fish-shell/src/timer.cpp

219 lines
9.5 KiB
C++
Raw Normal View History

2019-12-20 04:41:53 +00:00
// Functions for executing the time builtin.
#include "config.h" // IWYU pragma: keep
2019-12-29 22:25:42 +00:00
#include "timer.h"
#include <string.h>
#include <algorithm>
2019-12-20 04:41:53 +00:00
#include <cerrno>
#include <chrono>
#include <cstddef>
2019-12-29 22:25:42 +00:00
#include <ctime>
2019-12-20 04:41:53 +00:00
#include "builtin.h"
2019-12-29 22:25:42 +00:00
#include "common.h"
2019-12-20 04:41:53 +00:00
#include "exec.h"
#include "fallback.h" // IWYU pragma: keep
#include "io.h"
#include "parser.h"
#include "proc.h"
#include "wgetopt.h"
#include "wutil.h" // IWYU pragma: keep
// Measuring time is always complicated with many caveats. Quite apart from the typical
// gotchas faced by developers attempting to choose between monotonic vs non-monotonic and system vs
// cpu clocks, the fact that we are executing as a shell further complicates matters: we can't just
// observe the elapsed CPU time, because that does not reflect the total execution time for both
// ourselves (internal shell execution time and the time it takes for builtins and functions to
// execute) and any external processes we spawn.
// It would be nice to use the C++1 type-safe <chrono> interfaces to measure elapsed time, but that
// unfortunately is underspecified with regards to user/system time and only provides means of
// querying guaranteed monotonicity and resolution for the various clocks. It can be used to measure
// elapsed wall time nicely, but if we would like to provide information more useful for
// benchmarking and tuning then we must turn to either clock_gettime(2), with extensions for thread-
// and process-specific elapsed CPU time, or times(3) for a standard interface to overall process
// and child user/system time elapsed between snapshots. At least on some systems, times(3) has been
// deprecated in favor of getrusage(2), which offers a wider variety of metrics coalesced for SELF,
// THREAD, or CHILDREN.
// With regards to the C++11 `<chrono>` interface, there are three different time sources (clocks)
// that we can use portably: `system_clock`, `steady_clock`, and `high_resolution_clock`; with
// different properties and guarantees. While the obvious difference is the direct tradeoff between
// period and resolution (higher resolution equals ability to measure smaller time differences more
// accurately, but at the cost of rolling over more frequently), but unfortunately it is not as
// simple as starting two clocks and going with the highest resolution that hasn't rolled over.
// `system_clock` is out because it is always subject to interference due to adjustments from NTP
// servers or super users (as it reflects the "actual" time), but `high_resolution_clock` may or may
// not be aliased to `system_clock` or `steady_clock`. In practice, there's likely no need to worry
// about this too much, a survey <http://howardhinnant.github.io/clock_survey.html> of the different
// libraries indicates that `high_resolution_clock` is either an alias for `steady_clock` (in which
// case it offers no greater resolution) or it is an alias for `system_clock` (in which case, even
// when it offers a greater resolution than `steady_clock` it is not fit for use).
static int64_t micros(struct timeval t) {
return (static_cast<int64_t>(t.tv_usec) + static_cast<int64_t>(t.tv_sec * 1E6));
};
template <typename D1, typename D2>
static int64_t micros(const std::chrono::duration<D1, D2> &d) {
return std::chrono::duration_cast<std::chrono::microseconds>(d).count();
};
timer_snapshot_t timer_snapshot_t::take() {
timer_snapshot_t snapshot;
getrusage(RUSAGE_SELF, &snapshot.cpu_fish);
getrusage(RUSAGE_CHILDREN, &snapshot.cpu_children);
snapshot.wall = std::chrono::steady_clock::now();
return snapshot;
}
2019-12-29 22:25:42 +00:00
wcstring timer_snapshot_t::print_delta(timer_snapshot_t t1, timer_snapshot_t t2,
bool verbose /* = true */) {
2019-12-20 04:41:53 +00:00
int64_t fish_sys_micros = micros(t2.cpu_fish.ru_stime) - micros(t1.cpu_fish.ru_stime);
int64_t fish_usr_micros = micros(t2.cpu_fish.ru_utime) - micros(t1.cpu_fish.ru_utime);
int64_t child_sys_micros = micros(t2.cpu_children.ru_stime) - micros(t1.cpu_children.ru_stime);
int64_t child_usr_micros = micros(t2.cpu_children.ru_utime) - micros(t1.cpu_children.ru_utime);
// The result from getrusage is not necessarily realtime, it may be cached a few microseconds
// behind. In the event that execution completes extremely quickly or there is no data (say, we
// are measuring external execution time but no external processes have been launched), it can
// incorrectly appear to be negative.
fish_sys_micros = std::max(int64_t(0), fish_sys_micros);
fish_usr_micros = std::max(int64_t(0), fish_usr_micros);
child_sys_micros = std::max(int64_t(0), child_sys_micros);
child_usr_micros = std::max(int64_t(0), child_usr_micros);
int64_t net_sys_micros = fish_sys_micros + child_sys_micros;
int64_t net_usr_micros = fish_usr_micros + child_usr_micros;
int64_t net_wall_micros = micros(t2.wall - t1.wall);
enum class tunit {
minutes,
seconds,
milliseconds,
microseconds,
};
auto get_unit = [](int64_t micros) {
if (micros > 900 * 1E6) {
return tunit::minutes;
} else if (micros >= 999995) { // Move to seconds if we would overflow the %6.2 format.
2019-12-20 04:41:53 +00:00
return tunit::seconds;
} else if (micros >= 1000) {
2019-12-20 04:41:53 +00:00
return tunit::milliseconds;
} else {
return tunit::microseconds;
}
};
auto unit_name = [](tunit unit) {
switch (unit) {
2019-12-29 22:25:42 +00:00
case tunit::minutes:
return "minutes";
case tunit::seconds:
return "seconds";
case tunit::milliseconds:
return "milliseconds";
case tunit::microseconds:
return "microseconds";
2019-12-20 04:41:53 +00:00
}
// GCC does not recognize the exhaustive switch above
return "";
};
auto unit_short_name = [](tunit unit) {
switch (unit) {
2019-12-29 22:25:42 +00:00
case tunit::minutes:
return "mins";
2019-12-29 22:25:42 +00:00
case tunit::seconds:
return "secs";
2019-12-29 22:25:42 +00:00
case tunit::milliseconds:
return "millis";
2019-12-29 22:25:42 +00:00
case tunit::microseconds:
return "micros";
2019-12-20 04:41:53 +00:00
}
// GCC does not recognize the exhaustive switch above
return "";
};
auto convert = [](int64_t micros, tunit unit) {
switch (unit) {
2019-12-29 22:25:42 +00:00
case tunit::minutes:
return micros / 1.0E6 / 60.0;
case tunit::seconds:
return micros / 1.0E6;
case tunit::milliseconds:
return micros / 1.0E3;
case tunit::microseconds:
return micros / 1.0;
2019-12-20 04:41:53 +00:00
}
// GCC does not recognize the exhaustive switch above
return 0.0;
2019-12-20 04:41:53 +00:00
};
auto wall_unit = get_unit(net_wall_micros);
2020-03-05 10:24:44 +00:00
auto cpu_unit = get_unit(std::max(net_sys_micros, net_usr_micros));
2019-12-20 04:41:53 +00:00
auto wall_time = convert(net_wall_micros, wall_unit);
auto usr_time = convert(net_usr_micros, cpu_unit);
auto sys_time = convert(net_sys_micros, cpu_unit);
wcstring output;
if (!verbose) {
append_format(output,
2019-12-29 22:25:42 +00:00
L"\n_______________________________"
L"\nExecuted in %6.2F %s"
L"\n usr time %6.2F %s"
L"\n sys time %6.2F %s"
2019-12-29 22:25:42 +00:00
L"\n",
wall_time, unit_name(wall_unit), usr_time, unit_name(cpu_unit), sys_time,
unit_name(cpu_unit));
2019-12-20 04:41:53 +00:00
} else {
2020-03-05 10:24:44 +00:00
auto fish_unit = get_unit(std::max(fish_sys_micros, fish_usr_micros));
auto child_unit = get_unit(std::max(child_sys_micros, child_usr_micros));
2019-12-20 04:41:53 +00:00
auto fish_usr_time = convert(fish_usr_micros, fish_unit);
auto fish_sys_time = convert(fish_sys_micros, fish_unit);
auto child_usr_time = convert(child_usr_micros, child_unit);
auto child_sys_time = convert(child_sys_micros, child_unit);
auto column2_unit_len =
std::max(strlen(unit_short_name(wall_unit)), strlen(unit_short_name(cpu_unit)));
2019-12-20 04:41:53 +00:00
append_format(output,
2019-12-29 22:25:42 +00:00
L"\n________________________________________________________"
L"\nExecuted in %6.2F %-*s %-*s %s"
L"\n usr time %6.2F %-*s %6.2F %s %6.2F %s"
L"\n sys time %6.2F %-*s %6.2F %s %6.2F %s"
2019-12-29 22:25:42 +00:00
L"\n",
wall_time, column2_unit_len, unit_short_name(wall_unit),
strlen(unit_short_name(fish_unit)) + 7, "fish", "external", //
usr_time, column2_unit_len, unit_short_name(cpu_unit), fish_usr_time, //
unit_short_name(fish_unit), child_usr_time, unit_short_name(child_unit),
sys_time, column2_unit_len, unit_short_name(cpu_unit), fish_sys_time,
unit_short_name(fish_unit), child_sys_time, unit_short_name(child_unit));
2019-12-20 04:41:53 +00:00
}
return output;
};
static std::vector<timer_snapshot_t> active_timers;
static void pop_timer() {
auto t1 = std::move(active_timers.back());
active_timers.pop_back();
auto t2 = timer_snapshot_t::take();
// Well, this is awkward. By defining `time` as a decorator and not a built-in, there's
// no associated stream for its output!
auto output = timer_snapshot_t::print_delta(std::move(t1), std::move(t2), true);
std::fwprintf(stderr, L"%S\n", output.c_str());
}
cleanup_t push_timer(bool enabled) {
if (!enabled) return {[]() {}};
active_timers.emplace_back(timer_snapshot_t::take());
return {[]() { pop_timer(); }};
}