fish-shell/src/io.h

421 lines
14 KiB
C
Raw Normal View History

#ifndef FISH_IO_H
#define FISH_IO_H
#include <stdarg.h>
2015-07-25 15:14:25 +00:00
#include <stddef.h>
#include <stdlib.h>
#include <vector>
// Note that we have to include something to get any _LIBCPP_VERSION defined so we can detect libc++
// So it's key that vector go above. If we didn't need vector for other reasons, we might include
// ciso646, which does nothing
#if defined(_LIBCPP_VERSION) || __cplusplus > 199711L
// C++11 or libc++ (which is a C++11-only library, but the memory header works OK in C++03)
2013-05-05 09:33:17 +00:00
#include <memory>
using std::shared_ptr;
2013-04-09 21:07:19 +00:00
#else
// C++03 or libstdc++
2013-05-05 09:33:17 +00:00
#include <tr1/memory>
using std::tr1::shared_ptr;
2013-04-09 21:07:19 +00:00
#endif
2015-07-25 15:14:25 +00:00
#include "common.h"
#include "env.h"
2015-07-25 15:14:25 +00:00
/// separated_buffer_t is composed of a sequence of elements, some of which may be explicitly
/// separated (e.g. through string spit0) and some of which the separation is inferred. This enum
/// tracks the type.
enum class separation_type_t {
/// This element's separation should be inferred, e.g. through IFS.
inferred,
/// This element was explicitly separated and should not be separated further.
explicitly
};
/// A separated_buffer_t contains a list of elements, some of which may be separated explicitly and
/// others which must be separated further by the user (e.g. via IFS).
template <typename StringType>
class separated_buffer_t {
public:
struct element_t {
StringType contents;
separation_type_t separation;
element_t(StringType contents, separation_type_t sep)
: contents(std::move(contents)), separation(sep) {}
bool is_explicitly_separated() const { return separation == separation_type_t::explicitly; }
};
private:
/// Limit on how much data we'll buffer. Zero means no limit.
size_t buffer_limit_;
/// Current size of all contents.
size_t contents_size_{0};
/// List of buffer elements.
std::vector<element_t> elements_;
/// True if we're discarding input because our buffer_limit has been exceeded.
bool discard = false;
/// Mark that we are about to add the given size \p delta to the buffer. \return true if we
/// succeed, false if we exceed buffer_limit.
bool try_add_size(size_t delta) {
if (discard) return false;
contents_size_ += delta;
if (contents_size_ < delta) {
// Overflow!
set_discard();
return false;
}
if (buffer_limit_ > 0 && contents_size_ > buffer_limit_) {
set_discard();
return false;
}
return true;
}
/// separated_buffer_t may not be copied.
separated_buffer_t(const separated_buffer_t &) = delete;
void operator=(const separated_buffer_t &) = delete;
public:
/// Construct a separated_buffer_t with the given buffer limit \p limit, or 0 for no limit.
separated_buffer_t(size_t limit) : buffer_limit_(limit) {}
/// \return the buffer limit size, or 0 for no limit.
size_t limit() const { return buffer_limit_; }
/// \return the contents size.
size_t size() const { return contents_size_; }
/// \return whether the output has been discarded.
bool discarded() const { return discard; }
/// Mark the contents as discarded.
void set_discard() {
elements_.clear();
contents_size_ = 0;
discard = true;
}
void reset_discard() {
discard = false;
}
/// Serialize the contents to a single string, where explicitly separated elements have a
/// newline appended.
StringType newline_serialized() const {
StringType result;
result.reserve(size());
for (const auto &elem : elements_) {
result.append(elem.contents);
if (elem.is_explicitly_separated()) {
result.push_back('\n');
}
}
return result;
}
/// \return the list of elements.
const std::vector<element_t> &elements() const { return elements_; }
/// Append an element with range [begin, end) and the given separation type \p sep.
template <typename Iterator>
void append(Iterator begin, Iterator end, separation_type_t sep = separation_type_t::inferred) {
if (!try_add_size(std::distance(begin, end))) return;
// Try merging with the last element.
if (sep == separation_type_t::inferred && !elements_.empty() && !elements_.back().is_explicitly_separated()) {
elements_.back().contents.append(begin, end);
} else {
elements_.emplace_back(StringType(begin, end), sep);
}
}
/// Append a string \p str with the given separation type \p sep.
void append(const StringType &str, separation_type_t sep = separation_type_t::inferred) {
append(str.begin(), str.end(), sep);
}
// Given that this is a narrow stream, convert a wide stream \p rhs to narrow and then append
// it.
template <typename RHSStringType>
void append_wide_buffer(const separated_buffer_t<RHSStringType> &rhs) {
for (const auto &rhs_elem : rhs.elements()) {
append(wcs2string(rhs_elem.contents), rhs_elem.separation);
}
}
};
/// Describes what type of IO operation an io_data_t represents.
enum class io_mode_t { file, pipe, fd, close, bufferfill };
/// Represents an FD redirection.
class io_data_t {
private:
// No assignment or copying allowed.
io_data_t(const io_data_t &rhs);
void operator=(const io_data_t &rhs);
protected:
io_data_t(io_mode_t m, int f) : io_mode(m), fd(f) {}
public:
/// Type of redirect.
const io_mode_t io_mode;
/// FD to redirect.
const int fd;
virtual void print() const = 0;
virtual ~io_data_t() = 0;
};
2013-01-09 08:02:04 +00:00
class io_close_t : public io_data_t {
public:
2019-01-31 20:12:46 +00:00
explicit io_close_t(int f) : io_data_t(io_mode_t::close, f) {}
2013-01-09 08:02:04 +00:00
void print() const override;
2013-01-09 08:02:04 +00:00
};
2013-01-15 07:37:33 +00:00
class io_fd_t : public io_data_t {
public:
/// fd to redirect specified fd to. For example, in 2>&1, old_fd is 1, and io_data_t::fd is 2.
const int old_fd;
/// Whether this redirection was supplied by a script. For example, 'cmd <&3' would have
/// user_supplied set to true. But a redirection that comes about through transmogrification
/// would not.
const bool user_supplied;
void print() const override;
2013-01-15 07:37:33 +00:00
2019-01-31 20:12:46 +00:00
io_fd_t(int f, int old, bool us)
: io_data_t(io_mode_t::fd, f), old_fd(old), user_supplied(us) {}
2013-01-15 07:37:33 +00:00
};
2013-01-15 08:18:03 +00:00
class io_file_t : public io_data_t {
public:
/// Filename, malloc'd. This needs to be used after fork, so don't use wcstring here.
const char *const filename_cstr;
/// file creation flags to send to open.
2013-02-04 12:15:32 +00:00
const int flags;
2013-01-21 02:34:18 +00:00
void print() const override;
2013-01-15 08:18:03 +00:00
io_file_t(int f, const wcstring &fname, int fl = 0)
2019-01-31 20:12:46 +00:00
: io_data_t(io_mode_t::file, f), filename_cstr(wcs2str(fname)), flags(fl) {}
2013-01-15 08:18:03 +00:00
~io_file_t() override { free((void *)filename_cstr); }
2013-01-15 08:18:03 +00:00
};
/// Represents (one end) of a pipe.
class io_pipe_t : public io_data_t {
// The pipe's fd. Conceptually this is dup2'd to io_data_t::fd.
autoclose_fd_t pipe_fd_;
/// Whether this is an input pipe. This is used only for informational purposes.
const bool is_input_;
public:
void print() const override;
io_pipe_t(int fd, bool is_input, autoclose_fd_t pipe_fd)
: io_data_t(io_mode_t::pipe, fd), pipe_fd_(std::move(pipe_fd)), is_input_(is_input) {}
~io_pipe_t();
int pipe_fd() const { return pipe_fd_.fd(); }
};
class io_buffer_t;
class io_chain_t;
/// Represents filling an io_buffer_t. Very similar to io_pipe_t.
/// Bufferfills always target stdout.
class io_bufferfill_t : public io_data_t {
/// Write end. The other end is connected to an io_buffer_t.
const autoclose_fd_t write_fd_;
/// The receiving buffer.
const std::shared_ptr<io_buffer_t> buffer_;
public:
void print() const override;
io_bufferfill_t(autoclose_fd_t write_fd, std::shared_ptr<io_buffer_t> buffer)
: io_data_t(io_mode_t::bufferfill, STDOUT_FILENO),
write_fd_(std::move(write_fd)),
buffer_(std::move(buffer)) {}
~io_bufferfill_t();
std::shared_ptr<io_buffer_t> buffer() const { return buffer_; }
int write_fd() const { return write_fd_.fd(); }
/// Create an io_bufferfill_t which, when written from, populates a buffer (also created).
/// \returns nullptr on failure, e.g. too many open fds.
///
/// \param conflicts A set of IO redirections. The function ensures that any pipe it makes does
/// not conflict with an fd redirection in this list.
static shared_ptr<io_bufferfill_t> create(const io_chain_t &conflicts, size_t buffer_limit = 0);
};
class output_stream_t;
/// An io_buffer_t is a buffer which can populate itself by reading from an fd.
/// It is not an io_data_t.
class io_buffer_t {
private:
/// fd from which to read.
autoclose_fd_t read_;
/// Buffer storing what we have read.
separated_buffer_t<std::string> buffer_;
/// Read some. Append it to our buffer.
/// \return positive if we read, 0 on EOF, -1 on error.
long read_some();
public:
explicit io_buffer_t(autoclose_fd_t read, size_t limit)
: read_(std::move(read)), buffer_(limit) {
// Explicitly reset the discard flag because we share this buffer.
buffer_.reset_discard();
}
~io_buffer_t();
/// Access the underlying buffer.
const separated_buffer_t<std::string> &buffer() const { return buffer_; }
/// Function to append to the buffer.
void append(const char *ptr, size_t count) { buffer_.append(ptr, ptr + count); }
/// Read from input pipe until EOF or EAGAIN (i.e. would block).
void read_to_wouldblock();
/// Read a bit, if our fd is readable, with the given timeout.
/// \return true if we read some, false on timeout.
bool try_read(unsigned long timeout_usec);
/// Appends data from a given output_stream_t.
/// Marks the receiver as discarded if the stream was discarded.
void append_from_stream(const output_stream_t &stream);
};
2019-02-01 02:49:52 +00:00
class io_chain_t : public std::vector<shared_ptr<io_data_t>> {
public:
2019-02-01 02:49:52 +00:00
using std::vector<shared_ptr<io_data_t>>::vector;
void remove(const shared_ptr<const io_data_t> &element);
2019-02-01 02:49:52 +00:00
void push_back(shared_ptr<io_data_t> element);
void push_front(shared_ptr<io_data_t> element);
void append(const io_chain_t &chain);
shared_ptr<const io_data_t> get_io_for_fd(int fd) const;
shared_ptr<io_data_t> get_io_for_fd(int fd);
};
/// Return the last io redirection in the chain for the specified file descriptor.
shared_ptr<const io_data_t> io_chain_get(const io_chain_t &src, int fd);
shared_ptr<io_data_t> io_chain_get(io_chain_t &src, int fd);
/// Helper type returned from making autoclose pipes.
struct autoclose_pipes_t {
/// Read end of the pipe.
autoclose_fd_t read;
/// Write end of the pipe.
autoclose_fd_t write;
};
/// Call pipe(), populating autoclose fds, avoiding conflicts.
/// The pipes are marked CLO_EXEC.
/// \return pipes on success, none() on error.
maybe_t<autoclose_pipes_t> make_autoclose_pipes(const io_chain_t &ios);
/// If the given fd is used by the io chain, duplicates it repeatedly until an fd not used in the io
/// chain is found, or we run out. If we return a new fd or an error, closes the old one.
/// If \p cloexec is set, any fd created is marked close-on-exec.
/// \returns -1 on failure (in which case the given fd is still closed).
int move_fd_to_unused(int fd, const io_chain_t &io_chain, bool cloexec = true);
/// Class representing the output that a builtin can generate.
class output_stream_t {
private:
/// Storage for our data.
separated_buffer_t<wcstring> buffer_;
// No copying.
output_stream_t(const output_stream_t &s) = delete;
void operator=(const output_stream_t &s) = delete;
public:
output_stream_t(size_t buffer_limit) : buffer_(buffer_limit) {}
void append(const wcstring &s) { buffer_.append(s.begin(), s.end()); }
separated_buffer_t<wcstring> &buffer() { return buffer_; }
const separated_buffer_t<wcstring> &buffer() const { return buffer_; }
void append(const wchar_t *s) { append(s, wcslen(s)); }
void append(wchar_t s) { append(&s, 1); }
void append(const wchar_t *s, size_t amt) { buffer_.append(s, s + amt); }
void push_back(wchar_t c) { append(c); }
void append_format(const wchar_t *format, ...) {
va_list va;
va_start(va, format);
append_formatv(format, va);
va_end(va);
}
void append_formatv(const wchar_t *format, va_list va) { append(vformat_string(format, va)); }
bool empty() const { return buffer_.size() == 0; }
wcstring contents() const { return buffer_.newline_serialized(); }
};
struct io_streams_t {
output_stream_t out;
output_stream_t err;
// fd representing stdin. This is not closed by the destructor.
int stdin_fd;
// Whether stdin is "directly redirected," meaning it is the recipient of a pipe (foo | cmd) or
// direct redirection (cmd < foo.txt). An "indirect redirection" would be e.g. begin ; cmd ; end
// < foo.txt
bool stdin_is_directly_redirected;
// Indicates whether stdout and stderr are redirected (e.g. to a file or piped).
bool out_is_redirected;
bool err_is_redirected;
// Actual IO redirections. This is only used by the source builtin. Unowned.
const io_chain_t *io_chain;
io_streams_t(size_t read_limit)
: out(read_limit),
err(read_limit),
stdin_fd(-1),
stdin_is_directly_redirected(false),
out_is_redirected(false),
err_is_redirected(false),
io_chain(NULL) {}
};
#if 0
// Print debug information about the specified IO redirection chain to stderr.
void io_print(const io_chain_t &chain);
#endif
#endif