fish-shell/src/fd_readable_set.rs

225 lines
7.1 KiB
Rust
Raw Normal View History

2023-01-14 22:56:24 +00:00
use libc::c_int;
use std::os::unix::prelude::*;
2023-01-14 22:56:24 +00:00
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Returns `true` if the fd is or becomes readable within the given timeout.
/// This returns `false` if the waiting is interrupted by a signal.
2023-01-14 22:56:24 +00:00
pub fn is_fd_readable(fd: i32, timeout_usec: u64) -> bool {
FdReadableSet::is_fd_readable(fd, timeout_usec)
2023-01-14 22:56:24 +00:00
}
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Returns whether an fd is readable.
2023-01-14 22:56:24 +00:00
pub fn poll_fd_readable(fd: i32) -> bool {
FdReadableSet::poll_fd_readable(fd)
2023-01-14 22:56:24 +00:00
}
/// A modest wrapper around select() or poll().
/// This allows accumulating a set of fds and then seeing if they are readable.
/// This only handles readability.
/// Apple's `man poll`: "The poll() system call currently does not support devices."
#[cfg(target_os = "macos")]
pub struct FdReadableSet {
2023-01-14 22:56:24 +00:00
// The underlying fdset and nfds value to pass to select().
fdset_: libc::fd_set,
nfds_: c_int,
}
#[allow(dead_code)]
2023-01-14 22:56:24 +00:00
const kUsecPerMsec: u64 = 1000;
#[allow(dead_code)]
2023-01-14 22:56:24 +00:00
const kUsecPerSec: u64 = 1000 * kUsecPerMsec;
#[cfg(target_os = "macos")]
impl FdReadableSet {
2023-01-14 22:56:24 +00:00
/// Construct an empty set.
pub fn new() -> FdReadableSet {
FdReadableSet {
2023-01-14 22:56:24 +00:00
fdset_: unsafe { std::mem::zeroed() },
nfds_: 0,
}
}
/// Reset back to an empty set.
pub fn clear(&mut self) {
self.nfds_ = 0;
unsafe {
libc::FD_ZERO(&mut self.fdset_);
}
}
/// Add an fd to the set. The fd is ignored if negative (for convenience).
pub fn add(&mut self, fd: RawFd) {
if fd >= (libc::FD_SETSIZE as RawFd) {
//FLOGF(error, "fd %d too large for select()", fd);
return;
}
if fd >= 0 {
unsafe { libc::FD_SET(fd, &mut self.fdset_) };
self.nfds_ = std::cmp::max(self.nfds_, fd + 1);
}
}
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Returns `true` if the given `fd` is marked as set, in our set. Returns `false` if `fd` is
/// negative.
2023-01-14 22:56:24 +00:00
pub fn test(&self, fd: RawFd) -> bool {
fd >= 0 && unsafe { libc::FD_ISSET(fd, &self.fdset_) }
}
2024-12-21 18:41:41 +00:00
/// Call `select()`. Note this destructively modifies the set. Returns the result of
/// `select()`.
2023-01-14 22:56:24 +00:00
pub fn check_readable(&mut self, timeout_usec: u64) -> c_int {
let null = std::ptr::null_mut();
2024-12-29 13:56:45 +00:00
let mut tvs;
let timeout = if timeout_usec == Self::kNoTimeout {
std::ptr::null_mut()
2023-01-14 22:56:24 +00:00
} else {
2024-12-29 13:56:45 +00:00
tvs = libc::timeval {
Revert libc time_t changes This was based on a misunderstanding. On musl, 64-bit time_t on 32-bit architectures was introduced in version 1.2.0, by introducing new symbols. The old symbols still exist, to allow programs compiled against older versions to keep running on 1.2.0+, preserving ABI-compatibility. (see musl commit 38143339646a4ccce8afe298c34467767c899f51) Programs compiled against 1.2.0+ will get the new symbols, and will therefore think time_t is 64-bit. Unfortunately, rust's libc crate uses its own definition of these types, and does not check for musl version. Currently, it includes the pre-1.2.0 32-bit type. That means: - If you run on a 32-bit system like i686 - ... and compile against a C-library other than libc - ... and pass it a time_t-containing struct like timespec or stat ... you need to arrange for that library to be built against musl <1.2.0. Or, as https://github.com/ericonr/rust-time64 says: > Therefore, for "old" 32-bit targets (riscv32 is supposed to default to time64), > any Rust code that interacts with C code built on musl after 1.2.0, > using types based on time_t (arguably, the main ones are struct timespec and struct stat) in their interface, > will be completely miscompiled. However, while fish runs on i686 and compiles against pcre2, we do not pass pcre2 a time_t. Our only uses of time_t are confined to interactions with libc, in which case with musl we would simply use the legacy ABI. I have compiled an i686 fish against musl to confirm and can find no issue. This reverts commit 55196ee2a0430d920ea7a2c89a6e322615f78334. This reverts commit 4992f8896633fb8ca8d89e09f02330cd49395485. This reverts commit 46c8ba2c9fec77195091ddcf7ee0bb3d9a6e5f54. This reverts commit 3a9b4149da7d44b8648702f17d9e9eef651e56f9. This reverts commit 5f9e9cbe741025231acfb24dc900433e1c6738ac. This reverts commit 338579b78ca2ba0aab108304bc33a53fddeb11ba. This reverts commit d19e5508d7b406da6813edb9d0a6909094d20e5a. This reverts commit b64045dc189ec58b6bd3dea71e1441e00876904c. Closes #10634
2024-08-27 09:15:27 +00:00
tv_sec: (timeout_usec / kUsecPerSec) as libc::time_t,
tv_usec: (timeout_usec % kUsecPerSec) as libc::suseconds_t,
2023-01-14 22:56:24 +00:00
};
2024-12-29 13:56:45 +00:00
&mut tvs
};
unsafe {
return libc::select(self.nfds_, &mut self.fdset_, null, null, timeout);
2023-01-14 22:56:24 +00:00
}
}
/// Check if a single fd is readable, with a given timeout.
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Returns `true` if readable, `false` otherwise.
2023-01-14 22:56:24 +00:00
pub fn is_fd_readable(fd: RawFd, timeout_usec: u64) -> bool {
if fd < 0 {
return false;
}
let mut s = Self::new();
s.add(fd);
let res = s.check_readable(timeout_usec);
return res > 0 && s.test(fd);
}
/// Check if a single fd is readable, without blocking.
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Returns `true` if readable, `false` if not.
2023-01-14 22:56:24 +00:00
pub fn poll_fd_readable(fd: RawFd) -> bool {
return Self::is_fd_readable(fd, 0);
}
/// A special timeout value which may be passed to indicate no timeout.
pub const kNoTimeout: u64 = u64::MAX;
}
#[cfg(not(target_os = "macos"))]
pub struct FdReadableSet {
2023-01-14 22:56:24 +00:00
pollfds_: Vec<libc::pollfd>,
}
#[cfg(not(target_os = "macos"))]
impl FdReadableSet {
2023-01-14 22:56:24 +00:00
/// Construct an empty set.
pub fn new() -> FdReadableSet {
FdReadableSet {
2023-01-14 22:56:24 +00:00
pollfds_: Vec::new(),
}
}
/// Reset back to an empty set.
pub fn clear(&mut self) {
self.pollfds_.clear();
}
#[inline]
fn pollfd_get_fd(pollfd: &libc::pollfd) -> RawFd {
pollfd.fd
}
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Add an fd to the set. The fd is ignored if negative (for convenience). The fd is also
/// ignored if it's already in the set.
2023-01-14 22:56:24 +00:00
pub fn add(&mut self, fd: RawFd) {
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
if fd < 0 {
return;
2023-01-14 22:56:24 +00:00
}
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
let pos = match self.pollfds_.binary_search_by_key(&fd, Self::pollfd_get_fd) {
Ok(_) => return,
Err(pos) => pos,
};
self.pollfds_.insert(
pos,
libc::pollfd {
fd,
events: libc::POLLIN,
revents: 0,
},
);
2023-01-14 22:56:24 +00:00
}
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Returns `true` if the given `fd` has input available to read or has been HUP'd.
/// Returns `false` if `fd` is negative or was not found in the set.
2023-01-14 22:56:24 +00:00
pub fn test(&self, fd: RawFd) -> bool {
// If a pipe is widowed with no data, Linux sets POLLHUP but not POLLIN, so test for both.
if let Ok(pos) = self.pollfds_.binary_search_by_key(&fd, Self::pollfd_get_fd) {
let pollfd = &self.pollfds_[pos];
debug_assert_eq!(pollfd.fd, fd);
return pollfd.revents & (libc::POLLIN | libc::POLLHUP) != 0;
}
return false;
}
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
/// Convert from usecs to poll-friendly msecs.
2023-01-14 22:56:24 +00:00
fn usec_to_poll_msec(timeout_usec: u64) -> c_int {
let mut timeout_msec: u64 = timeout_usec / kUsecPerMsec;
// Round to nearest, down for halfway.
if (timeout_usec % kUsecPerMsec) > kUsecPerMsec / 2 {
timeout_msec += 1;
}
if timeout_usec == FdReadableSet::kNoTimeout || timeout_msec > c_int::MAX as u64 {
2023-01-14 22:56:24 +00:00
// Negative values mean wait forever in poll-speak.
return -1;
}
return timeout_msec as c_int;
}
fn do_poll(fds: &mut [libc::pollfd], timeout_usec: u64) -> c_int {
let count = fds.len();
assert!(count <= libc::nfds_t::MAX as usize, "count too big");
return unsafe {
libc::poll(
fds.as_mut_ptr(),
count as libc::nfds_t,
Self::usec_to_poll_msec(timeout_usec),
)
};
}
2024-12-21 18:41:41 +00:00
/// Call poll(). Note this destructively modifies the set. Return the result of poll().
Port fd_monitor (and its needed components) I needed to rename some types already ported to rust so they don't clash with their still-extant cpp counterparts. Helper ffi functions added to avoid needing to dynamically allocate an FdMonitorItem for every fd (we use dozens per basic prompt). I ported some functions from cpp to rust that are used only in the backend but without removing their existing cpp counterparts so cpp code can continue to use their version of them (`wperror` and `make_detached_pthread`). I ran into issues porting line-by-line logic because rust inverts the behavior of `std::remove_if(..)` by making it (basically) `Vec::retain_if(..)` so I replaced bools with an explict enum to make everything clearer. I'll port the cpp tests for this separately, for now they're using ffi. Porting closures was ugly. It's nothing hard, but it's very ugly as now each capturing lambda has been changed into an explicit struct that contains its parameters (that needs to be dynamically allocated), a standalone callback (member) function to replace the lambda contents, and a separate trampoline function to call it from rust over the shared C abi (not really relevant to x86_64 w/ its single calling convention but probably needed on other platforms). I don't like that `fd_monitor.rs` has its own `c_void`. I couldn't find a way to move that to `ffi.rs` but still get cxx bridge to consider it a shared POD. Every time I moved it to a different module, it would consider it to be an opaque rust type instead. I worry this means we're going to have multiple `c_void1`, `c_void2`, etc. types as we continue to port code to use function pointers. Also, rust treats raw pointers as foreign so you can't do `impl Send for * const Foo` even if `Foo` is from the same module. That necessitated a wrapper type (`void_ptr`) that implements `Send` and `Sync` so we can move stuff between threads. The code in fd_monitor_t has been split into two objects, one that is used by the caller and a separate one associated with the background thread (this is made nice and clean by rust's ownership model). Objects not needed under the lock (i.e. accessed by the background thread exclusively) were moved to the separate `BackgroundFdMonitor` type.
2023-02-18 01:21:44 +00:00
///
/// TODO: Change to [`Duration`](std::time::Duration) once FFI usage is done.
2023-01-14 22:56:24 +00:00
pub fn check_readable(&mut self, timeout_usec: u64) -> c_int {
if self.pollfds_.is_empty() {
return 0;
}
return Self::do_poll(&mut self.pollfds_, timeout_usec);
}
/// Check if a single fd is readable, with a given timeout.
/// Return true if `fd` is our set and is readable, `false` otherwise.
2023-01-14 22:56:24 +00:00
pub fn is_fd_readable(fd: RawFd, timeout_usec: u64) -> bool {
if fd < 0 {
return false;
}
let mut pfd = libc::pollfd {
fd,
events: libc::POLLIN,
revents: 0,
};
let ret = Self::do_poll(std::slice::from_mut(&mut pfd), timeout_usec);
return ret > 0 && (pfd.revents & libc::POLLIN) != 0;
}
/// Check if a single fd is readable, without blocking.
/// Return true if readable, false if not.
2023-01-14 22:56:24 +00:00
pub fn poll_fd_readable(fd: RawFd) -> bool {
return Self::is_fd_readable(fd, 0);
}
/// A special timeout value which may be passed to indicate no timeout.
pub const kNoTimeout: u64 = u64::MAX;
}