fish-shell/src/proc.cpp

1030 lines
39 KiB
C++
Raw Normal View History

// Utilities for keeping track of jobs, processes and subshells, as well as signal handling
// functions for tracking children. These functions do not themselves launch new processes, the exec
// library will call proc to create representations of the running jobs as needed.
//
// Some of the code in this file is based on code from the Glibc manual.
// IWYU pragma: no_include <__bit_reference>
#include "config.h"
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
2015-07-25 15:14:25 +00:00
#include <wctype.h>
#include <atomic>
#include <cwchar>
#if HAVE_TERM_H
#include <curses.h>
#include <term.h>
#elif HAVE_NCURSES_TERM_H
#include <ncurses/term.h>
#endif
#include <termios.h>
#ifdef HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#include <sys/time.h> // IWYU pragma: keep
#include <sys/types.h>
#include <algorithm> // IWYU pragma: keep
#include <memory>
#include <utility>
#include <vector>
#include "common.h"
#include "event.h"
#include "fallback.h" // IWYU pragma: keep
2019-05-18 20:47:27 +00:00
#include "flog.h"
#include "global_safety.h"
#include "io.h"
#include "job_group.h"
#include "output.h"
#include "parse_tree.h"
#include "parser.h"
#include "proc.h"
#include "reader.h"
#include "sanity.h"
#include "signal.h"
#include "wcstringutil.h"
#include "wutil.h" // IWYU pragma: keep
/// The signals that signify crashes to us.
static const int crashsignals[] = {SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS};
static relaxed_atomic_bool_t s_is_interactive_session{false};
bool is_interactive_session() { return s_is_interactive_session; }
void set_interactive_session(bool flag) { s_is_interactive_session = flag; }
static relaxed_atomic_bool_t s_is_login{false};
bool get_login() { return s_is_login; }
void mark_login() { s_is_login = true; }
static relaxed_atomic_bool_t s_no_exec{false};
2019-05-12 22:04:18 +00:00
bool no_exec() { return s_no_exec; }
void mark_no_exec() { s_no_exec = true; }
bool have_proc_stat() {
// Check for /proc/self/stat to see if we are running with Linux-style procfs.
static const bool s_result = (access("/proc/self/stat", R_OK) == 0);
return s_result;
}
static relaxed_atomic_t<job_control_t> job_control_mode{job_control_t::interactive};
job_control_t get_job_control_mode() { return job_control_mode; }
void set_job_control_mode(job_control_t mode) {
job_control_mode = mode;
// HACK: when fish (or any shell) launches a job with job control, it will put the job into its
// own pgroup and call tcsetpgrp() to allow that pgroup to own the terminal (making fish a
// background process). When the job finishes, fish will try to reclaim the terminal via
// tcsetpgrp(), but as fish is now a background process it will receive SIGTTOU and stop! Ensure
// that doesn't happen by ignoring SIGTTOU.
// Note that if we become interactive, we also ignore SIGTTOU.
if (mode == job_control_t::all) {
signal(SIGTTOU, SIG_IGN);
}
}
void proc_init() { signal_set_handlers_once(false); }
/// Return true if all processes in the job have stopped or completed.
bool job_t::is_stopped() const {
for (const process_ptr_t &p : processes) {
if (!p->completed && !p->stopped) {
return false;
}
}
return true;
}
/// Return true if the last processes in the job has completed.
bool job_t::is_completed() const {
assert(!processes.empty());
for (const process_ptr_t &p : processes) {
if (!p->completed) {
return false;
}
}
return true;
}
bool job_t::should_report_process_exits() const {
// This implements the behavior of process exit events only being sent for jobs containing an
// external process. Bizarrely the process exit event is for the pgroup leader which may be fish
// itself.
// TODO: rationalize this.
// If we never got a pgid then we never launched the external process, so don't report it.
if (!this->get_pgid()) {
return false;
}
// Only report root job exits.
// For example in `ls | begin ; cat ; end` we don't need to report the cat sub-job.
if (!flags().is_group_root) {
return false;
}
// Return whether we have an external process.
return this->has_external_proc();
}
bool job_t::job_chain_is_fully_constructed() const { return group->is_root_constructed(); }
bool job_t::signal(int signal) {
// Presumably we are distinguishing between the two cases below because we do
// not want to send ourselves the signal in question in case the job shares
// a pgid with the shell.
auto pgid = get_pgid();
if (pgid.has_value() && *pgid != getpgrp()) {
if (killpg(*pgid, signal) == -1) {
char buffer[512];
sprintf(buffer, "killpg(%d, %s)", *pgid, strsignal(signal));
wperror(str2wcstring(buffer).c_str());
return false;
}
} else {
for (const auto &p : processes) {
if (!p->completed && p->pid && kill(p->pid, signal) == -1) {
return false;
}
}
}
return true;
}
maybe_t<statuses_t> job_t::get_statuses() const {
statuses_t st{};
bool has_status = false;
int laststatus = 0;
st.pipestatus.reserve(processes.size());
for (const auto &p : processes) {
auto status = p->status;
if (status.is_empty()) {
// Corner case for if a variable assignment is part of a pipeline.
// e.g. `false | set foo bar | true` will push 1 in the second spot,
// for a complete pipestatus of `1 1 0`.
st.pipestatus.push_back(laststatus);
continue;
}
if (status.signal_exited()) {
st.kill_signal = status.signal_code();
}
laststatus = status.status_value();
has_status = true;
st.pipestatus.push_back(status.status_value());
}
if (!has_status) {
return none();
}
st.status = flags().negate ? !laststatus : laststatus;
return st;
}
void internal_proc_t::mark_exited(proc_status_t status) {
assert(!exited() && "Process is already exited");
status_.store(status, std::memory_order_relaxed);
exited_.store(true, std::memory_order_release);
topic_monitor_t::principal().post(topic_t::internal_exit);
FLOG(proc_internal_proc, L"Internal proc", internal_proc_id_, L"exited with status",
status.status_value());
}
static int64_t next_proc_id() {
static std::atomic<uint64_t> s_next{};
return ++s_next;
}
internal_proc_t::internal_proc_t() : internal_proc_id_(next_proc_id()) {}
job_list_t jobs_requiring_warning_on_exit(const parser_t &parser) {
job_list_t result;
for (const auto &job : parser.jobs()) {
if (!job->is_foreground() && job->is_constructed() && !job->is_completed()) {
result.push_back(job);
}
}
return result;
}
void print_exit_warning_for_jobs(const job_list_t &jobs) {
fputws(_(L"There are still jobs active:\n"), stdout);
fputws(_(L"\n PID Command\n"), stdout);
for (const auto &j : jobs) {
fwprintf(stdout, L"%6d %ls\n", j->processes[0]->pid, j->command_wcstr());
}
fputws(L"\n", stdout);
fputws(_(L"A second attempt to exit will terminate them.\n"), stdout);
fputws(_(L"Use 'disown PID' to remove jobs from the list without terminating them.\n"), stdout);
reader_schedule_prompt_repaint();
}
/// Set the status of \p proc to \p status.
static void handle_child_status(const shared_ptr<job_t> &job, process_t *proc,
proc_status_t status) {
proc->status = status;
if (status.stopped()) {
proc->stopped = true;
} else if (status.continued()) {
proc->stopped = false;
} else {
proc->completed = true;
}
// If the child was killed by SIGINT or SIGQUIT, then treat it as if we received that signal.
if (status.signal_exited()) {
int sig = status.signal_code();
if (sig == SIGINT || sig == SIGQUIT) {
if (is_interactive_session()) {
// Mark the job group as cancelled.
job->group->cancel_with_signal(sig);
} else {
// Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive.
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_DFL;
sigaction(sig, &act, nullptr);
kill(getpid(), sig);
}
}
}
}
process_t::process_t() = default;
void process_t::check_generations_before_launch() {
gens_ = topic_monitor_t::principal().current_generations();
}
void process_t::mark_aborted_before_launch() {
this->completed = true;
// The status may have already been set to e.g. STATUS_NOT_EXECUTABLE.
// Only stomp a successful status.
if (this->status.is_success()) {
this->status = proc_status_t::from_exit_code(EXIT_FAILURE);
}
}
bool process_t::is_internal() const {
switch (type) {
case process_type_t::builtin:
case process_type_t::function:
case process_type_t::block_node:
return true;
case process_type_t::external:
case process_type_t::exec:
return false;
default:
assert(false &&
"The fish developers forgot to include a process_t. Please report a bug");
return true;
}
assert(false &&
"process_t::is_internal: Total logic failure, universe is broken. Please replace "
"universe and retry.");
return true;
}
static uint64_t next_internal_job_id() {
static std::atomic<uint64_t> s_next{};
return ++s_next;
}
job_t::job_t(const properties_t &props, wcstring command_str)
: properties(props),
command_str(std::move(command_str)),
internal_job_id(next_internal_job_id()) {}
job_t::~job_t() = default;
void job_t::mark_constructed() {
assert(!is_constructed() && "Job was already constructed");
mut_flags().constructed = true;
if (flags().is_group_root) {
group->mark_root_constructed();
}
}
bool job_t::has_internal_proc() const {
for (const auto &p : processes) {
if (p->is_internal()) return true;
}
return false;
}
bool job_t::has_external_proc() const {
for (const auto &p : processes) {
if (!p->is_internal()) return true;
}
return false;
}
/// A list of pids/pgids that have been disowned. They are kept around until either they exit or
/// we exit. Poll these from time-to-time to prevent zombie processes from happening (#5342).
static owning_lock<std::vector<pid_t>> s_disowned_pids;
void add_disowned_job(const job_t *j) {
if (j == nullptr) return;
// Never add our own (or an invalid) pgid as it is not unique to only
// one job, and may result in a deadlock if we attempt the wait.
auto pgid = j->get_pgid();
auto disowned_pids = s_disowned_pids.acquire();
if (pgid && *pgid != getpgrp() && *pgid > 0) {
// waitpid(2) is signalled to wait on a process group rather than a
// process id by using the negative of its value.
disowned_pids->push_back(*pgid * -1);
} else {
// Instead, add the PIDs of any external processes
for (auto &process : j->processes) {
if (process->pid) {
disowned_pids->push_back(process->pid);
}
}
}
}
2019-05-23 00:10:33 +00:00
// Reap any pids in our disowned list that have exited. This is used to avoid zombies.
static void reap_disowned_pids() {
auto disowned_pids = s_disowned_pids.acquire();
2019-05-23 00:10:33 +00:00
auto try_reap1 = [](pid_t pid) {
int status;
int ret = waitpid(pid, &status, WNOHANG);
if (ret > 0) {
FLOGF(proc_reap_external, "Reaped disowned PID or PGID %d", pid);
}
return ret;
2019-05-23 00:10:33 +00:00
};
// waitpid returns 0 iff the PID/PGID in question has not changed state; remove the pid/pgid
// if it has changed or an error occurs (presumably ECHILD because the child does not exist)
disowned_pids->erase(std::remove_if(disowned_pids->begin(), disowned_pids->end(), try_reap1),
disowned_pids->end());
2019-05-23 00:10:33 +00:00
}
/// See if any reapable processes have exited, and mark them accordingly.
/// \param block_ok if no reapable processes have exited, block until one is (or until we receive a
/// signal).
static void process_mark_finished_children(parser_t &parser, bool block_ok) {
ASSERT_IS_MAIN_THREAD();
// Get the exit and signal generations of all reapable processes.
// The exit generation tells us if we have an exit; the signal generation allows for detecting
// SIGHUP and SIGINT.
// Go through each process and figure out if and how it wants to be reaped.
generation_list_t reapgens = generation_list_t::invalids();
for (const auto &j : parser.jobs()) {
for (const auto &proc : j->processes) {
if (!j->can_reap(proc)) continue;
if (proc->pid > 0) {
// Reaps with a pid.
reapgens.set_min_from(topic_t::sigchld, proc->gens_);
reapgens.set_min_from(topic_t::sighupint, proc->gens_);
}
if (proc->internal_proc_) {
// Reaps with an internal process.
reapgens.set_min_from(topic_t::internal_exit, proc->gens_);
reapgens.set_min_from(topic_t::sighupint, proc->gens_);
}
}
}
// Now check for changes, optionally waiting.
if (!topic_monitor_t::principal().check(&reapgens, block_ok)) {
// Nothing changed.
return;
}
// We got some changes. Since we last checked we received SIGCHLD, and or HUP/INT.
// Update the hup/int generations and reap any reapable processes.
// We structure this as two loops for some simplicity.
// First reap all pids.
for (const auto &j : parser.jobs()) {
for (const auto &proc : j->processes) {
// Does this proc have a pid that is reapable?
if (proc->pid <= 0 || !j->can_reap(proc)) continue;
// Always update the signal hup/int gen.
proc->gens_.sighupint = reapgens.sighupint;
// Nothing to do if we did not get a new sigchld.
if (proc->gens_.sigchld == reapgens.sigchld) continue;
proc->gens_.sigchld = reapgens.sigchld;
// Ok, we are reapable. Run waitpid()!
int statusv = -1;
pid_t pid = waitpid(proc->pid, &statusv, WNOHANG | WUNTRACED | WCONTINUED);
assert((pid <= 0 || pid == proc->pid) && "Unexpcted waitpid() return");
if (pid <= 0) continue;
// The process has stopped or exited! Update its status.
proc_status_t status = proc_status_t::from_waitpid(statusv);
handle_child_status(j, proc.get(), status);
if (status.stopped()) {
j->group->set_is_foreground(false);
}
if (status.continued()) {
j->mut_flags().notified = false;
}
if (status.normal_exited() || status.signal_exited()) {
FLOGF(proc_reap_external, "Reaped external process '%ls' (pid %d, status %d)",
proc->argv0(), pid, proc->status.status_value());
} else {
assert(status.stopped() || status.continued());
FLOGF(proc_reap_external, "External process '%ls' (pid %d, %s)", proc->argv0(),
proc->pid, proc->status.stopped() ? "stopped" : "continued");
}
}
}
// We are done reaping pids.
// Reap internal processes.
for (const auto &j : parser.jobs()) {
for (const auto &proc : j->processes) {
// Does this proc have an internal process that is reapable?
if (!proc->internal_proc_ || !j->can_reap(proc)) continue;
// Always update the signal hup/int gen.
proc->gens_.sighupint = reapgens.sighupint;
// Nothing to do if we did not get a new internal exit.
if (proc->gens_.internal_exit == reapgens.internal_exit) continue;
proc->gens_.internal_exit = reapgens.internal_exit;
// Has the process exited?
if (!proc->internal_proc_->exited()) continue;
// The process gets the status from its internal proc.
handle_child_status(j, proc.get(), proc->internal_proc_->get_status());
FLOGF(proc_reap_internal, "Reaped internal process '%ls' (id %llu, status %d)",
proc->argv0(), proc->internal_proc_->get_id(), proc->status.status_value());
}
}
2019-05-23 00:10:33 +00:00
// Remove any zombies.
reap_disowned_pids();
}
/// Call the fish_job_summary function with the given args.
static void call_job_summary(parser_t &parser, const wcstring_list_t &args) {
wcstring buffer = wcstring(L"fish_job_summary");
for (const wcstring &arg : args) {
buffer.push_back(L' ');
buffer.append(escape_string(arg, ESCAPE_ALL));
}
event_t event(event_type_t::generic);
event.desc.str_param1 = L"fish_job_summary";
auto prev_statuses = parser.get_last_statuses();
block_t *b = parser.push_block(block_t::event_block(event));
parser.eval(buffer, io_chain_t());
parser.pop_block(b);
parser.set_last_statuses(std::move(prev_statuses));
}
/// Format information about job status for the user to look at.
using job_status_t = enum { JOB_STOPPED, JOB_ENDED };
static void print_job_status(parser_t &parser, const job_t *j, job_status_t status) {
wcstring_list_t args = {
to_string(j->job_id()),
to_string(static_cast<int>(j->is_foreground())),
j->command(),
status == JOB_STOPPED ? L"STOPPED" : L"ENDED",
};
call_job_summary(parser, args);
}
event_t proc_create_event(const wchar_t *msg, event_type_t type, pid_t pid, int status) {
event_t event{type};
event.desc.param1.pid = pid;
event.arguments.reserve(3);
event.arguments.push_back(msg);
event.arguments.push_back(to_string(pid));
event.arguments.push_back(to_string(status));
return event;
}
/// Remove all disowned jobs whose job chain is fully constructed (that is, do not erase disowned
/// jobs that still have an in-flight parent job). Note we never print statuses for such jobs.
static void remove_disowned_jobs(job_list_t &jobs) {
auto iter = jobs.begin();
while (iter != jobs.end()) {
const auto &j = *iter;
if (j->flags().disown_requested && j->job_chain_is_fully_constructed()) {
iter = jobs.erase(iter);
} else {
++iter;
}
}
}
/// Given a a process in a job, print the status message for the process as appropriate, and then
/// mark the status code so we don't print again. Populate any events into \p exit_events.
/// \return true if we printed a status message, false if not.
static bool try_clean_process_in_job(parser_t &parser, process_t *p, job_t *j,
std::vector<event_t> *exit_events) {
if (!p->completed || !p->pid) {
return false;
}
auto s = p->status;
// Add an exit event if the process did not come from a job handler.
if (!j->from_event_handler()) {
exit_events->push_back(proc_create_event(L"PROCESS_EXIT", event_type_t::exit, p->pid,
s.normal_exited() ? s.exit_code() : -1));
}
// Ignore SIGPIPE. We issue it ourselves to the pipe writer when the pipe reader dies.
if (!s.signal_exited() || s.signal_code() == SIGPIPE) {
return false;
}
int proc_is_job = (p->is_first_in_job && p->is_last_in_job);
if (proc_is_job) j->mut_flags().notified = true;
// Handle signals other than SIGPIPE.
// Always report crashes.
if (j->skip_notification() && !contains(crashsignals, s.signal_code())) {
return false;
}
wcstring_list_t args;
args.reserve(proc_is_job ? 5 : 7);
args.push_back(to_string(j->job_id()));
args.push_back(to_string(static_cast<int>(j->is_foreground())));
args.push_back(j->command());
args.push_back(sig2wcs(s.signal_code()));
args.push_back(signal_get_desc(s.signal_code()));
if (!proc_is_job) {
args.push_back(to_string(p->pid));
args.push_back(p->argv0());
}
call_job_summary(parser, args);
// Clear status so it is not reported more than once.
// TODO: this seems like a clumsy way to ensure that.
p->status = proc_status_t::from_exit_code(0);
return true;
}
/// \return whether this job wants a status message printed when it stops or completes.
2019-05-13 01:23:00 +00:00
static bool job_wants_message(const shared_ptr<job_t> &j) {
// Did we already print a status message?
if (j->flags().notified) return false;
// Do we just skip notifications?
if (j->skip_notification()) return false;
// Are we foreground?
// The idea here is to not print status messages for jobs that execute in the foreground (i.e.
// without & and without being `bg`).
if (j->is_foreground()) return false;
return true;
}
/// Remove completed jobs from the job list, printing status messages as appropriate.
/// \return whether something was printed.
static bool process_clean_after_marking(parser_t &parser, bool allow_interactive) {
ASSERT_IS_MAIN_THREAD();
bool printed = false;
// This function may fire an event handler, we do not want to call ourselves recursively (to
2018-10-29 00:09:57 +00:00
// avoid infinite recursion).
if (parser.libdata().is_cleaning_procs) {
return false;
}
parser.libdata().is_cleaning_procs = true;
const cleanup_t cleanup([&] { parser.libdata().is_cleaning_procs = false; });
// This may be invoked in an exit handler, after the TERM has been torn down
// Don't try to print in that case (#3222)
const bool interactive = allow_interactive && cur_term != nullptr;
// Remove all disowned jobs.
remove_disowned_jobs(parser.jobs());
// Accumulate exit events into a new list, which we fire after the list manipulation is
// complete.
std::vector<event_t> exit_events;
// A helper to indicate if we should process a job.
auto should_process_job = [=](const shared_ptr<job_t> &j) {
// Do not attempt to process jobs which are not yet constructed.
// Do not attempt to process jobs that need to print a status message,
// unless we are interactive, in which case printing is OK.
return j->is_constructed() && (interactive || !job_wants_message(j));
};
// Print status messages for completed or stopped jobs.
for (const auto &j : parser.jobs()) {
if (!should_process_job(j)) continue;
// Clean processes within the job.
// Note this may print the message on behalf of the job, affecting the result of
// job_wants_message().
for (process_ptr_t &p : j->processes) {
if (try_clean_process_in_job(parser, p.get(), j.get(), &exit_events)) {
printed = true;
}
}
// Print the message if we need to.
if (job_wants_message(j) && (j->is_completed() || j->is_stopped())) {
print_job_status(parser, j.get(), j->is_completed() ? JOB_ENDED : JOB_STOPPED);
j->mut_flags().notified = true;
printed = true;
}
// Prepare events for completed jobs
if (j->is_completed()) {
// If this job already came from an event handler,
// don't create an event or it's easy to get an infinite loop.
if (!j->from_event_handler() && j->should_report_process_exits()) {
pid_t pgid = *j->get_pgid();
exit_events.push_back(proc_create_event(L"JOB_EXIT", event_type_t::exit, -pgid, 0));
}
// Caller exit events we still create, which anecdotally fixes `source (thing | psub)` inside event handlers.
// This seems benign since this event is barely used (basically only psub), and it seems hard
// to construct an infinite loop with it.
exit_events.push_back(
proc_create_event(L"JOB_EXIT", event_type_t::caller_exit, j->job_id(), 0));
exit_events.back().desc.param1.caller_id = j->internal_job_id;
}
}
// Remove completed jobs.
// Do this before calling out to user code in the event handler below, to ensure an event
// handler doesn't remove jobs on our behalf.
auto should_remove = [&](const shared_ptr<job_t> &j) {
return should_process_job(j) && j->is_completed();
};
auto &jobs = parser.jobs();
jobs.erase(std::remove_if(jobs.begin(), jobs.end(), should_remove), jobs.end());
// Post pending exit events.
for (const auto &evt : exit_events) {
event_fire(parser, evt);
}
if (printed) {
2019-03-21 03:57:38 +00:00
fflush(stdout);
}
return printed;
2017-10-22 07:10:23 +00:00
}
bool job_reap(parser_t &parser, bool allow_interactive) {
2017-10-22 07:10:23 +00:00
ASSERT_IS_MAIN_THREAD();
// Early out for the common case that there are no jobs.
if (parser.jobs().empty()) {
return false;
}
process_mark_finished_children(parser, false /* not block_ok */);
return process_clean_after_marking(parser, allow_interactive);
}
/// Get the CPU time for the specified process.
unsigned long proc_get_jiffies(process_t *p) {
if (!have_proc_stat()) return 0;
if (p->pid <= 0) return 0;
char state;
int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor;
long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss;
unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim,
startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch,
wchan, nswap, cnswap;
char comm[1024];
/// Maximum length of a /proc/[PID]/stat filename.
constexpr size_t FN_SIZE = 256;
char fn[FN_SIZE];
std::snprintf(fn, FN_SIZE, "/proc/%d/stat", p->pid);
// Don't use autoclose_fd here, we will fdopen() and then fclose() instead.
int fd = open_cloexec(fn, O_RDONLY);
if (fd < 0) return 0;
// TODO: replace the use of fscanf() as it is brittle and should never be used.
FILE *f = fdopen(fd, "r");
int count = fscanf(f,
"%9d %1023s %c %9d %9d %9d %9d %9d %9lu "
"%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld "
"%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu "
"%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu "
"%9lu %9d %9d ",
&pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt,
&cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority,
&nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim,
&startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked,
&sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor);
fclose(f);
if (count < 17) return 0;
return utime + stime + cutime + cstime;
}
/// Update the CPU time for all jobs.
void proc_update_jiffies(parser_t &parser) {
for (const auto &job : parser.jobs()) {
2017-01-23 18:38:55 +00:00
for (process_ptr_t &p : job->processes) {
gettimeofday(&p->last_time, nullptr);
2017-01-23 18:39:53 +00:00
p->last_jiffies = proc_get_jiffies(p.get());
}
}
}
// Return control of the terminal to a job's process group. restore_attrs is true if we are
// restoring a previously-stopped job, in which case we need to restore terminal attributes.
int terminal_maybe_give_to_job_group(const job_group_t *jg, bool continuing_from_stopped) {
enum { notneeded = 0, success = 1, error = -1 };
if (!jg->should_claim_terminal()) {
// The job doesn't want the terminal.
return notneeded;
}
// Get the pgid; we may not have one.
pid_t pgid{};
if (auto mpgid = jg->get_pgid()) {
pgid = *mpgid;
} else {
FLOG(proc_termowner, L"terminal_give_to_job() returning early due to no process group");
return notneeded;
}
// If we are continuing, ensure that stdin is marked as blocking first (issue #176).
// Also restore tty modes.
if (continuing_from_stopped) {
make_fd_blocking(STDIN_FILENO);
if (jg->tmodes.has_value()) {
int res = tcsetattr(STDIN_FILENO, TCSADRAIN, &jg->tmodes.value());
if (res < 0) wperror(L"tcsetattr");
}
}
// Ok, we want to transfer to the child.
// Note it is important to be very careful about calling tcsetpgrp()!
// fish ignores SIGTTOU which means that it has the power to reassign the tty even if it doesn't
// own it. This means that other processes may get SIGTTOU and become zombies.
// Check who own the tty now. Thre's five cases of interest:
// 1. The process's pgrp is the same as fish. In that case there is nothing to do.
// 2. There is no tty at all (tcgetpgrp() returns -1). For example running from a pure script.
// Of course do not transfer it in that case.
// 3. The tty is owned by the process. This comes about often, as the process will call
// tcsetpgrp() on itself between fork ane exec. This is the essential race inherent in
// tcsetpgrp(). In this case we want to reclaim the tty, but do not need to transfer it
// ourselves since the child won the race.
// 4. The tty is owned by a different process. This may come about if fish is running in the
// background with job control enabled. Do not transfer it.
// 5. The tty is owned by fish. In that case we want to transfer the pgid.
pid_t fish_pgrp = getpgrp();
if (fish_pgrp == pgid) {
// Case 1.
return notneeded;
}
pid_t current_owner = tcgetpgrp(STDIN_FILENO);
if (current_owner < 0) {
// Case 2.
return notneeded;
} else if (current_owner == pgid) {
// Case 3.
return success;
} else if (current_owner != pgid && current_owner != fish_pgrp) {
// Case 4.
return notneeded;
}
// Case 5 - we do want to transfer it.
// The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but
// is not the process group ID of a process in the same session as the calling process."
// Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls
// SIGSTOP, and the child was created in the same session as us), it seems that EPERM is
// being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the
// newly-created process group just yet. On this developer's test machine (WSL running Linux
// 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can
// guarantee the process isn't going to exit while we wait (which would cause us to possibly
// block indefinitely).
while (tcsetpgrp(STDIN_FILENO, pgid) != 0) {
FLOGF(proc_termowner, L"tcsetpgrp failed: %d", errno);
// Before anything else, make sure that it's even necessary to call tcsetpgrp.
// Since it usually _is_ necessary, we only check in case it fails so as to avoid the
// unnecessary syscall and associated context switch, which profiling has shown to have
// a significant cost when running process groups in quick succession.
int getpgrp_res = tcgetpgrp(STDIN_FILENO);
if (getpgrp_res < 0) {
switch (errno) {
case ENOTTY:
// stdin is not a tty. This may come about if job control is enabled but we are
// not a tty - see #6573.
return notneeded;
case EBADF:
// stdin has been closed. Workaround a glibc bug - see #3644.
redirect_tty_output();
return notneeded;
default:
wperror(L"tcgetpgrp");
return error;
}
}
if (getpgrp_res == pgid) {
FLOGF(proc_termowner, L"Process group %d already has control of terminal", pgid);
return notneeded;
}
bool pgroup_terminated = false;
if (errno == EINVAL) {
// OS X returns EINVAL if the process group no longer lives. Probably other OSes,
// too. Unlike EPERM below, EINVAL can only happen if the process group has
// terminated.
pgroup_terminated = true;
} else if (errno == EPERM) {
// Retry so long as this isn't because the process group is dead.
int wait_result = waitpid(-1 * pgid, &wait_result, WNOHANG);
if (wait_result == -1) {
// Note that -1 is technically an "error" for waitpid in the sense that an
// invalid argument was specified because no such process group exists any
// longer. This is the observed behavior on Linux 4.4.0. a "success" result
// would mean processes from the group still exist but is still running in some
// state or the other.
pgroup_terminated = true;
} else {
// Debug the original tcsetpgrp error (not the waitpid errno) to the log, and
// then retry until not EPERM or the process group has exited.
FLOGF(proc_termowner, L"terminal_give_to_job(): EPERM.\n", pgid);
continue;
}
} else if (errno == ENOTTY) {
// stdin is not a TTY. In general we expect this to be caught via the tcgetpgrp
// call's EBADF handler above.
return notneeded;
} else {
FLOGF(warning, _(L"Could not send job %d ('%ls') with pgid %d to foreground"),
jg->get_id(), jg->get_command().c_str(), pgid);
wperror(L"tcsetpgrp");
return error;
}
if (pgroup_terminated) {
// All processes in the process group has exited.
// Since we delay reaping any processes in a process group until all members of that
// job/group have been started, the only way this can happen is if the very last
// process in the group terminated and didn't need to access the terminal, otherwise
// it would have hung waiting for terminal IO (SIGTTIN). We can safely ignore this.
FLOGF(proc_termowner, L"tcsetpgrp called but process group %d has terminated.\n", pgid);
return notneeded;
}
break;
}
return success;
}
/// Returns control of the terminal to the shell, and saves the terminal attribute state to the job
/// group, so that we can restore the terminal ownership to the job at a later time.
static bool terminal_return_from_job_group(job_group_t *jg) {
errno = 0;
auto pgid = jg->get_pgid();
if (!pgid.has_value()) {
FLOG(proc_pgroup, "terminal_return_from_job() returning early due to no process group");
return true;
}
FLOG(proc_pgroup, "fish reclaiming terminal after job pgid", *pgid);
if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) {
if (errno == ENOTTY) redirect_tty_output();
2020-01-19 12:38:47 +00:00
FLOGF(warning, _(L"Could not return shell to foreground"));
wperror(L"tcsetpgrp");
return false;
}
// Save jobs terminal modes.
struct termios tmodes {};
if (tcgetattr(STDIN_FILENO, &tmodes)) {
// If it's not a tty, it's not a tty, and there are no attributes to save (or restore)
if (errno == ENOTTY) return false;
2020-01-19 12:38:47 +00:00
FLOGF(warning, _(L"Could not return shell to foreground"));
wperror(L"tcgetattr");
return false;
}
jg->tmodes = tmodes;
return true;
}
bool job_t::is_foreground() const { return group->is_foreground(); }
maybe_t<pid_t> job_t::get_pgid() const { return group->get_pgid(); }
job_id_t job_t::job_id() const { return group->get_id(); }
void job_t::continue_job(parser_t &parser, bool in_foreground) {
// Put job first in the job list.
parser.job_promote(this);
mut_flags().notified = false;
int pgid = -2;
if (auto tmp = get_pgid()) pgid = *tmp;
// We must send_sigcont if the job is stopped.
bool send_sigcont = this->is_stopped();
2019-05-18 20:47:27 +00:00
FLOGF(proc_job_run, L"%ls job %d, gid %d (%ls), %ls, %ls",
send_sigcont ? L"Continue" : L"Start", job_id(), pgid, command_wcstr(),
2019-05-18 20:47:27 +00:00
is_completed() ? L"COMPLETED" : L"UNCOMPLETED",
parser.libdata().is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE");
// Make sure we retake control of the terminal before leaving this function.
bool term_transferred = false;
cleanup_t take_term_back([&] {
if (term_transferred) {
// Issues of interest include #121 and #2114.
terminal_return_from_job_group(this->group.get());
2018-10-29 00:09:57 +00:00
}
});
if (!is_completed()) {
int transfer = terminal_maybe_give_to_job_group(this->group.get(), send_sigcont);
if (transfer < 0) {
// terminal_maybe_give_to_job prints an error.
return;
}
term_transferred = (transfer > 0);
// If both requested and necessary, send the job a continue signal.
if (send_sigcont) {
// This code used to check for JOB_CONTROL to decide between using killpg to signal all
// processes in the group or iterating over each process in the group and sending the
// signal individually. job_t::signal() does the same, but uses the shell's own pgroup
// to make that distinction.
if (!signal(SIGCONT)) {
FLOGF(proc_pgroup, "Failed to send SIGCONT to any processes in pgroup %d!", pgid);
// This returns without bubbling up the error. Presumably that is OK.
return;
}
// reset the status of each process instance
for (auto &p : processes) {
p->stopped = false;
}
}
if (in_foreground) {
2019-02-01 09:58:06 +00:00
// Wait for the status of our own job to change.
while (!check_cancel_from_fish_signal() && !is_stopped() && !is_completed()) {
process_mark_finished_children(parser, true);
}
}
}
if (in_foreground && is_completed()) {
// Set $status only if we are in the foreground and the last process in the job has
2020-07-27 22:36:43 +00:00
// finished.
const auto &p = processes.back();
if (p->status.normal_exited() || p->status.signal_exited()) {
auto statuses = get_statuses();
if (statuses) {
parser.set_last_statuses(statuses.value());
parser.libdata().status_count++;
}
}
}
}
void proc_wait_any(parser_t &parser) {
process_mark_finished_children(parser, true /* block_ok */);
process_clean_after_marking(parser, parser.libdata().is_interactive);
2017-10-22 07:10:23 +00:00
}
void hup_jobs(const job_list_t &jobs) {
pid_t fish_pgrp = getpgrp();
for (const auto &j : jobs) {
auto pgid = j->get_pgid();
if (pgid && *pgid != fish_pgrp && !j->is_completed()) {
if (j->is_stopped()) {
j->signal(SIGCONT);
}
j->signal(SIGHUP);
}
}
}
2018-09-09 08:36:21 +00:00
static std::atomic<bool> s_is_within_fish_initialization{false};
void set_is_within_fish_initialization(bool flag) { s_is_within_fish_initialization.store(flag); }
bool is_within_fish_initialization() { return s_is_within_fish_initialization.load(); }