fish-shell/src/fish_key_reader.cpp

380 lines
12 KiB
C++
Raw Normal View History

// A small utility to print information related to pressing keys. This is similar to using tools
// like `xxd` and `od -tx1z` but provides more information such as the time delay between each
// character. It also allows pressing and interpreting keys that are normally special such as
// [ctrl-C] (interrupt the program) or [ctrl-D] (EOF to signal the program should exit).
// And unlike those other tools this one disables ICRNL mode so it can distinguish between
// carriage-return (\cM) and newline (\cJ).
//
// Type "exit" or "quit" to terminate the program.
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <getopt.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <wchar.h>
#include <memory>
#include <string>
#include <vector>
#include "common.h"
#include "env.h"
#include "fallback.h" // IWYU pragma: keep
#include "input.h"
#include "input_common.h"
2016-07-03 12:02:32 +00:00
#include "print_help.h"
#include "proc.h"
#include "reader.h"
#include "signal.h"
#include "wutil.h" // IWYU pragma: keep
struct config_paths_t determine_config_directory_paths(const char *argv0);
static const char *ctrl_symbolic_names[] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, "\\a",
"\\b", "\\t", "\\n", "\\v", "\\f", "\\r", NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "\\e", NULL, NULL, NULL, NULL};
static bool keep_running = true;
/// Return true if the recent sequence of characters indicates the user wants to exit the program.
static bool should_exit(wchar_t wc) {
unsigned char c = wc < 0x80 ? wc : 0;
static unsigned char recent_chars[4] = {0};
recent_chars[0] = recent_chars[1];
recent_chars[1] = recent_chars[2];
recent_chars[2] = recent_chars[3];
recent_chars[3] = c;
return (memcmp(recent_chars, "exit", 4) == 0 || memcmp(recent_chars, "quit", 4) == 0 ||
memcmp(recent_chars + 2, "\x3\x3", 2) == 0 || // ctrl-C, ctrl-C
memcmp(recent_chars + 2, "\x4\x4", 2) == 0); // ctrl-D, ctrl-D
}
/// Return the name if the recent sequence of characters matches a known terminfo sequence.
static char *sequence_name(wchar_t wc) {
unsigned char c = wc < 0x80 ? wc : 0;
static char recent_chars[8] = {0};
recent_chars[0] = recent_chars[1];
recent_chars[1] = recent_chars[2];
recent_chars[2] = recent_chars[3];
recent_chars[3] = recent_chars[4];
recent_chars[4] = recent_chars[5];
recent_chars[5] = recent_chars[6];
recent_chars[6] = recent_chars[7];
recent_chars[7] = c;
for (int idx = 7; idx >= 0; idx--) {
wcstring out_name;
wcstring seq = str2wcstring(recent_chars + idx, 8 - idx);
bool found = input_terminfo_get_name(seq, &out_name);
if (found) {
return strdup(wcs2string(out_name).c_str());
}
}
return NULL;
}
/// Return true if the character must be escaped in the sequence of chars to be bound in `bind`
/// command.
static bool must_escape(wchar_t wc) {
switch (wc) {
case '[':
case ']':
case '(':
case ')':
case '<':
case '>':
case '{':
case '}':
case '*':
case '\\':
case '?':
case '$':
case '#':
case ';':
case '&':
case '|':
case '\'':
case '"':
return true;
default:
return false;
}
}
static char *char_to_symbol(wchar_t wc, bool bind_friendly) {
static char buf[128];
if (wc < ' ') {
// ASCII control character.
if (ctrl_symbolic_names[wc]) {
if (bind_friendly) {
snprintf(buf, sizeof(buf), "%s", ctrl_symbolic_names[wc]);
} else {
snprintf(buf, sizeof(buf), "\\c%c (or %s)", wc + 64, ctrl_symbolic_names[wc]);
}
} else {
snprintf(buf, sizeof(buf), "\\c%c", wc + 64);
}
} else if (wc == ' ') {
// The "space" character.
if (bind_friendly) {
snprintf(buf, sizeof(buf), "\\x%X", wc);
} else {
snprintf(buf, sizeof(buf), "\\x%X (aka \"space\")", wc);
}
} else if (wc == 0x7F) {
// The "del" character.
if (bind_friendly) {
snprintf(buf, sizeof(buf), "\\x%X", wc);
} else {
snprintf(buf, sizeof(buf), "\\x%X (aka \"del\")", wc);
}
} else if (wc < 0x80) {
// ASCII characters that are not control characters.
if (bind_friendly && must_escape(wc)) {
snprintf(buf, sizeof(buf), "\\%c", wc);
} else {
snprintf(buf, sizeof(buf), "%c", wc);
}
} else if (wc <= 0xFFFF) {
snprintf(buf, sizeof(buf), "\\u%04X", wc);
} else {
snprintf(buf, sizeof(buf), "\\U%06X", wc);
}
return buf;
}
static void add_char_to_bind_command(wchar_t wc, std::vector<wchar_t> &bind_chars) {
bind_chars.push_back(wc);
}
static void output_bind_command(std::vector<wchar_t> &bind_chars) {
if (bind_chars.size()) {
fputs("bind ", stdout);
for (size_t i = 0; i < bind_chars.size(); i++) {
fputs(char_to_symbol(bind_chars[i], true), stdout);
}
fputs(" 'do something'\n", stdout);
bind_chars.clear();
}
}
static void output_info_about_char(wchar_t wc) {
fprintf(stderr, "hex: %4X char: %s\n", wc, char_to_symbol(wc, false));
}
static bool output_matching_key_name(wchar_t wc) {
char *name = sequence_name(wc);
if (name) {
printf("bind -k %s 'do something'\n", name);
free(name);
return true;
}
return false;
}
static double output_elapsed_time(double prev_tstamp, bool first_char_seen) {
// How much time has passed since the previous char was received in microseconds.
double now = timef();
long long int delta_tstamp_us = 1000000 * (now - prev_tstamp);
if (delta_tstamp_us >= 200000 && first_char_seen) putc('\n', stderr);
if (delta_tstamp_us >= 1000000) {
fprintf(stderr, " ");
} else {
fprintf(stderr, "(%3lld.%03lld ms) ", delta_tstamp_us / 1000, delta_tstamp_us % 1000);
}
return now;
}
/// Process the characters we receive as the user presses keys.
static void process_input(bool continuous_mode) {
bool first_char_seen = false;
double prev_tstamp = 0.0;
std::vector<wchar_t> bind_chars;
fprintf(stderr, "Press a key\n\n");
while (keep_running) {
wchar_t wc = input_common_readch(true);
if (wc == R_TIMEOUT || wc == R_EOF) {
output_bind_command(bind_chars);
if (first_char_seen && !continuous_mode) {
return;
}
continue;
}
prev_tstamp = output_elapsed_time(prev_tstamp, first_char_seen);
add_char_to_bind_command(wc, bind_chars);
output_info_about_char(wc);
if (output_matching_key_name(wc)) {
output_bind_command(bind_chars);
}
if (should_exit(wc)) {
fprintf(stderr, "\nExiting at your request.\n");
break;
}
first_char_seen = true;
}
}
/// Make sure we cleanup before exiting if we receive a signal that should cause us to exit.
/// Otherwise just report receipt of the signal.
static struct sigaction old_sigactions[32];
static void signal_handler(int signo, siginfo_t *siginfo, void *siginfo_arg) {
debug(2, L"signal #%d (%ls) received", signo, sig2wcs(signo));
// SIGINT isn't included in the following conditional because it is handled specially by fish.
// Specifically, it causes \cC to be reinserted into the tty input stream.
if (signo == SIGHUP || signo == SIGTERM || signo == SIGABRT || signo == SIGSEGV) {
keep_running = false;
}
if (old_sigactions[signo].sa_handler != SIG_IGN &&
old_sigactions[signo].sa_handler != SIG_DFL) {
int needs_siginfo = old_sigactions[signo].sa_flags & SA_SIGINFO;
if (needs_siginfo) {
old_sigactions[signo].sa_sigaction(signo, siginfo, siginfo_arg);
} else {
old_sigactions[signo].sa_handler(signo);
}
}
}
/// Install a handler for every signal. This allows us to restore the tty modes so the terminal is
/// still usable when we die. If the signal already has a handler arrange to invoke it from within
/// our handler.
static void install_our_signal_handlers() {
struct sigaction new_sa, old_sa;
sigemptyset(&new_sa.sa_mask);
new_sa.sa_flags = SA_SIGINFO;
new_sa.sa_sigaction = signal_handler;
for (int signo = 1; signo < 32; signo++) {
if (sigaction(signo, &new_sa, &old_sa) != -1) {
memcpy(&old_sigactions[signo], &old_sa, sizeof(old_sa));
if (old_sa.sa_handler == SIG_IGN) {
debug(3, "signal #%d (%ls) was being ignored", signo, sig2wcs(signo));
}
if (old_sa.sa_flags && ~SA_SIGINFO != 0) {
debug(3, L"signal #%d (%ls) handler had flags 0x%X", signo, sig2wcs(signo),
old_sa.sa_flags);
}
}
}
}
/// Setup our environment (e.g., tty modes), process key strokes, then reset the environment.
static void setup_and_process_keys(bool continuous_mode) {
is_interactive_session = 1; // by definition this program is interactive
set_main_thread();
setup_fork_guards();
env_init();
reader_init();
input_init();
proc_push_interactive(1);
signal_set_handlers();
install_our_signal_handlers();
if (continuous_mode) {
fprintf(stderr, "\n");
fprintf(stderr, "To terminate this program type \"exit\" or \"quit\" in this window,\n");
fprintf(stderr, "or press [ctrl-C] or [ctrl-D] twice in a row.\n");
fprintf(stderr, "\n");
}
process_input(continuous_mode);
restore_term_mode();
restore_term_foreground_process_group();
input_destroy();
reader_destroy();
}
int main(int argc, char **argv) {
program_name = L"fish_key_reader";
bool continuous_mode = false;
2016-07-03 12:02:32 +00:00
const char *short_opts = "+cd:D:h";
const struct option long_opts[] = {{"continuous", no_argument, NULL, 'c'},
{"debug-level", required_argument, NULL, 'd'},
{"debug-stack-frames", required_argument, NULL, 'D'},
2016-07-03 12:02:32 +00:00
{"help", no_argument, NULL, 'h'},
{NULL, 0, NULL, 0}};
int opt;
bool error = false;
while (!error && (opt = getopt_long(argc, argv, short_opts, long_opts, NULL)) != -1) {
switch (opt) {
case 0: {
fprintf(stderr, "getopt_long() unexpectedly returned zero\n");
error = true;
break;
}
case 'c': {
continuous_mode = true;
break;
}
2016-07-03 12:02:32 +00:00
case 'h': {
print_help("fish_key_reader", 0);
exit(0);
break;
2016-07-03 12:02:32 +00:00
}
case 'd': {
char *end;
long tmp;
errno = 0;
tmp = strtol(optarg, &end, 10);
if (tmp >= 0 && tmp <= 10 && !*end && !errno) {
debug_level = (int)tmp;
} else {
fwprintf(stderr, _(L"Invalid value '%s' for debug-level flag"), optarg);
error = true;
}
break;
}
case 'D': {
char *end;
long tmp;
errno = 0;
tmp = strtol(optarg, &end, 10);
if (tmp > 0 && tmp <= 128 && !*end && !errno) {
debug_stack_frames = (int)tmp;
} else {
fwprintf(stderr, _(L"Invalid value '%s' for debug-stack-frames flag"), optarg);
error = true;
break;
}
break;
}
default: {
// We assume getopt_long() has already emitted a diagnostic msg.
error = true;
break;
}
}
}
if (error) return 1;
argc -= optind;
if (argc != 0) {
fprintf(stderr, "Expected no arguments, got %d\n", argc);
return 1;
}
if (!isatty(STDIN_FILENO)) {
fprintf(stderr, "Stdin must be attached to a tty.\n");
return 1;
}
setup_and_process_keys(continuous_mode);
return 0;
}