fish-shell/src/proc.cpp

990 lines
38 KiB
C++
Raw Normal View History

// Utilities for keeping track of jobs, processes and subshells, as well as signal handling
// functions for tracking children. These functions do not themselves launch new processes, the exec
// library will call proc to create representations of the running jobs as needed.
//
// Some of the code in this file is based on code from the Glibc manual.
// IWYU pragma: no_include <__bit_reference>
#include "config.h"
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
2015-07-25 15:14:25 +00:00
#include <wctype.h>
#include <atomic>
#include <cwchar>
#if HAVE_TERM_H
#include <curses.h>
#include <term.h>
#elif HAVE_NCURSES_TERM_H
#include <ncurses/term.h>
#endif
#include <termios.h>
#ifdef HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#include <sys/time.h> // IWYU pragma: keep
#include <sys/types.h>
#include <algorithm> // IWYU pragma: keep
#include <memory>
#include <utility>
#include <vector>
#include "common.h"
#include "event.h"
#include "fallback.h" // IWYU pragma: keep
2019-05-18 20:47:27 +00:00
#include "flog.h"
#include "global_safety.h"
#include "io.h"
#include "output.h"
#include "parse_tree.h"
#include "parser.h"
#include "proc.h"
#include "reader.h"
#include "sanity.h"
#include "signal.h"
#include "wutil.h" // IWYU pragma: keep
/// The signals that signify crashes to us.
static const int crashsignals[] = {SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS};
static relaxed_atomic_bool_t s_is_interactive_session{false};
bool is_interactive_session() { return s_is_interactive_session; }
void set_interactive_session(bool flag) { s_is_interactive_session = flag; }
static relaxed_atomic_bool_t s_is_login{false};
bool get_login() { return s_is_login; }
void mark_login() { s_is_login = true; }
static relaxed_atomic_bool_t s_no_exec{false};
2019-05-12 22:04:18 +00:00
bool no_exec() { return s_no_exec; }
void mark_no_exec() { s_no_exec = true; }
bool have_proc_stat() {
// Check for /proc/self/stat to see if we are running with Linux-style procfs.
static const bool s_result = (access("/proc/self/stat", R_OK) == 0);
return s_result;
}
static relaxed_atomic_t<job_control_t> job_control_mode{job_control_t::interactive};
job_control_t get_job_control_mode() { return job_control_mode; }
void set_job_control_mode(job_control_t mode) { job_control_mode = mode; }
void proc_init() { signal_set_handlers_once(false); }
// Basic thread safe job IDs. The vector consumed_job_ids has a true value wherever the job ID
// corresponding to that slot is in use. The job ID corresponding to slot 0 is 1.
2017-01-29 21:03:54 +00:00
static owning_lock<std::vector<bool>> locked_consumed_job_ids;
2018-02-19 02:33:04 +00:00
job_id_t acquire_job_id() {
auto consumed_job_ids = locked_consumed_job_ids.acquire();
// Find the index of the first 0 slot.
auto slot = std::find(consumed_job_ids->begin(), consumed_job_ids->end(), false);
if (slot != consumed_job_ids->end()) {
// We found a slot. Note that slot 0 corresponds to job ID 1.
*slot = true;
return static_cast<job_id_t>(slot - consumed_job_ids->begin() + 1);
}
// We did not find a slot; create a new slot. The size of the vector is now the job ID
// (since it is one larger than the slot).
consumed_job_ids->push_back(true);
return static_cast<job_id_t>(consumed_job_ids->size());
}
void release_job_id(job_id_t jid) {
assert(jid > 0);
auto consumed_job_ids = locked_consumed_job_ids.acquire();
size_t slot = static_cast<size_t>(jid - 1), count = consumed_job_ids->size();
// Make sure this slot is within our vector and is currently set to consumed.
assert(slot < count);
assert(consumed_job_ids->at(slot) == true);
// Clear it and then resize the vector to eliminate unused trailing job IDs.
consumed_job_ids->at(slot) = false;
while (count--) {
if (consumed_job_ids->at(count)) break;
}
consumed_job_ids->resize(count + 1);
}
job_t *job_t::from_job_id(job_id_t id) {
ASSERT_IS_MAIN_THREAD();
return parser_t::principal_parser().job_get(id);
}
job_t *job_t::from_pid(pid_t pid) {
ASSERT_IS_MAIN_THREAD();
return parser_t::principal_parser().job_get_from_pid(pid);
}
/// Return true if all processes in the job have stopped or completed.
bool job_t::is_stopped() const {
for (const process_ptr_t &p : processes) {
if (!p->completed && !p->stopped) {
return false;
}
}
return true;
}
/// Return true if the last processes in the job has completed.
bool job_t::is_completed() const {
assert(!processes.empty());
for (const process_ptr_t &p : processes) {
if (!p->completed) {
return false;
}
}
return true;
}
bool job_t::should_report_process_exits() const {
// This implements the behavior of process exit events only being sent for jobs containing an
// external process. Bizarrely the process exit event is for the pgroup leader which may be fish
// itself.
// TODO: rationalize this.
// If we never got a pgid then we never launched the external process, so don't report it.
if (this->pgid == INVALID_PID) {
return false;
}
// Return whether we have an external process.
for (const auto &p : this->processes) {
if (p->type == process_type_t::external) {
return true;
}
}
return false;
}
bool job_t::job_chain_is_fully_constructed() const {
const job_t *cursor = this;
while (cursor) {
if (!cursor->is_constructed()) return false;
cursor = cursor->get_parent().get();
}
return true;
}
bool job_t::signal(int signal) {
// Presumably we are distinguishing between the two cases below because we do
// not want to send ourselves the signal in question in case the job shares
// a pgid with the shell.
if (pgid != getpgrp()) {
if (killpg(pgid, signal) == -1) {
char buffer[512];
sprintf(buffer, "killpg(%d, %s)", pgid, strsignal(signal));
wperror(str2wcstring(buffer).c_str());
return false;
}
} else {
for (const auto &p : processes) {
if (!p->completed && p->pid && kill(p->pid, signal) == -1) {
return false;
}
}
}
return true;
}
statuses_t job_t::get_statuses() const {
statuses_t st{};
st.pipestatus.reserve(processes.size());
for (const auto &p : processes) {
st.pipestatus.push_back(p->status.status_value());
}
int laststatus = st.pipestatus.back();
st.status = flags().negate ? !laststatus : laststatus;
return st;
}
void internal_proc_t::mark_exited(proc_status_t status) {
assert(!exited() && "Process is already exited");
status_.store(status, std::memory_order_relaxed);
exited_.store(true, std::memory_order_release);
topic_monitor_t::principal().post(topic_t::internal_exit);
FLOG(proc_internal_proc, L"Internal proc", internal_proc_id_, L"exited with status",
status.status_value());
}
static int64_t next_proc_id() {
static std::atomic<uint64_t> s_next{};
return ++s_next;
}
internal_proc_t::internal_proc_t() : internal_proc_id_(next_proc_id()) {}
void job_mark_process_as_failed(const std::shared_ptr<job_t> &job, const process_t *failed_proc) {
// The given process failed to even lift off (e.g. posix_spawn failed) and so doesn't have a
// valid pid. Mark it and everything after it as dead.
bool found = false;
for (process_ptr_t &p : job->processes) {
found = found || (p.get() == failed_proc);
if (found) {
p->completed = true;
}
}
}
/// Set the status of \p proc to \p status.
static void handle_child_status(process_t *proc, proc_status_t status) {
proc->status = status;
if (status.stopped()) {
proc->stopped = true;
} else {
proc->completed = true;
}
// If the child was killed by SIGINT or SIGQUIT, then treat it as if we received that signal.
if (status.signal_exited()) {
int sig = status.signal_code();
if (sig == SIGINT || sig == SIGQUIT) {
if (is_interactive_session()) {
// In an interactive session, tell the principal parser to skip all blocks we're
// executing so control-C returns control to the user.
parser_t::skip_all_blocks();
} else {
// Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive.
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_DFL;
sigaction(sig, &act, nullptr);
kill(getpid(), sig);
}
}
}
}
process_t::process_t() = default;
void process_t::check_generations_before_launch() {
gens_ = topic_monitor_t::principal().current_generations();
}
job_t::job_t(job_id_t job_id, const properties_t &props, io_chain_t bio,
std::shared_ptr<job_t> parent)
: properties(props), block_io(std::move(bio)), parent_job(std::move(parent)), job_id(job_id) {}
job_t::~job_t() { release_job_id(job_id); }
/// Return all the IO redirections. Start with the block IO, then walk over the processes.
io_chain_t job_t::all_io_redirections() const {
io_chain_t result = this->block_io;
for (const process_ptr_t &p : this->processes) {
result.append(p->io_chain());
}
return result;
}
using process_generation_count_t = unsigned int;
/// A list of pids/pgids that have been disowned. They are kept around until either they exit or
/// we exit. Poll these from time-to-time to prevent zombie processes from happening (#5342).
2019-05-23 00:10:33 +00:00
static owning_lock<std::vector<pid_t>> s_disowned_pids;
void add_disowned_pgid(pid_t pgid) {
// NEVER add our own (or an invalid) pgid as they are not unique to only
// one job, and may result in a deadlock if we attempt the wait.
if (pgid != getpgrp() && pgid > 0) {
// waitpid(2) is signalled to wait on a process group rather than a
// process id by using the negative of its value.
2019-05-23 00:10:33 +00:00
s_disowned_pids.acquire()->push_back(pgid * -1);
}
}
2019-05-23 00:10:33 +00:00
// Reap any pids in our disowned list that have exited. This is used to avoid zombies.
static void reap_disowned_pids() {
auto disowned_pids = s_disowned_pids.acquire();
auto try_reap1 = [](pid_t pid) {
int status;
return waitpid(pid, &status, WNOHANG) > 0;
};
disowned_pids->erase(std::remove_if(disowned_pids->begin(), disowned_pids->end(), try_reap1),
disowned_pids->end());
}
/// See if any reapable processes have exited, and mark them accordingly.
/// \param block_ok if no reapable processes have exited, block until one is (or until we receive a
/// signal).
static void process_mark_finished_children(parser_t &parser, bool block_ok) {
ASSERT_IS_MAIN_THREAD();
// Get the exit and signal generations of all reapable processes.
// The exit generation tells us if we have an exit; the signal generation allows for detecting
// SIGHUP and SIGINT.
// Get the gen count of all reapable processes.
topic_set_t reaptopics{};
generation_list_t gens{};
gens.fill(invalid_generation);
for (const auto &j : parser.jobs()) {
for (const auto &proc : j->processes) {
if (auto mtopic = j->reap_topic_for_process(proc.get())) {
topic_t topic = *mtopic;
reaptopics.set(topic);
gens[topic] = std::min(gens[topic], proc->gens_[topic]);
reaptopics.set(topic_t::sighupint);
gens[topic_t::sighupint] =
std::min(gens[topic_t::sighupint], proc->gens_[topic_t::sighupint]);
}
}
}
if (reaptopics.none()) {
// No reapable processes, nothing to wait for.
return;
}
// Now check for changes, optionally waiting.
auto changed_topics = topic_monitor_t::principal().check(&gens, reaptopics, block_ok);
if (changed_topics.none()) return;
// We got some changes. Since we last checked we received SIGCHLD, and or HUP/INT.
// Update the hup/int generations and reap any reapable processes.
for (const auto &j : parser.jobs()) {
for (const auto &proc : j->processes) {
if (auto mtopic = j->reap_topic_for_process(proc.get())) {
// Update the signal hup/int gen.
proc->gens_[topic_t::sighupint] = gens[topic_t::sighupint];
if (proc->gens_[*mtopic] < gens[*mtopic]) {
// Potentially reapable. Update its gen count and try reaping it.
proc->gens_[*mtopic] = gens[*mtopic];
if (proc->internal_proc_) {
// Try reaping an internal process.
if (proc->internal_proc_->exited()) {
proc->status = proc->internal_proc_->get_status();
proc->completed = true;
FLOGF(proc_reap_internal,
"Reaped internal process '%ls' (id %llu, status %d)",
proc->argv0(), proc->internal_proc_->get_id(),
proc->status.status_value());
}
} else if (proc->pid > 0) {
// Try reaping an external process.
int status = -1;
auto pid = waitpid(proc->pid, &status, WNOHANG | WUNTRACED);
if (pid > 0) {
assert(pid == proc->pid && "Unexpcted waitpid() return");
handle_child_status(proc.get(), proc_status_t::from_waitpid(status));
FLOGF(proc_reap_external,
"Reaped external process '%ls' (pid %d, status %d)",
proc->argv0(), pid, proc->status.status_value());
}
} else {
assert(0 && "Don't know how to reap this process");
}
}
}
}
}
2019-05-23 00:10:33 +00:00
// Remove any zombies.
reap_disowned_pids();
}
/// Given a command like "cat file", truncate it to a reasonable length.
static wcstring truncate_command(const wcstring &cmd) {
const size_t max_len = 32;
if (cmd.size() <= max_len) {
// No truncation necessary.
return cmd;
}
// Truncation required.
const wchar_t *ellipsis_str = get_ellipsis_str();
const size_t ellipsis_length = std::wcslen(ellipsis_str); // no need for wcwidth
size_t trunc_length = max_len - ellipsis_length;
// Eat trailing whitespace.
while (trunc_length > 0 && iswspace(cmd.at(trunc_length - 1))) {
trunc_length -= 1;
}
wcstring result = wcstring(cmd, 0, trunc_length);
// Append ellipsis.
result.append(ellipsis_str);
return result;
}
/// Format information about job status for the user to look at.
typedef enum { JOB_STOPPED, JOB_ENDED } job_status_t;
static void print_job_status(const job_t *j, job_status_t status) {
const wchar_t *msg = L"Job %d, '%ls' has ended"; // this is the most common status msg
if (status == JOB_STOPPED) msg = L"Job %d, '%ls' has stopped";
outputter_t outp;
outp.writestr("\r");
outp.writestr(format_string(_(msg), j->job_id, truncate_command(j->command()).c_str()));
if (clr_eol) outp.term_puts(clr_eol, 1);
outp.writestr(L"\n");
fflush(stdout);
outp.flush_to(STDOUT_FILENO);
}
event_t proc_create_event(const wchar_t *msg, event_type_t type, pid_t pid, int status) {
event_t event{type};
event.desc.param1.pid = pid;
event.arguments.push_back(msg);
event.arguments.push_back(to_string(pid));
event.arguments.push_back(to_string(status));
return event;
}
/// Remove all disowned jobs whose job chain is fully constructed (that is, do not erase disowned
/// jobs that still have an in-flight parent job). Note we never print statuses for such jobs.
void remove_disowned_jobs(job_list_t &jobs) {
auto iter = jobs.begin();
while (iter != jobs.end()) {
const auto &j = *iter;
if (j->flags().disown_requested && j->job_chain_is_fully_constructed()) {
iter = jobs.erase(iter);
} else {
++iter;
}
}
}
/// Given a a process in a job, print the status message for the process as appropriate, and then
/// mark the status code so we don't print again. Populate any events into \p exit_events.
/// \return true if we printed a status message, false if not.
static bool try_clean_process_in_job(process_t *p, job_t *j, std::vector<event_t> *exit_events,
bool only_one_job) {
if (!p->completed || !p->pid) {
return false;
}
auto s = p->status;
// Add an exit event if the process did not come from a job handler.
if (!j->from_event_handler()) {
exit_events->push_back(proc_create_event(L"PROCESS_EXIT", event_type_t::exit, p->pid,
s.normal_exited() ? s.exit_code() : -1));
}
// Ignore SIGPIPE. We issue it ourselves to the pipe writer when the pipe reader dies.
if (!s.signal_exited() || s.signal_code() == SIGPIPE) {
return false;
}
int proc_is_job = (p->is_first_in_job && p->is_last_in_job);
if (proc_is_job) j->mut_flags().notified = true;
// Handle signals other than SIGPIPE.
// Always report crashes.
if (j->skip_notification() && !contains(crashsignals, s.signal_code())) {
return false;
}
// Print nothing if we get SIGINT in the foreground process group, to avoid spamming
// obvious stuff on the console (#1119). If we get SIGINT for the foreground
// process, assume the user typed ^C and can see it working. It's possible they
// didn't, and the signal was delivered via pkill, etc., but the SIGINT/SIGTERM
// distinction is precisely to allow INT to be from a UI
// and TERM to be programmatic, so this assumption is keeping with the design of
// signals. If echoctl is on, then the terminal will have written ^C to the console.
// If off, it won't have. We don't echo ^C either way, so as to respect the user's
// preference.
bool printed = false;
if (s.signal_code() != SIGINT || !j->is_foreground()) {
if (proc_is_job) {
// We want to report the job number, unless it's the only job, in which case
// we don't need to.
const wcstring job_number_desc =
only_one_job ? wcstring() : format_string(_(L"Job %d, "), j->job_id);
std::fwprintf(stdout, _(L"%ls: %ls\'%ls\' terminated by signal %ls (%ls)"),
program_name, job_number_desc.c_str(),
truncate_command(j->command()).c_str(), sig2wcs(s.signal_code()),
signal_get_desc(s.signal_code()));
} else {
const wcstring job_number_desc =
only_one_job ? wcstring() : format_string(L"from job %d, ", j->job_id);
const wchar_t *fmt =
_(L"%ls: Process %d, \'%ls\' %ls\'%ls\' terminated by signal %ls (%ls)");
std::fwprintf(stdout, fmt, program_name, p->pid, p->argv0(), job_number_desc.c_str(),
truncate_command(j->command()).c_str(), sig2wcs(s.signal_code()),
signal_get_desc(s.signal_code()));
}
if (clr_eol) outputter_t::stdoutput().term_puts(clr_eol, 1);
std::fwprintf(stdout, L"\n");
printed = true;
}
// Clear status so it is not reported more than once.
// TODO: this seems like a clumsy way to ensure that.
p->status = proc_status_t::from_exit_code(0);
return printed;
}
/// \return whether this job wants a status message printed when it stops or completes.
2019-05-13 01:23:00 +00:00
static bool job_wants_message(const shared_ptr<job_t> &j) {
// Did we already print a status message?
if (j->flags().notified) return false;
// Do we just skip notifications?
if (j->skip_notification()) return false;
// Are we foreground?
// The idea here is to not print status messages for jobs that execute in the foreground (i.e.
// without & and without being `bg`).
if (j->is_foreground()) return false;
return true;
}
/// Remove completed jobs from the job list, printing status messages as appropriate.
/// \return whether something was printed.
static bool process_clean_after_marking(parser_t &parser, bool allow_interactive) {
ASSERT_IS_MAIN_THREAD();
bool printed = false;
// This function may fire an event handler, we do not want to call ourselves recursively (to
2018-10-29 00:09:57 +00:00
// avoid infinite recursion).
if (parser.libdata().is_cleaning_procs) {
return false;
}
parser.libdata().is_cleaning_procs = true;
const cleanup_t cleanup([&] { parser.libdata().is_cleaning_procs = false; });
// This may be invoked in an exit handler, after the TERM has been torn down
// Don't try to print in that case (#3222)
const bool interactive = allow_interactive && cur_term != nullptr;
// Remove all disowned jobs.
remove_disowned_jobs(parser.jobs());
// Accumulate exit events into a new list, which we fire after the list manipulation is
// complete.
std::vector<event_t> exit_events;
// Print status messages for completed or stopped jobs.
const bool only_one_job = parser.jobs().size() == 1;
for (const auto &j : parser.jobs()) {
// Skip unconstructed jobs.
if (!j->is_constructed()) {
continue;
}
// If we are not interactive, skip cleaning jobs that want to print an interactive message.
2019-05-13 01:23:00 +00:00
if (!interactive && job_wants_message(j)) {
continue;
}
// Clean processes within the job.
// Note this may print the message on behalf of the job, affecting the result of
// job_wants_message().
for (process_ptr_t &p : j->processes) {
if (try_clean_process_in_job(p.get(), j.get(), &exit_events, only_one_job)) {
printed = true;
}
}
// Print the message if we need to.
if (job_wants_message(j) && (j->is_completed() || j->is_stopped())) {
print_job_status(j.get(), j->is_completed() ? JOB_ENDED : JOB_STOPPED);
j->mut_flags().notified = true;
printed = true;
}
// Prepare events for completed jobs, except for jobs that themselves came from event
// handlers.
if (!j->from_event_handler() && j->is_completed()) {
if (j->should_report_process_exits()) {
exit_events.push_back(
proc_create_event(L"JOB_EXIT", event_type_t::exit, -j->pgid, 0));
}
exit_events.push_back(
proc_create_event(L"JOB_EXIT", event_type_t::job_exit, j->job_id, 0));
}
}
// Remove completed jobs.
// Do this before calling out to user code in the event handler below, to ensure an event
// handler doesn't remove jobs on our behalf.
auto is_complete = [](const shared_ptr<job_t> &j) { return j->is_completed(); };
auto &jobs = parser.jobs();
jobs.erase(std::remove_if(jobs.begin(), jobs.end(), is_complete), jobs.end());
// Post pending exit events.
for (const auto &evt : exit_events) {
event_fire(parser, evt);
}
if (printed) {
2019-03-21 03:57:38 +00:00
fflush(stdout);
}
return printed;
2017-10-22 07:10:23 +00:00
}
bool job_reap(parser_t &parser, bool allow_interactive) {
2017-10-22 07:10:23 +00:00
ASSERT_IS_MAIN_THREAD();
process_mark_finished_children(parser, false);
2017-10-22 07:10:23 +00:00
// Preserve the exit status.
auto saved_statuses = parser.get_last_statuses();
2017-10-22 07:10:23 +00:00
bool printed = process_clean_after_marking(parser, allow_interactive);
2017-10-22 07:10:23 +00:00
// Restore the exit status.
parser.set_last_statuses(std::move(saved_statuses));
return printed;
}
/// Maximum length of a /proc/[PID]/stat filename.
#define FN_SIZE 256
/// Get the CPU time for the specified process.
unsigned long proc_get_jiffies(process_t *p) {
if (!have_proc_stat()) return 0;
if (p->pid <= 0) return 0;
wchar_t fn[FN_SIZE];
char state;
int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor;
long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss;
unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim,
startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch,
wchan, nswap, cnswap;
char comm[1024];
std::swprintf(fn, FN_SIZE, L"/proc/%d/stat", p->pid);
FILE *f = wfopen(fn, "r");
if (!f) return 0;
// TODO: replace the use of fscanf() as it is brittle and should never be used.
int count = fscanf(f,
"%9d %1023s %c %9d %9d %9d %9d %9d %9lu "
"%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld "
"%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu "
"%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu "
"%9lu %9d %9d ",
&pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt,
&cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority,
&nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim,
&startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked,
&sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor);
fclose(f);
if (count < 17) return 0;
return utime + stime + cutime + cstime;
}
/// Update the CPU time for all jobs.
void proc_update_jiffies(parser_t &parser) {
for (const auto &job : parser.jobs()) {
2017-01-23 18:38:55 +00:00
for (process_ptr_t &p : job->processes) {
gettimeofday(&p->last_time, nullptr);
2017-01-23 18:39:53 +00:00
p->last_jiffies = proc_get_jiffies(p.get());
}
}
}
// Return control of the terminal to a job's process group. restore_attrs is true if we are
// restoring a previously-stopped job, in which case we need to restore terminal attributes.
int terminal_maybe_give_to_job(const job_t *j, bool continuing_from_stopped) {
enum { notneeded = 0, success = 1, error = -1 };
if (!j->should_claim_terminal()) {
// The job doesn't want the terminal.
return notneeded;
}
if (j->pgid == 0) {
FLOG(proc_termowner, L"terminal_give_to_job() returning early due to no process group");
return notneeded;
}
// If we are continuing, ensure that stdin is marked as blocking first (issue #176).
if (continuing_from_stopped) {
make_fd_blocking(STDIN_FILENO);
}
2017-08-06 22:47:01 +00:00
// It may not be safe to call tcsetpgrp if we've already done so, as at that point we are no
// longer the controlling process group for the terminal and no longer have permission to set
// the process group that is in control, causing tcsetpgrp to return EPERM, even though that's
// not the documented behavior in tcsetpgrp(3), which instead says other bad things will happen
// (it says SIGTTOU will be sent to all members of the background *calling* process group, but
// it's more complicated than that, SIGTTOU may or may not be sent depending on the TTY
// configuration and whether or not signal handlers for SIGTTOU are installed. Read:
// http://curiousthing.org/sigttin-sigttou-deep-dive-linux In all cases, our goal here was just
// to hand over control of the terminal to this process group, which is a no-op if it's already
// been done.
2018-10-02 03:55:18 +00:00
if (j->pgid == INVALID_PID || tcgetpgrp(STDIN_FILENO) == j->pgid) {
FLOGF(proc_termowner, L"Process group %d already has control of terminal", j->pgid);
} else {
FLOGF(proc_termowner,
L"Attempting to bring process group to foreground via tcsetpgrp for job->pgid %d",
j->pgid);
2017-08-06 22:47:01 +00:00
// The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but
// is not the process group ID of a process in the same session as the calling process."
// Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls
// SIGSTOP, and the child was created in the same session as us), it seems that EPERM is
// being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the
// newly-created process group just yet. On this developer's test machine (WSL running Linux
// 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can
// guarantee the process isn't going to exit while we wait (which would cause us to possibly
// block indefinitely).
while (tcsetpgrp(STDIN_FILENO, j->pgid) != 0) {
FLOGF(proc_termowner, L"tcsetpgrp failed: %d", errno);
bool pgroup_terminated = false;
// No need to test for EINTR as we are blocking signals
if (errno == EINVAL) {
2017-08-06 22:47:01 +00:00
// OS X returns EINVAL if the process group no longer lives. Probably other OSes,
// too. Unlike EPERM below, EINVAL can only happen if the process group has
// terminated.
pgroup_terminated = true;
} else if (errno == EPERM) {
2017-08-06 22:47:01 +00:00
// Retry so long as this isn't because the process group is dead.
int wait_result = waitpid(-1 * j->pgid, &wait_result, WNOHANG);
if (wait_result == -1) {
2017-08-06 22:47:01 +00:00
// Note that -1 is technically an "error" for waitpid in the sense that an
// invalid argument was specified because no such process group exists any
// longer. This is the observed behavior on Linux 4.4.0. a "success" result
// would mean processes from the group still exist but is still running in some
// state or the other.
pgroup_terminated = true;
} else {
2017-08-06 22:47:01 +00:00
// Debug the original tcsetpgrp error (not the waitpid errno) to the log, and
// then retry until not EPERM or the process group has exited.
debug(2, L"terminal_give_to_job(): EPERM.\n", j->pgid);
continue;
}
} else {
if (errno == ENOTTY) {
redirect_tty_output();
}
2018-10-29 00:09:57 +00:00
debug(1, _(L"Could not send job %d ('%ls') with pgid %d to foreground"), j->job_id,
j->command_wcstr(), j->pgid);
wperror(L"tcsetpgrp");
return error;
}
if (pgroup_terminated) {
// All processes in the process group has exited.
// Since we delay reaping any processes in a process group until all members of that
2018-10-29 00:09:57 +00:00
// job/group have been started, the only way this can happen is if the very last
// process in the group terminated and didn't need to access the terminal, otherwise
// it would have hung waiting for terminal IO (SIGTTIN). We can safely ignore this.
debug(3, L"tcsetpgrp called but process group %d has terminated.\n", j->pgid);
return notneeded;
}
break;
}
}
if (continuing_from_stopped) {
auto result = tcsetattr(STDIN_FILENO, TCSADRAIN, &j->tmodes);
if (result == -1) {
// No need to test for EINTR and retry since we have blocked all signals
if (errno == ENOTTY) {
redirect_tty_output();
}
2018-10-29 00:09:57 +00:00
debug(1, _(L"Could not send job %d ('%ls') to foreground"), j->job_id,
j->preview().c_str());
wperror(L"tcsetattr");
return error;
}
}
return success;
}
pid_t terminal_acquire_before_builtin(int job_pgid) {
pid_t selfpgid = getpgrp();
pid_t current_owner = tcgetpgrp(STDIN_FILENO);
if (current_owner >= 0 && current_owner != selfpgid && current_owner == job_pgid) {
if (tcsetpgrp(STDIN_FILENO, selfpgid) == 0) {
return current_owner;
}
}
return -1;
}
/// Returns control of the terminal to the shell, and saves the terminal attribute state to the job,
/// so that we can restore the terminal ownership to the job at a later time.
static bool terminal_return_from_job(job_t *j, int restore_attrs) {
errno = 0;
if (j->pgid == 0) {
debug(2, "terminal_return_from_job() returning early due to no process group");
return true;
}
if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) {
if (errno == ENOTTY) redirect_tty_output();
debug(1, _(L"Could not return shell to foreground"));
wperror(L"tcsetpgrp");
return false;
}
// Save jobs terminal modes.
if (tcgetattr(STDIN_FILENO, &j->tmodes)) {
if (errno == EIO) redirect_tty_output();
debug(1, _(L"Could not return shell to foreground"));
wperror(L"tcgetattr");
return false;
}
// Need to restore the terminal's attributes or `bind \cF fg` will put the
// terminal into a broken state (until "enter" is pressed).
// See: https://github.com/fish-shell/fish-shell/issues/2114
if (restore_attrs) {
if (tcsetattr(STDIN_FILENO, TCSADRAIN, &shell_modes) == -1) {
if (errno == EIO) redirect_tty_output();
debug(1, _(L"Could not return shell to foreground"));
wperror(L"tcsetattr");
return false;
}
}
return true;
}
void job_t::continue_job(parser_t &parser, bool reclaim_foreground_pgrp, bool send_sigcont) {
// Put job first in the job list.
parser.job_promote(this);
mut_flags().notified = false;
2019-05-18 20:47:27 +00:00
FLOGF(proc_job_run, L"%ls job %d, gid %d (%ls), %ls, %ls",
send_sigcont ? L"Continue" : L"Start", job_id, pgid, command_wcstr(),
is_completed() ? L"COMPLETED" : L"UNCOMPLETED",
parser.libdata().is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE");
// Make sure we retake control of the terminal before leaving this function.
bool term_transferred = false;
cleanup_t take_term_back([&]() {
if (term_transferred && reclaim_foreground_pgrp) {
// Only restore terminal attrs if we're continuing a job. See:
// https://github.com/fish-shell/fish-shell/issues/121
// https://github.com/fish-shell/fish-shell/issues/2114
terminal_return_from_job(this, send_sigcont);
2018-10-29 00:09:57 +00:00
}
});
if (!is_completed()) {
int transfer = terminal_maybe_give_to_job(this, send_sigcont);
if (transfer < 0) {
// terminal_maybe_give_to_job prints an error.
return;
}
term_transferred = (transfer > 0);
// If both requested and necessary, send the job a continue signal.
if (send_sigcont) {
// This code used to check for JOB_CONTROL to decide between using killpg to signal all
// processes in the group or iterating over each process in the group and sending the
// signal individually. job_t::signal() does the same, but uses the shell's own pgroup
// to make that distinction.
if (!signal(SIGCONT)) {
debug(2, "Failed to send SIGCONT to any processes in pgroup %d!", pgid);
// This returns without bubbling up the error. Presumably that is OK.
return;
}
// reset the status of each process instance
for (auto &p : processes) {
p->stopped = false;
}
}
if (is_foreground()) {
2019-02-01 09:58:06 +00:00
// Wait for the status of our own job to change.
while (!reader_exit_forced() && !is_stopped() && !is_completed()) {
process_mark_finished_children(parser, true);
}
}
}
if (is_foreground() && is_completed()) {
// Set $status only if we are in the foreground and the last process in the job has
// finished and is not a short-circuited builtin.
auto &p = processes.back();
if (p->status.normal_exited() || p->status.signal_exited()) {
parser.set_last_statuses(get_statuses());
}
}
}
void proc_sanity_check(const parser_t &parser) {
const job_t *fg_job = nullptr;
for (const auto &j : parser.jobs()) {
if (!j->is_constructed()) continue;
// More than one foreground job?
if (j->is_foreground() && !(j->is_stopped() || j->is_completed())) {
2017-01-24 23:14:56 +00:00
if (fg_job) {
FLOGF(error, _(L"More than one job in foreground: job 1: '%ls' job 2: '%ls'"),
2019-06-04 03:30:48 +00:00
fg_job->command_wcstr(), j->command_wcstr());
sanity_lose();
}
fg_job = j.get();
}
for (const process_ptr_t &p : j->processes) {
// Internal block nodes do not have argv - see issue #1545.
bool null_ok = (p->type == process_type_t::block_node);
validate_pointer(p->get_argv(), _(L"Process argument list"), null_ok);
validate_pointer(p->argv0(), _(L"Process name"), null_ok);
if ((p->stopped & (~0x00000001)) != 0) {
FLOGF(error, _(L"Job '%ls', process '%ls' has inconsistent state \'stopped\'=%d"),
2019-06-04 03:30:48 +00:00
j->command_wcstr(), p->argv0(), p->stopped);
sanity_lose();
}
if ((p->completed & (~0x00000001)) != 0) {
FLOGF(error, _(L"Job '%ls', process '%ls' has inconsistent state \'completed\'=%d"),
2019-06-04 03:30:48 +00:00
j->command_wcstr(), p->argv0(), p->completed);
sanity_lose();
}
}
}
}
void proc_wait_any(parser_t &parser) {
ASSERT_IS_MAIN_THREAD();
process_mark_finished_children(parser, true /* block_ok */);
process_clean_after_marking(parser, parser.libdata().is_interactive);
2017-10-22 07:10:23 +00:00
}
void hup_background_jobs(const parser_t &parser) {
// TODO: we should probably hup all jobs across all parsers here.
for (const auto &j : parser.jobs()) {
// Make sure we don't try to SIGHUP the calling builtin
if (j->pgid == INVALID_PID || !j->wants_job_control()) {
continue;
}
if (!j->is_completed()) {
if (j->is_stopped()) {
j->signal(SIGCONT);
}
j->signal(SIGHUP);
}
}
}
2018-09-09 08:36:21 +00:00
static std::atomic<bool> s_is_within_fish_initialization{false};
void set_is_within_fish_initialization(bool flag) { s_is_within_fish_initialization.store(flag); }
bool is_within_fish_initialization() { return s_is_within_fish_initialization.load(); }