr();
if (type_ == TOK_CLOSE) {
next_token();
} else if (type != TOK_ERROR && type != TOK_END && error == TE_ERROR_NONE) {
type = TOK_ERROR;
error = TE_ERROR_TOO_MANY_ARGS;
} else if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type = TOK_ERROR;
error = TE_ERROR_MISSING_CLOSING_PAREN;
return ret;
}
if (type_ != TOK_ERROR && type_ != TOK_END && error_ == TE_ERROR_NONE) {
type_ = TOK_ERROR;
error_ = TE_ERROR_TOO_MANY_ARGS;
} else if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
type_ = TOK_ERROR;
error_ = TE_ERROR_MISSING_CLOSING_PAREN;
}
break;
}
case TOK_END:
// The expression ended before we expected it.
@ -480,178 +459,67 @@ te_expr_t *state::base() {
// This means we have too few things.
// Instead of introducing another error, just call it
// "too few args".
ret = new_expr(0, nullptr);
type = TOK_ERROR;
error = TE_ERROR_TOO_FEW_ARGS;
ret->value = NAN;
type_ = TOK_ERROR;
error_ = TE_ERROR_TOO_FEW_ARGS;
break;
default:
ret = new_expr(0, nullptr);
if (type != TOK_ERROR || error == TE_ERROR_UNKNOWN) {
type = TOK_ERROR;
error = TE_ERROR_UNEXPECTED_TOKEN;
if (type_ != TOK_ERROR || error_ == TE_ERROR_UNKNOWN) {
type_ = TOK_ERROR;
error_ = TE_ERROR_UNEXPECTED_TOKEN;
}
ret->value = NAN;
break;
}
return ret;
return NAN;
}
te_expr_t *state::power() {
double state::power() {
/* <power> = {("-" | "+")} <base> */
int sign = 1;
while (type == TOK_INFIX && (function == add || function == sub)) {
if (function == sub) sign = -sign;
while (type_ == TOK_INFIX && (current_ == add || current_ == sub)) {
if (current_ == sub) sign = -sign;
next_token();
}
te_expr_t *ret;
if (sign == 1) {
ret = base();
} else {
ret = NEW_EXPR(TE_FUNCTION1, base());
ret->fun1 = negate;
}
return ret;
return sign * base();
}
te_expr_t *state::factor() {
double state::factor() {
/* <factor> = <power> {"^" <power>} */
te_expr_t *ret = power();
auto ret = power();
te_expr_t *insertion = nullptr;
while (type == TOK_INFIX && (function == reinterpret_cast<void *>(static_cast<te_fun2>(pow)))) {
auto t = reinterpret_cast<te_fun2>(function);
if (type_ == TOK_INFIX && current_ == pow) {
next_token();
if (insertion) {
/* Make exponentiation go right-to-left. */
te_expr_t *insert = NEW_EXPR(TE_FUNCTION2, insertion->parameters[1], power());
insert->fun2 = t;
insertion->parameters[1] = insert;
insertion = insert;
} else {
ret = NEW_EXPR(TE_FUNCTION2, ret, power());
ret->fun2 = t;
insertion = ret;
}
ret = pow(ret, factor());
}
return ret;
}
te_expr_t *state::term() {
double state::term() {
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
te_expr_t *ret = factor();
while (type == TOK_INFIX &&
(function == reinterpret_cast<void *>(static_cast<te_fun2>(mul)) ||
function == reinterpret_cast<void *>(static_cast<te_fun2>(divide)) ||
function == reinterpret_cast<void *>(static_cast<te_fun2>(fmod)))) {
auto t = reinterpret_cast<te_fun2>(function);
auto ret = factor();
while (type_ == TOK_INFIX && (current_ == mul || current_ == divide || current_ == fmod)) {
auto fn = current_;
next_token();
ret = NEW_EXPR(TE_FUNCTION2, ret, factor());
ret->fun2 = t;
ret = fn(ret, factor());
}
return ret;
}
te_expr_t *state::expr() {
double state::expr() {
/* <expr> = <term> {("+" | "-") <term>} */
te_expr_t *ret = term();
while (type == TOK_INFIX && (function == add || function == sub)) {
auto t = reinterpret_cast<te_fun2>(function);
auto ret = term();
while (type_ == TOK_INFIX && (current_ == add || current_ == sub)) {
auto fn = current_;
next_token();
ret = NEW_EXPR(TE_FUNCTION2, ret, term());
ret->fun2 = t;
ret = fn(ret, term());
}
return ret;
}
#define M(e) te_eval(n->parameters[e])
/* Evaluates the expression. */
static double te_eval(const te_expr_t *n) {
if (!n) return NAN;
switch (n->type) {
case TE_CONSTANT:
return n->value;
case TE_FUNCTION0:
return n->fun0();
case TE_FUNCTION1:
return n->fun1(M(0));
case TE_FUNCTION2:
return n->fun2(M(0), M(1));
default:
return NAN;
}
}
#undef M
static void optimize(te_expr_t *n) {
/* Evaluates as much as possible. */
if (!n || n->type == TE_CONSTANT) return;
const int arity = get_arity(n->type);
bool known = true;
for (int i = 0; i < arity; ++i) {
optimize(n->parameters[i]);
if ((n->parameters[i])->type != TE_CONSTANT) {
known = false;
}
}
if (known) {
const double value = te_eval(n);
te_free_parameters(n);
n->type = TE_CONSTANT;
n->value = value;
}
}
/* Parses the input expression. */
/* Returns NULL on error. */
static te_expr_t *te_compile(const wchar_t *expression, te_error_t *error) {
state s{expression};
te_expr_t *root = s.expr();
if (s.type != TOK_END) {
te_free(root);
if (error) {
error->position = (s.next - s.start) + 1;
if (s.error != TE_ERROR_NONE) {
error->type = s.error;
} else {
// If we're not at the end but there's no error, then that means we have a
// superfluous token that we have no idea what to do with.
error->type = TE_ERROR_TOO_MANY_ARGS;
}
}
return nullptr;
} else {
optimize(root);
if (error) error->position = 0;
return root;
}
}
double te_interp(const wchar_t *expression, te_error_t *error) {
te_expr_t *n = te_compile(expression, error);
double ret;
if (n) {
ret = te_eval(n);
te_free(n);
} else {
ret = NAN;
}
state s{expression};
double ret = s.eval();
if (error) *error = s.error();
return ret;
}