fish-shell/src/tokenizer.cpp

776 lines
26 KiB
C++
Raw Normal View History

// A specialized tokenizer for tokenizing the fish language. In the future, the tokenizer should be
// extended to support marks, tokenizing multiple strings and disposing of unused string segments.
#include "config.h" // IWYU pragma: keep
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <wchar.h>
#include <wctype.h>
2017-02-11 02:47:02 +00:00
2015-07-25 15:14:25 +00:00
#include <string>
2017-02-11 02:47:02 +00:00
#include <type_traits>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
2015-07-25 15:14:25 +00:00
#include "tokenizer.h"
#include "wutil.h" // IWYU pragma: keep
// Wow what a hack.
#define TOK_CALL_ERROR(t, e, x, where) \
do { \
(t)->call_error((e), where, (t)->squash_errors ? L"" : (x)); \
} while (0)
/// Error string for unexpected end of string.
#define QUOTE_ERROR _(L"Unexpected end of string, quotes are not balanced")
/// Error string for mismatched parenthesis.
#define PARAN_ERROR _(L"Unexpected end of string, parenthesis do not match")
/// Error string for mismatched square brackets.
#define SQUARE_BRACKET_ERROR _(L"Unexpected end of string, square brackets do not match")
/// Error string for unterminated escape (backslash without continuation).
#define UNTERMINATED_ESCAPE_ERROR _(L"Unexpected end of string, incomplete escape sequence")
/// Error string for invalid redirections.
#define REDIRECT_ERROR _(L"Invalid input/output redirection")
/// Error string for when trying to pipe from fd 0.
#define PIPE_ERROR _(L"Cannot use stdin (fd 0) as pipe output")
/// Set the latest tokens string to be the specified error message.
void tokenizer_t::call_error(enum tokenizer_error error_type, const wchar_t *where,
const wchar_t *error_message) {
this->last_type = TOK_ERROR;
this->error = error_type;
this->global_error_offset = where ? where - this->orig_buff : 0;
this->last_token = error_message;
}
tokenizer_t::tokenizer_t(const wchar_t *b, tok_flags_t flags)
: buff(b),
orig_buff(b),
last_type(TOK_NONE),
last_pos(0),
has_next(false),
accept_unfinished(false),
show_comments(false),
show_blank_lines(false),
error(TOK_ERROR_NONE),
global_error_offset(-1),
squash_errors(false),
continue_line_after_comment(false) {
assert(b != NULL);
this->accept_unfinished = static_cast<bool>(flags & TOK_ACCEPT_UNFINISHED);
this->show_comments = static_cast<bool>(flags & TOK_SHOW_COMMENTS);
this->squash_errors = static_cast<bool>(flags & TOK_SQUASH_ERRORS);
this->show_blank_lines = static_cast<bool>(flags & TOK_SHOW_BLANK_LINES);
this->has_next = (*b != L'\0');
this->tok_next();
}
bool tokenizer_t::next(struct tok_t *result) {
2015-07-26 06:05:47 +00:00
assert(result != NULL);
if (!this->has_next) {
2015-07-26 06:05:47 +00:00
return false;
}
const size_t current_pos = this->buff - this->orig_buff;
// We want to copy our last_token into result->text. If we just do this naively via =, we are
// liable to trigger std::string's CoW implementation: result->text's storage will be
// deallocated and instead will acquire a reference to last_token's storage. But last_token will
// be overwritten soon, which will trigger a new allocation and a copy. So our attempt to re-use
// result->text's storage will have failed. To ensure that doesn't happen, use assign() with
// wchar_t.
result->text.assign(this->last_token.data(), this->last_token.size());
2015-07-26 06:05:47 +00:00
result->type = this->last_type;
result->offset = this->last_pos;
result->error = this->last_type == TOK_ERROR ? this->error : TOK_ERROR_NONE;
assert(this->buff >= this->orig_buff);
// Compute error offset.
result->error_offset = 0;
if (this->last_type == TOK_ERROR && this->global_error_offset >= this->last_pos &&
this->global_error_offset < current_pos) {
result->error_offset = this->global_error_offset - this->last_pos;
}
2015-07-26 06:05:47 +00:00
assert(this->buff >= this->orig_buff);
result->length = current_pos >= this->last_pos ? current_pos - this->last_pos : 0;
this->tok_next();
2015-07-26 06:05:47 +00:00
return true;
}
/// Tests if this character can be a part of a string. The redirect ^ is allowed unless it's the
/// first character. Hash (#) starts a comment if it's the first character in a token; otherwise it
/// is considered a string character. See issue #953.
static bool tok_is_string_character(wchar_t c, bool is_first) {
switch (c) {
2012-11-19 08:31:03 +00:00
case L'\0':
case L' ':
case L'\n':
case L'|':
case L'\t':
case L';':
case L'\r':
case L'<':
case L'>':
case L'&': {
// Unconditional separators.
2012-11-19 08:31:03 +00:00
return false;
}
case L'^': {
// Conditional separator.
return !is_first;
}
default: { return true; }
}
}
/// Quick test to catch the most common 'non-magical' characters, makes read_string slightly faster
/// by adding a fast path for the most common characters. This is obviously not a suitable
/// replacement for iswalpha.
static int myal(wchar_t c) { return (c >= L'a' && c <= L'z') || (c >= L'A' && c <= L'Z'); }
/// Read the next token as a string.
void tokenizer_t::read_string() {
long len;
int do_loop = 1;
size_t paran_count = 0;
// Up to 96 open parens, before we give up on good error reporting.
const size_t paran_offsets_max = 96;
size_t paran_offsets[paran_offsets_max];
// Where the open bracket is.
size_t offset_of_bracket = 0;
const wchar_t *const start = this->buff;
bool is_first = true;
enum tok_mode_t {
mode_regular_text = 0, // regular text
mode_subshell = 1, // inside of subshell
mode_array_brackets = 2, // inside of array brackets
mode_array_brackets_and_subshell =
3 // inside of array brackets and subshell, like in '$foo[(ech'
} mode = mode_regular_text;
while (1) {
if (!myal(*this->buff)) {
if (*this->buff == L'\\') {
const wchar_t *error_location = this->buff;
this->buff++;
if (*this->buff == L'\0') {
if ((!this->accept_unfinished)) {
TOK_CALL_ERROR(this, TOK_UNTERMINATED_ESCAPE, UNTERMINATED_ESCAPE_ERROR,
error_location);
return;
}
// Since we are about to increment tok->buff, decrement it first so the
// increment doesn't go past the end of the buffer. See issue #389.
this->buff--;
do_loop = 0;
}
this->buff++;
continue;
}
switch (mode) {
case mode_regular_text: {
switch (*this->buff) {
case L'(': {
paran_count = 1;
paran_offsets[0] = this->buff - this->orig_buff;
mode = mode_subshell;
2012-11-19 08:31:03 +00:00
break;
}
case L'[': {
if (this->buff != start) {
mode = mode_array_brackets;
offset_of_bracket = this->buff - this->orig_buff;
}
2012-11-19 08:31:03 +00:00
break;
}
case L'\'':
case L'"': {
const wchar_t *end = quote_end(this->buff);
if (end) {
this->buff = end;
} else {
const wchar_t *error_loc = this->buff;
this->buff += wcslen(this->buff);
2012-11-19 08:31:03 +00:00
if (!this->accept_unfinished) {
TOK_CALL_ERROR(this, TOK_UNTERMINATED_QUOTE, QUOTE_ERROR,
error_loc);
2012-11-19 08:31:03 +00:00
return;
}
do_loop = 0;
}
break;
}
default: {
if (!tok_is_string_character(*(this->buff), is_first)) {
do_loop = 0;
2012-11-19 08:31:03 +00:00
}
break;
}
}
break;
}
case mode_array_brackets_and_subshell:
case mode_subshell: {
switch (*this->buff) {
2012-11-19 08:31:03 +00:00
case L'\'':
case L'\"': {
const wchar_t *end = quote_end(this->buff);
if (end) {
this->buff = end;
} else {
const wchar_t *error_loc = this->buff;
this->buff += wcslen(this->buff);
if ((!this->accept_unfinished)) {
TOK_CALL_ERROR(this, TOK_UNTERMINATED_QUOTE, QUOTE_ERROR,
error_loc);
2012-11-19 08:31:03 +00:00
return;
}
do_loop = 0;
}
break;
}
case L'(': {
if (paran_count < paran_offsets_max) {
paran_offsets[paran_count] = this->buff - this->orig_buff;
}
2012-11-19 08:31:03 +00:00
paran_count++;
break;
}
case L')': {
assert(paran_count > 0);
2012-11-19 08:31:03 +00:00
paran_count--;
if (paran_count == 0) {
mode =
(mode == mode_array_brackets_and_subshell ? mode_array_brackets
: mode_regular_text);
2012-11-19 08:31:03 +00:00
}
break;
}
case L'\0': {
2012-11-19 08:31:03 +00:00
do_loop = 0;
break;
}
default: {
break; // ignore other chars
}
2012-11-19 08:31:03 +00:00
}
break;
}
case mode_array_brackets: {
switch (*this->buff) {
case L'(': {
paran_count = 1;
paran_offsets[0] = this->buff - this->orig_buff;
mode = mode_array_brackets_and_subshell;
2012-11-19 08:31:03 +00:00
break;
}
case L']': {
mode = mode_regular_text;
2012-11-19 08:31:03 +00:00
break;
}
case L'\0': {
2012-11-19 08:31:03 +00:00
do_loop = 0;
break;
}
default: {
break; // ignore other chars
}
}
break;
}
}
}
if (!do_loop) break;
this->buff++;
is_first = false;
}
if ((!this->accept_unfinished) && (mode != mode_regular_text)) {
switch (mode) {
case mode_subshell: {
// Determine the innermost opening paran offset by interrogating paran_offsets.
assert(paran_count > 0);
size_t offset_of_open_paran = 0;
if (paran_count <= paran_offsets_max) {
offset_of_open_paran = paran_offsets[paran_count - 1];
}
TOK_CALL_ERROR(this, TOK_UNTERMINATED_SUBSHELL, PARAN_ERROR,
this->orig_buff + offset_of_open_paran);
break;
}
case mode_array_brackets:
case mode_array_brackets_and_subshell: {
TOK_CALL_ERROR(this, TOK_UNTERMINATED_SLICE, SQUARE_BRACKET_ERROR,
this->orig_buff + offset_of_bracket);
break;
}
default: {
2016-11-02 04:19:34 +00:00
DIE("unexpected mode in read_string");
break;
}
}
return;
}
len = this->buff - start;
this->last_token.assign(start, len);
this->last_type = TOK_STRING;
}
/// Read the next token as a comment.
void tokenizer_t::read_comment() {
const wchar_t *start = this->buff;
while (*(this->buff) != L'\n' && *(this->buff) != L'\0') this->buff++;
size_t len = this->buff - start;
this->last_token.assign(start, len);
this->last_type = TOK_COMMENT;
}
/// Reads a redirection or an "fd pipe" (like 2>|) from a string. Returns how many characters were
/// consumed. If zero, then this string was not a redirection. Also returns by reference the
/// redirection mode, and the fd to redirection. If there is overflow, *out_fd is set to -1.
static size_t read_redirection_or_fd_pipe(const wchar_t *buff,
enum token_type *out_redirection_mode, int *out_fd) {
bool errored = false;
int fd = 0;
enum token_type redirection_mode = TOK_NONE;
size_t idx = 0;
// Determine the fd. This may be specified as a prefix like '2>...' or it may be implicit like
// '>' or '^'. Try parsing out a number; if we did not get any digits then infer it from the
// first character. Watch out for overflow.
long long big_fd = 0;
for (; iswdigit(buff[idx]); idx++) {
// Note that it's important we consume all the digits here, even if it overflows.
if (big_fd <= INT_MAX) big_fd = big_fd * 10 + (buff[idx] - L'0');
}
fd = (big_fd > INT_MAX ? -1 : static_cast<int>(big_fd));
if (idx == 0) {
// We did not find a leading digit, so there's no explicit fd. Infer it from the type.
switch (buff[idx]) {
case L'>': {
fd = STDOUT_FILENO;
break;
}
case L'<': {
fd = STDIN_FILENO;
break;
}
case L'^': {
fd = STDERR_FILENO;
break;
}
default: {
errored = true;
break;
}
}
}
2016-06-12 18:34:35 +00:00
// Either way we should have ended on the redirection character itself like '>'.
// Don't allow an fd with a caret redirection - see #1873
wchar_t redirect_char = buff[idx++]; // note increment of idx
if (redirect_char == L'>' || (redirect_char == L'^' && idx == 1)) {
redirection_mode = TOK_REDIRECT_OUT;
if (buff[idx] == redirect_char) {
// Doubled up like ^^ or >>. That means append.
redirection_mode = TOK_REDIRECT_APPEND;
idx++;
}
} else if (redirect_char == L'<') {
redirection_mode = TOK_REDIRECT_IN;
} else {
// Something else.
errored = true;
}
// Don't return valid-looking stuff on error.
if (errored) {
idx = 0;
redirection_mode = TOK_NONE;
} else {
// Optional characters like & or ?, or the pipe char |.
wchar_t opt_char = buff[idx];
if (opt_char == L'&') {
redirection_mode = TOK_REDIRECT_FD;
idx++;
} else if (opt_char == L'?') {
redirection_mode = TOK_REDIRECT_NOCLOB;
idx++;
} else if (opt_char == L'|') {
// So the string looked like '2>|'. This is not a redirection - it's a pipe! That gets
// handled elsewhere.
redirection_mode = TOK_PIPE;
idx++;
}
}
// Return stuff.
if (out_redirection_mode != NULL) *out_redirection_mode = redirection_mode;
if (out_fd != NULL) *out_fd = fd;
return idx;
}
enum token_type redirection_type_for_string(const wcstring &str, int *out_fd) {
enum token_type mode = TOK_NONE;
int fd = 0;
read_redirection_or_fd_pipe(str.c_str(), &mode, &fd);
// Redirections only, no pipes.
if (mode == TOK_PIPE || fd < 0) mode = TOK_NONE;
if (out_fd != NULL) *out_fd = fd;
return mode;
}
int fd_redirected_by_pipe(const wcstring &str) {
// Hack for the common case.
if (str == L"|") {
return STDOUT_FILENO;
}
enum token_type mode = TOK_NONE;
int fd = 0;
read_redirection_or_fd_pipe(str.c_str(), &mode, &fd);
// Pipes only.
if (mode != TOK_PIPE || fd < 0) fd = -1;
return fd;
}
int oflags_for_redirection_type(enum token_type type) {
switch (type) {
case TOK_REDIRECT_APPEND: {
return O_CREAT | O_APPEND | O_WRONLY;
}
case TOK_REDIRECT_OUT: {
return O_CREAT | O_WRONLY | O_TRUNC;
}
case TOK_REDIRECT_NOCLOB: {
return O_CREAT | O_EXCL | O_WRONLY;
}
case TOK_REDIRECT_IN: {
return O_RDONLY;
}
default: { return -1; }
}
}
/// Test if a character is whitespace. Differs from iswspace in that it does not consider a newline
/// to be whitespace.
static bool my_iswspace(wchar_t c) { return c != L'\n' && iswspace(c); }
void tokenizer_t::tok_next() {
if (this->last_type == TOK_ERROR) {
this->has_next = false;
return;
}
if (!this->has_next) {
// fwprintf(stdout, L"EOL\n" );
this->last_type = TOK_END;
return;
}
while (1) {
if (this->buff[0] == L'\\' && this->buff[1] == L'\n') {
this->buff += 2;
this->continue_line_after_comment = true;
} else if (my_iswspace(this->buff[0])) {
this->buff++;
} else {
break;
}
}
while (*this->buff == L'#') {
if (this->show_comments) {
this->last_pos = this->buff - this->orig_buff;
this->read_comment();
if (this->buff[0] == L'\n' && this->continue_line_after_comment) this->buff++;
return;
}
while (*(this->buff) != L'\n' && *(this->buff) != L'\0') this->buff++;
if (this->buff[0] == L'\n' && this->continue_line_after_comment) this->buff++;
while (my_iswspace(*(this->buff))) this->buff++;
}
this->continue_line_after_comment = false;
this->last_pos = this->buff - this->orig_buff;
switch (*this->buff) {
case L'\0': {
this->last_type = TOK_END;
// fwprintf( stderr, L"End of string\n" );
this->has_next = false;
2012-11-19 08:31:03 +00:00
break;
}
case L'\r': // carriage-return
case L'\n': // newline
case L';': {
this->last_type = TOK_END;
this->buff++;
// Hack: when we get a newline, swallow as many as we can. This compresses multiple
// subsequent newlines into a single one.
if (!this->show_blank_lines) {
while (*this->buff == L'\n' || *this->buff == 13 /* CR */ || *this->buff == ' ' ||
*this->buff == '\t') {
this->buff++;
}
}
this->last_token.clear();
2012-11-19 08:31:03 +00:00
break;
}
case L'&': {
this->last_type = TOK_BACKGROUND;
this->buff++;
2012-11-19 08:31:03 +00:00
break;
}
case L'|': {
this->last_token = L"1";
this->last_type = TOK_PIPE;
this->buff++;
2012-11-19 08:31:03 +00:00
break;
}
2012-11-19 08:31:03 +00:00
case L'>':
case L'<':
case L'^': {
// There's some duplication with the code in the default case below. The key difference
// here is that we must never parse these as a string; a failed redirection is an error!
enum token_type mode = TOK_NONE;
int fd = -1;
size_t consumed = read_redirection_or_fd_pipe(this->buff, &mode, &fd);
if (consumed == 0 || fd < 0) {
TOK_CALL_ERROR(this, TOK_OTHER, REDIRECT_ERROR, this->buff);
} else {
this->buff += consumed;
this->last_type = mode;
this->last_token = to_string(fd);
}
break;
}
default: {
// Maybe a redirection like '2>&1', maybe a pipe like 2>|, maybe just a string.
const wchar_t *error_location = this->buff;
size_t consumed = 0;
enum token_type mode = TOK_NONE;
int fd = -1;
if (iswdigit(*this->buff)) {
consumed = read_redirection_or_fd_pipe(this->buff, &mode, &fd);
}
if (consumed > 0) {
// It looks like a redirection or a pipe. But we don't support piping fd 0. Note
// that fd 0 may be -1, indicating overflow; but we don't treat that as a tokenizer
// error.
if (mode == TOK_PIPE && fd == 0) {
TOK_CALL_ERROR(this, TOK_OTHER, PIPE_ERROR, error_location);
} else {
this->buff += consumed;
this->last_type = mode;
this->last_token = to_string(fd);
2012-11-19 08:31:03 +00:00
}
} else {
// Not a redirection or pipe, so just a string.
this->read_string();
}
break;
}
}
}
wcstring tok_first(const wcstring &str) {
wcstring result;
tokenizer_t t(str.c_str(), TOK_SQUASH_ERRORS);
tok_t token;
if (t.next(&token) && token.type == TOK_STRING) {
result = std::move(token.text);
}
return result;
}
bool move_word_state_machine_t::consume_char_punctuation(wchar_t c) {
enum { s_always_one = 0, s_whitespace, s_alphanumeric, s_end };
2012-12-22 20:21:31 +00:00
bool consumed = false;
while (state != s_end && !consumed) {
switch (state) {
case s_always_one: {
// Always consume the first character.
consumed = true;
state = s_whitespace;
break;
}
case s_whitespace: {
if (iswspace(c)) {
// Consumed whitespace.
consumed = true;
} else {
state = s_alphanumeric;
}
break;
}
case s_alphanumeric: {
if (iswalnum(c)) {
consumed = true; // consumed alphanumeric
} else {
state = s_end;
}
break;
}
case s_end:
default: { break; }
}
}
return consumed;
}
bool move_word_state_machine_t::is_path_component_character(wchar_t c) {
// Always treat separators as first. All this does is ensure that we treat ^ as a string
// character instead of as stderr redirection, which I hypothesize is usually what is desired.
return tok_is_string_character(c, true) && !wcschr(L"/={,}'\"", c);
}
bool move_word_state_machine_t::consume_char_path_components(wchar_t c) {
enum {
s_initial_punctuation,
s_whitespace,
s_separator,
s_slash,
s_path_component_characters,
s_end
};
2012-12-22 20:21:31 +00:00
// fwprintf(stdout, L"state %d, consume '%lc'\n", state, c);
bool consumed = false;
while (state != s_end && !consumed) {
switch (state) {
case s_initial_punctuation: {
if (!is_path_component_character(c)) {
consumed = true;
}
state = s_whitespace;
break;
}
case s_whitespace: {
if (iswspace(c)) {
consumed = true; // consumed whitespace
} else if (c == L'/' || is_path_component_character(c)) {
state = s_slash; // path component
} else {
state = s_separator; // path separator
}
break;
}
case s_separator: {
if (!iswspace(c) && !is_path_component_character(c)) {
consumed = true; // consumed separator
} else {
state = s_end;
}
break;
}
case s_slash: {
if (c == L'/') {
consumed = true; // consumed slash
} else {
state = s_path_component_characters;
}
break;
}
case s_path_component_characters: {
if (is_path_component_character(c)) {
consumed = true; // consumed string character except slash
} else {
state = s_end;
}
break;
}
case s_end:
default: { break; }
}
}
return consumed;
}
bool move_word_state_machine_t::consume_char_whitespace(wchar_t c) {
enum { s_always_one = 0, s_blank, s_graph, s_end };
bool consumed = false;
while (state != s_end && !consumed) {
switch (state) {
case s_always_one: {
consumed = true; // always consume the first character
state = s_blank;
break;
}
case s_blank: {
if (iswblank(c)) {
consumed = true; // consumed whitespace
} else {
state = s_graph;
}
break;
}
case s_graph: {
if (iswgraph(c)) {
consumed = true; // consumed printable non-space
} else {
state = s_end;
}
break;
}
case s_end:
default: { break; }
}
}
return consumed;
}
bool move_word_state_machine_t::consume_char(wchar_t c) {
switch (style) {
case move_word_style_punctuation: {
2012-12-22 20:21:31 +00:00
return consume_char_punctuation(c);
}
case move_word_style_path_components: {
2012-12-22 20:21:31 +00:00
return consume_char_path_components(c);
}
case move_word_style_whitespace: {
return consume_char_whitespace(c);
}
}
DIE("should not reach this statement"); // silence some compiler errors about not returning
}
move_word_state_machine_t::move_word_state_machine_t(move_word_style_t syl)
: state(0), style(syl) {}
void move_word_state_machine_t::reset() { state = 0; }