2016-04-29 02:41:54 +00:00
|
|
|
// Functions for executing a program.
|
|
|
|
//
|
|
|
|
// Some of the code in this file is based on code from the Glibc manual, though the changes
|
|
|
|
// performed have been massive.
|
2016-04-21 06:00:54 +00:00
|
|
|
#include "config.h"
|
2006-08-11 01:18:35 +00:00
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
#include <errno.h>
|
|
|
|
#include <fcntl.h>
|
2017-02-11 02:47:02 +00:00
|
|
|
#ifdef HAVE_SIGINFO_H
|
|
|
|
#include <siginfo.h>
|
|
|
|
#endif
|
2016-04-29 02:41:54 +00:00
|
|
|
#include <signal.h>
|
2017-02-11 02:47:02 +00:00
|
|
|
#ifdef HAVE_SPAWN_H
|
|
|
|
#include <spawn.h>
|
|
|
|
#endif
|
2005-09-20 13:26:39 +00:00
|
|
|
#include <stdio.h>
|
Fixed race condition in new job control synchronization
We were having child processes SIGSTOP themselves immediately after
setting their process group and before launching their intended targets,
but they were not necessarily stopped by the time the next command was
being executed (so the opposite of the original race condition where
they might have finished executing by the time the next command came
around), and as a result when we sent them SIGCONT, that could never
reach. Now using waitpid to synchronize the SIGSTOP/SIGCONT between the
two.
If we had a good, unnamed inter-process event/semaphore, we could use
that to have a child process conditionally stop itself if the next
command in the job chain hadn't yet been started / setup, but this is
probably a lot more straightforward and less-confusing, which isn't a
bad thing.
Additionally, there was a bug caused by the fact that the main exec_job
loop actually blocks to read from previous commands in the job if the
current command is a built-in that doesn't need to fork.
With this waitpid code, I was able to finally add the SIGSTOP code to
all the fork'd processes in the main exec_job loop without introducing
deadlocks; it turns out that they should be treated just like the main
EXTERNAL fork, but they tend to execute faster causing the same deadlock
described above to occur more readily.
The only thing I'm not sure about is whether we should execute
unblock_pid undconditionally for all !EXTERNAL commands. It makes more
sense to *only* do that if a blocking read were about to be done in the
main loop, otherwise the original race condition could still appear
(though it is probably mitigated by whatever duration the SIGSTOP lasted
for, even if it is SIGCONT'd before the next command tries to join the
process group).
2017-07-26 19:19:00 +00:00
|
|
|
#include <sys/wait.h>
|
2005-09-20 13:26:39 +00:00
|
|
|
#include <unistd.h>
|
2017-02-11 02:47:02 +00:00
|
|
|
|
2012-02-10 15:55:06 +00:00
|
|
|
#include <algorithm>
|
2019-10-13 22:50:48 +00:00
|
|
|
#include <cstring>
|
2017-08-06 22:47:01 +00:00
|
|
|
#include <functional>
|
2015-07-25 15:14:25 +00:00
|
|
|
#include <map>
|
2016-04-21 06:00:54 +00:00
|
|
|
#include <memory>
|
2019-10-13 22:50:48 +00:00
|
|
|
#include <stack>
|
2016-04-29 02:41:54 +00:00
|
|
|
#include <string>
|
2017-02-11 02:47:02 +00:00
|
|
|
#include <type_traits>
|
|
|
|
#include <vector>
|
2006-07-30 20:26:59 +00:00
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
#include "builtin.h"
|
2005-09-20 13:26:39 +00:00
|
|
|
#include "common.h"
|
2016-04-29 02:41:54 +00:00
|
|
|
#include "env.h"
|
2005-09-20 13:26:39 +00:00
|
|
|
#include "exec.h"
|
2016-04-29 02:41:54 +00:00
|
|
|
#include "fallback.h" // IWYU pragma: keep
|
2019-05-18 20:47:27 +00:00
|
|
|
#include "flog.h"
|
2005-09-20 13:26:39 +00:00
|
|
|
#include "function.h"
|
2015-07-25 15:14:25 +00:00
|
|
|
#include "io.h"
|
2019-02-13 23:17:07 +00:00
|
|
|
#include "iothread.h"
|
2020-01-15 21:16:43 +00:00
|
|
|
#include "null_terminated_array.h"
|
2015-07-25 15:14:25 +00:00
|
|
|
#include "parse_tree.h"
|
2016-04-29 02:41:54 +00:00
|
|
|
#include "parser.h"
|
2019-07-16 01:03:50 +00:00
|
|
|
#include "path.h"
|
2016-04-29 02:41:54 +00:00
|
|
|
#include "postfork.h"
|
|
|
|
#include "proc.h"
|
2015-12-15 01:21:43 +00:00
|
|
|
#include "reader.h"
|
2019-01-28 22:35:56 +00:00
|
|
|
#include "redirection.h"
|
2017-08-06 22:47:01 +00:00
|
|
|
#include "signal.h"
|
2019-12-21 10:45:07 +00:00
|
|
|
#include "timer.h"
|
2019-10-19 01:08:22 +00:00
|
|
|
#include "trace.h"
|
2016-04-29 02:41:54 +00:00
|
|
|
#include "wutil.h" // IWYU pragma: keep
|
2005-09-20 13:26:39 +00:00
|
|
|
|
2019-06-03 19:58:35 +00:00
|
|
|
/// Number of calls to fork() or posix_spawn().
|
|
|
|
static relaxed_atomic_t<int> s_fork_count{0};
|
|
|
|
|
2020-01-30 00:39:44 +00:00
|
|
|
pgroup_provenance_t get_pgroup_provenance(const shared_ptr<job_t> &j,
|
|
|
|
const job_lineage_t &lineage) {
|
|
|
|
bool first_proc_is_internal = j->processes.front()->is_internal();
|
|
|
|
bool has_internal = j->has_internal_proc();
|
|
|
|
bool has_external = j->has_external_proc();
|
|
|
|
assert(first_proc_is_internal ? has_internal : has_external);
|
|
|
|
|
2020-02-20 19:18:36 +00:00
|
|
|
if (lineage.parent_pgid.has_value() && j->is_foreground()) {
|
2020-01-30 00:39:44 +00:00
|
|
|
// Our lineage indicates a pgid. This means the job is "nested" as a function or block
|
2020-02-20 19:18:36 +00:00
|
|
|
// inside another job, which has a real pgroup. We're going to use that, unless it's
|
|
|
|
// backgrounded, in which case it should not inherit a pgroup.
|
2020-01-30 00:39:44 +00:00
|
|
|
return pgroup_provenance_t::lineage;
|
|
|
|
} else if (!j->wants_job_control()) {
|
|
|
|
// This job doesn't need job control, it can just live in the fish pgroup.
|
|
|
|
return pgroup_provenance_t::fish_itself;
|
|
|
|
} else if (has_external && !first_proc_is_internal) {
|
|
|
|
// The first process is external, it will own the pgroup.
|
|
|
|
return pgroup_provenance_t::first_external_proc;
|
|
|
|
} else if (has_external && first_proc_is_internal) {
|
|
|
|
// The terminal owner has to be the process which is permitted to read from stdin.
|
|
|
|
// This is the first process in the pipeline. When executing, a process in the job will
|
|
|
|
// claim the pgrp if it's not set; therefore set it according to the first process.
|
|
|
|
// Only do this if there's an external process - see #6011.
|
|
|
|
return pgroup_provenance_t::fish_itself;
|
|
|
|
} else {
|
|
|
|
assert(has_internal && !has_external && "Should be internal only");
|
|
|
|
// This job consists of only internal functions or builtins; we do not need to assign a
|
|
|
|
// pgroup (yet).
|
|
|
|
return pgroup_provenance_t::unassigned;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
/// This function is executed by the child process created by a call to fork(). It should be called
|
2019-06-22 22:10:54 +00:00
|
|
|
/// after \c child_setup_process. It calls execve to replace the fish process image with the command
|
2016-04-29 02:41:54 +00:00
|
|
|
/// specified in \c p. It never returns. Called in a forked child! Do not allocate memory, etc.
|
2020-04-21 17:24:33 +00:00
|
|
|
[[noreturn]] static void safe_launch_process(process_t *p, const char *actual_cmd,
|
|
|
|
const char *const *cargv, const char *const *cenvv) {
|
2016-10-09 21:38:26 +00:00
|
|
|
UNUSED(p);
|
2012-11-19 00:30:30 +00:00
|
|
|
int err;
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
// This function never returns, so we take certain liberties with constness.
|
2020-04-02 23:04:04 +00:00
|
|
|
const auto envv = const_cast<char *const *>(cenvv);
|
|
|
|
const auto argv = const_cast<char *const *>(cargv);
|
2013-02-23 00:22:56 +00:00
|
|
|
|
2012-11-19 00:30:30 +00:00
|
|
|
execve(actual_cmd, argv, envv);
|
|
|
|
err = errno;
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
// Something went wrong with execve, check for a ":", and run /bin/sh if encountered. This is a
|
|
|
|
// weird predecessor to the shebang that is still sometimes used since it is supported on
|
|
|
|
// Windows. OK to not use CLO_EXEC here because this is called after fork and the file is
|
|
|
|
// immediately closed.
|
2012-11-19 00:30:30 +00:00
|
|
|
int fd = open(actual_cmd, O_RDONLY);
|
2016-04-29 02:41:54 +00:00
|
|
|
if (fd >= 0) {
|
2012-11-19 00:30:30 +00:00
|
|
|
char begin[1] = {0};
|
|
|
|
ssize_t amt_read = read(fd, begin, 1);
|
|
|
|
close(fd);
|
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
if ((amt_read == 1) && (begin[0] == ':')) {
|
|
|
|
// Relaunch it with /bin/sh. Don't allocate memory, so if you have more args than this,
|
|
|
|
// update your silly script! Maybe this should be changed to be based on ARG_MAX
|
|
|
|
// somehow.
|
2012-02-29 19:27:14 +00:00
|
|
|
char sh_command[] = "/bin/sh";
|
|
|
|
char *argv2[128];
|
|
|
|
argv2[0] = sh_command;
|
2016-04-29 02:41:54 +00:00
|
|
|
for (size_t i = 1; i < sizeof argv2 / sizeof *argv2; i++) {
|
|
|
|
argv2[i] = argv[i - 1];
|
2019-11-19 02:34:50 +00:00
|
|
|
if (argv2[i] == nullptr) break;
|
2012-02-29 19:27:14 +00:00
|
|
|
}
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2012-11-19 00:30:30 +00:00
|
|
|
execve(sh_command, argv2, envv);
|
|
|
|
}
|
2012-11-18 10:23:22 +00:00
|
|
|
}
|
|
|
|
|
2012-11-19 00:30:30 +00:00
|
|
|
errno = err;
|
2012-08-15 07:57:56 +00:00
|
|
|
safe_report_exec_error(errno, actual_cmd, argv, envv);
|
2012-11-19 00:30:30 +00:00
|
|
|
exit_without_destructors(STATUS_EXEC_FAIL);
|
2012-02-29 19:27:14 +00:00
|
|
|
}
|
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
/// This function is similar to launch_process, except it is not called after a fork (i.e. it only
|
|
|
|
/// calls exec) and therefore it can allocate memory.
|
2020-04-21 17:24:33 +00:00
|
|
|
[[noreturn]] static void launch_process_nofork(env_stack_t &vars, process_t *p) {
|
2012-02-29 19:27:14 +00:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
|
|
|
ASSERT_IS_NOT_FORKED_CHILD();
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2014-10-31 01:10:06 +00:00
|
|
|
null_terminated_array_t<char> argv_array;
|
|
|
|
convert_wide_array_to_narrow(p->get_argv_array(), &argv_array);
|
|
|
|
|
2019-05-10 16:10:43 +00:00
|
|
|
auto export_vars = vars.export_arr();
|
|
|
|
const char *const *envv = export_vars->get();
|
2017-08-05 22:08:39 +00:00
|
|
|
char *actual_cmd = wcs2str(p->actual_cmd);
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
// Ensure the terminal modes are what they were before we changed them.
|
2015-12-15 01:21:43 +00:00
|
|
|
restore_term_mode();
|
2016-04-29 02:41:54 +00:00
|
|
|
// Bounce to launch_process. This never returns.
|
2014-10-31 01:10:06 +00:00
|
|
|
safe_launch_process(p, actual_cmd, argv_array.get(), envv);
|
2005-09-20 13:26:39 +00:00
|
|
|
}
|
|
|
|
|
2019-01-29 08:40:55 +00:00
|
|
|
// Returns whether we can use posix spawn for a given process in a given job.
|
2016-04-29 02:41:54 +00:00
|
|
|
//
|
2019-01-29 08:40:55 +00:00
|
|
|
// To avoid the race between the caller calling tcsetpgrp() and the client checking the
|
2016-04-29 02:41:54 +00:00
|
|
|
// foreground process group, we don't use posix_spawn if we're going to foreground the process. (If
|
|
|
|
// we use fork(), we can call tcsetpgrp after the fork, before the exec, and avoid the race).
|
2019-12-14 00:51:49 +00:00
|
|
|
static bool can_use_posix_spawn_for_job(const std::shared_ptr<job_t> &job,
|
|
|
|
const dup2_list_t &dup2s) {
|
|
|
|
// Hack - do not use posix_spawn if there are self-fd redirections.
|
|
|
|
// For example if you were to write:
|
|
|
|
// cmd 6< /dev/null
|
|
|
|
// it is possible that the open() of /dev/null would result in fd 6. Here even if we attempted
|
|
|
|
// to add a dup2 action, it would be ignored and the CLO_EXEC bit would remain. So don't use
|
|
|
|
// posix_spawn in this case; instead we'll call fork() and clear the CLO_EXEC bit manually.
|
|
|
|
for (const auto &action : dup2s.get_actions()) {
|
|
|
|
if (action.src == action.target) return false;
|
|
|
|
}
|
2019-06-23 19:39:29 +00:00
|
|
|
if (job->wants_job_control()) { //!OCLINT(collapsible if statements)
|
2016-04-29 02:41:54 +00:00
|
|
|
// We are going to use job control; therefore when we launch this job it will get its own
|
|
|
|
// process group ID. But will it be foregrounded?
|
2019-07-12 20:31:56 +00:00
|
|
|
if (job->should_claim_terminal()) {
|
2016-04-29 02:41:54 +00:00
|
|
|
// It will be foregrounded, so we will call tcsetpgrp(), therefore do not use
|
|
|
|
// posix_spawn.
|
2012-11-04 23:45:52 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2019-01-29 08:40:55 +00:00
|
|
|
return true;
|
2012-10-29 08:45:51 +00:00
|
|
|
}
|
|
|
|
|
2020-01-13 22:18:43 +00:00
|
|
|
static void internal_exec(env_stack_t &vars, job_t *j, const io_chain_t &block_io) {
|
2017-07-30 22:26:41 +00:00
|
|
|
// Do a regular launch - but without forking first...
|
2019-12-12 22:42:03 +00:00
|
|
|
process_t *p = j->processes.front().get();
|
|
|
|
io_chain_t all_ios = block_io;
|
2019-12-13 01:27:48 +00:00
|
|
|
if (!all_ios.append_from_specs(p->redirection_specs(), vars.get_pwd_slash())) {
|
2019-12-13 00:44:24 +00:00
|
|
|
return;
|
|
|
|
}
|
2017-07-30 22:26:41 +00:00
|
|
|
|
2019-06-22 22:10:54 +00:00
|
|
|
// child_setup_process makes sure signals are properly set up.
|
2019-12-29 22:49:05 +00:00
|
|
|
dup2_list_t redirs = dup2_list_t::resolve_chain(all_ios);
|
2020-04-05 08:24:26 +00:00
|
|
|
if (child_setup_process(INVALID_PID, *j, false, redirs) == 0) {
|
2017-10-15 11:37:34 +00:00
|
|
|
// Decrement SHLVL as we're removing ourselves from the shell "stack".
|
2018-09-22 04:52:47 +00:00
|
|
|
auto shlvl_var = vars.get(L"SHLVL", ENV_GLOBAL | ENV_EXPORT);
|
2017-08-06 22:25:42 +00:00
|
|
|
wcstring shlvl_str = L"0";
|
2017-08-28 07:25:41 +00:00
|
|
|
if (shlvl_var) {
|
|
|
|
long shlvl = fish_wcstol(shlvl_var->as_string().c_str());
|
2017-08-06 22:25:42 +00:00
|
|
|
if (!errno && shlvl > 0) {
|
2019-02-04 00:06:10 +00:00
|
|
|
shlvl_str = to_string(shlvl - 1);
|
2017-07-30 22:26:41 +00:00
|
|
|
}
|
|
|
|
}
|
2018-09-14 07:36:26 +00:00
|
|
|
vars.set_one(L"SHLVL", ENV_GLOBAL | ENV_EXPORT, std::move(shlvl_str));
|
2017-07-30 22:26:41 +00:00
|
|
|
|
|
|
|
// launch_process _never_ returns.
|
2019-12-12 22:42:03 +00:00
|
|
|
launch_process_nofork(vars, p);
|
2017-07-30 22:26:41 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-01-30 00:39:44 +00:00
|
|
|
/// If our pgroup assignment mode wants us to use the first external proc, then apply it here.
|
|
|
|
static void maybe_assign_pgid_from_child(const std::shared_ptr<job_t> &j, pid_t child_pid) {
|
|
|
|
// If our assignment mode is the first process, then assign it.
|
2020-01-30 19:14:31 +00:00
|
|
|
if (j->pgid == INVALID_PID &&
|
|
|
|
j->pgroup_provenance == pgroup_provenance_t::first_external_proc) {
|
2018-09-03 22:56:59 +00:00
|
|
|
j->pgid = child_pid;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-02-13 23:17:07 +00:00
|
|
|
/// Construct an internal process for the process p. In the background, write the data \p outdata to
|
2019-02-13 23:17:18 +00:00
|
|
|
/// stdout and \p errdata to stderr, respecting the io chain \p ios. For example if target_fd is 1
|
|
|
|
/// (stdout), and there is a dup2 3->1, then we need to write to fd 3. Then exit the internal
|
|
|
|
/// process.
|
2020-01-13 22:46:31 +00:00
|
|
|
static void run_internal_process(process_t *p, std::string &&outdata, std::string &&errdata,
|
2019-12-27 05:54:21 +00:00
|
|
|
const io_chain_t &ios) {
|
2019-02-13 23:17:07 +00:00
|
|
|
p->check_generations_before_launch();
|
|
|
|
|
|
|
|
// We want both the dup2s and the io_chain_ts to be kept alive by the background thread, because
|
|
|
|
// they may own an fd that we want to write to. Move them all to a shared_ptr. The strings as
|
|
|
|
// well (they may be long).
|
|
|
|
// Construct a little helper struct to make it simpler to move into our closure without copying.
|
|
|
|
struct write_fields_t {
|
|
|
|
int src_outfd{-1};
|
|
|
|
std::string outdata{};
|
|
|
|
|
2019-02-13 23:17:18 +00:00
|
|
|
int src_errfd{-1};
|
|
|
|
std::string errdata{};
|
|
|
|
|
2019-02-13 23:17:07 +00:00
|
|
|
io_chain_t ios{};
|
|
|
|
maybe_t<dup2_list_t> dup2s{};
|
|
|
|
std::shared_ptr<internal_proc_t> internal_proc{};
|
|
|
|
|
2019-02-25 18:05:42 +00:00
|
|
|
proc_status_t success_status{};
|
2019-02-13 23:17:07 +00:00
|
|
|
|
|
|
|
bool skip_out() const { return outdata.empty() || src_outfd < 0; }
|
2019-02-13 23:17:18 +00:00
|
|
|
|
|
|
|
bool skip_err() const { return errdata.empty() || src_errfd < 0; }
|
2019-02-13 23:17:07 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
auto f = std::make_shared<write_fields_t>();
|
|
|
|
f->outdata = std::move(outdata);
|
2019-02-13 23:17:18 +00:00
|
|
|
f->errdata = std::move(errdata);
|
2019-02-13 23:17:07 +00:00
|
|
|
|
|
|
|
// Construct and assign the internal process to the real process.
|
|
|
|
p->internal_proc_ = std::make_shared<internal_proc_t>();
|
|
|
|
f->internal_proc = p->internal_proc_;
|
|
|
|
|
2019-05-30 11:04:40 +00:00
|
|
|
FLOGF(proc_internal_proc, L"Created internal proc %llu to write output for proc '%ls'",
|
2019-05-28 16:38:45 +00:00
|
|
|
p->internal_proc_->get_id(), p->argv0());
|
|
|
|
|
2019-02-13 23:17:07 +00:00
|
|
|
// Resolve the IO chain.
|
|
|
|
// Note it's important we do this even if we have no out or err data, because we may have been
|
|
|
|
// asked to truncate a file (e.g. `echo -n '' > /tmp/truncateme.txt'). The open() in the dup2
|
|
|
|
// list resolution will ensure this happens.
|
|
|
|
f->dup2s = dup2_list_t::resolve_chain(ios);
|
|
|
|
|
|
|
|
// Figure out which source fds to write to. If they are closed (unlikely) we just exit
|
|
|
|
// successfully.
|
|
|
|
f->src_outfd = f->dup2s->fd_for_target_fd(STDOUT_FILENO);
|
2019-02-13 23:17:18 +00:00
|
|
|
f->src_errfd = f->dup2s->fd_for_target_fd(STDERR_FILENO);
|
2019-02-13 23:17:07 +00:00
|
|
|
|
2019-02-25 18:05:42 +00:00
|
|
|
// If we have nothing to write we can elide the thread.
|
2019-02-13 23:17:07 +00:00
|
|
|
// TODO: support eliding output to /dev/null.
|
2019-02-13 23:17:18 +00:00
|
|
|
if (f->skip_out() && f->skip_err()) {
|
2020-01-07 12:48:57 +00:00
|
|
|
f->internal_proc->mark_exited(p->status);
|
2020-01-13 22:40:24 +00:00
|
|
|
return;
|
2019-02-13 23:17:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Ensure that ios stays alive, it may own fds.
|
|
|
|
f->ios = ios;
|
|
|
|
|
|
|
|
// If our process is a builtin, it will have already set its status value. Make sure we
|
|
|
|
// propagate that if our I/O succeeds and don't read it on a background thread. TODO: have
|
|
|
|
// builtin_run provide this directly, rather than setting it in the process.
|
|
|
|
f->success_status = p->status;
|
|
|
|
|
2020-01-18 19:32:44 +00:00
|
|
|
iothread_perform_cantwait([f]() {
|
2019-02-25 18:05:42 +00:00
|
|
|
proc_status_t status = f->success_status;
|
2019-02-13 23:17:07 +00:00
|
|
|
if (!f->skip_out()) {
|
|
|
|
ssize_t ret = write_loop(f->src_outfd, f->outdata.data(), f->outdata.size());
|
|
|
|
if (ret < 0) {
|
|
|
|
if (errno != EPIPE) {
|
|
|
|
wperror(L"write");
|
|
|
|
}
|
2019-02-25 18:05:42 +00:00
|
|
|
if (status.is_success()) {
|
|
|
|
status = proc_status_t::from_exit_code(1);
|
|
|
|
}
|
2019-02-13 23:17:07 +00:00
|
|
|
}
|
|
|
|
}
|
2019-02-13 23:17:18 +00:00
|
|
|
if (!f->skip_err()) {
|
|
|
|
ssize_t ret = write_loop(f->src_errfd, f->errdata.data(), f->errdata.size());
|
|
|
|
if (ret < 0) {
|
|
|
|
if (errno != EPIPE) {
|
|
|
|
wperror(L"write");
|
|
|
|
}
|
2019-02-25 18:05:42 +00:00
|
|
|
if (status.is_success()) {
|
|
|
|
status = proc_status_t::from_exit_code(1);
|
|
|
|
}
|
2019-02-13 23:17:18 +00:00
|
|
|
}
|
|
|
|
}
|
2019-02-13 23:17:07 +00:00
|
|
|
f->internal_proc->mark_exited(status);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2020-01-13 22:46:31 +00:00
|
|
|
/// If \p outdata or \p errdata are both empty, then mark the process as completed immediately.
|
|
|
|
/// Otherwise, run an internal process.
|
|
|
|
static void run_internal_process_or_short_circuit(parser_t &parser, const std::shared_ptr<job_t> &j,
|
|
|
|
process_t *p, std::string &&outdata,
|
|
|
|
std::string &&errdata, const io_chain_t &ios) {
|
|
|
|
if (outdata.empty() && errdata.empty()) {
|
|
|
|
p->completed = true;
|
|
|
|
if (p->is_last_in_job) {
|
|
|
|
FLOGF(exec_job_status, L"Set status of job %d (%ls) to %d using short circuit",
|
|
|
|
j->job_id(), j->preview().c_str(), p->status);
|
|
|
|
parser.set_last_statuses(j->get_statuses());
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
run_internal_process(p, std::move(outdata), std::move(errdata), ios);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-04-05 08:24:26 +00:00
|
|
|
bool blocked_signals_for_job(const job_t &job, sigset_t *sigmask) {
|
|
|
|
// Block some signals in background jobs for which job control is turned off (#6828).
|
|
|
|
if (!job.is_foreground() && !job.wants_job_control()) {
|
|
|
|
sigaddset(sigmask, SIGINT);
|
|
|
|
sigaddset(sigmask, SIGQUIT);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
/// Call fork() as part of executing a process \p p in a job \j. Execute \p child_action in the
|
|
|
|
/// context of the child. Returns true if fork succeeded, false if fork failed.
|
2018-11-04 07:58:44 +00:00
|
|
|
static bool fork_child_for_process(const std::shared_ptr<job_t> &job, process_t *p,
|
2019-11-23 20:36:44 +00:00
|
|
|
const dup2_list_t &dup2s, const char *fork_type,
|
2018-09-03 22:56:59 +00:00
|
|
|
const std::function<void()> &child_action) {
|
2019-11-23 20:36:44 +00:00
|
|
|
pid_t pid = execute_fork();
|
2018-09-03 22:56:59 +00:00
|
|
|
if (pid == 0) {
|
|
|
|
// This is the child process. Setup redirections, print correct output to
|
|
|
|
// stdout and stderr, and then exit.
|
2019-07-01 17:57:09 +00:00
|
|
|
maybe_t<pid_t> new_termowner{};
|
2018-09-03 22:56:59 +00:00
|
|
|
p->pid = getpid();
|
2018-11-04 07:58:44 +00:00
|
|
|
child_set_group(job.get(), p);
|
2020-04-21 17:24:33 +00:00
|
|
|
child_setup_process(job->should_claim_terminal() ? job->pgid : INVALID_PID, *job, true,
|
|
|
|
dup2s);
|
2018-09-03 22:56:59 +00:00
|
|
|
child_action();
|
|
|
|
DIE("Child process returned control to fork_child lambda!");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pid < 0) {
|
2020-01-19 12:38:47 +00:00
|
|
|
FLOGF(warning, L"Failed to fork %s!\n", fork_type);
|
2018-11-04 07:58:44 +00:00
|
|
|
job_mark_process_as_failed(job, p);
|
2018-09-03 22:56:59 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is the parent process. Store away information on the child, and
|
|
|
|
// possibly give it control over the terminal.
|
2019-06-03 19:58:35 +00:00
|
|
|
s_fork_count++;
|
|
|
|
FLOGF(exec_fork, L"Fork #%d, pid %d: %s for '%ls'", int(s_fork_count), pid, fork_type,
|
|
|
|
p->argv0());
|
2018-09-03 22:56:59 +00:00
|
|
|
|
|
|
|
p->pid = pid;
|
2020-01-30 00:39:44 +00:00
|
|
|
maybe_assign_pgid_from_child(job, p->pid);
|
2018-11-04 07:58:44 +00:00
|
|
|
set_child_group(job.get(), p->pid);
|
2019-06-29 22:58:36 +00:00
|
|
|
terminal_maybe_give_to_job(job.get(), false);
|
2018-09-03 22:56:59 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2020-02-19 17:43:32 +00:00
|
|
|
/// Execute an internal builtin. Given a parser and a builtin process, execute the builtin with the
|
|
|
|
/// given streams. If pipe_read is set, assign stdin to it; otherwise infer stdin from the IO chain.
|
2018-09-03 22:56:59 +00:00
|
|
|
/// \return true on success, false if there is an exec error.
|
2020-02-19 17:43:32 +00:00
|
|
|
static bool exec_internal_builtin_proc(parser_t &parser, process_t *p, const io_pipe_t *pipe_read,
|
2018-11-04 07:58:44 +00:00
|
|
|
const io_chain_t &proc_io_chain, io_streams_t &streams) {
|
2019-03-24 19:29:25 +00:00
|
|
|
assert(p->type == process_type_t::builtin && "Process must be a builtin");
|
2017-12-22 21:41:29 +00:00
|
|
|
int local_builtin_stdin = STDIN_FILENO;
|
2019-02-01 00:05:42 +00:00
|
|
|
autoclose_fd_t locally_opened_stdin{};
|
2017-12-22 21:41:29 +00:00
|
|
|
|
|
|
|
// If this is the first process, check the io redirections and see where we should
|
|
|
|
// be reading from.
|
|
|
|
if (pipe_read) {
|
2019-12-29 23:51:22 +00:00
|
|
|
local_builtin_stdin = pipe_read->source_fd;
|
2019-11-10 22:00:30 +00:00
|
|
|
} else if (const auto in = proc_io_chain.io_for_fd(STDIN_FILENO)) {
|
2019-12-29 23:51:22 +00:00
|
|
|
// Ignore fd redirections from an fd other than the
|
|
|
|
// standard ones. e.g. in source <&3 don't actually read from fd 3,
|
|
|
|
// which is internal to fish. We still respect this redirection in
|
|
|
|
// that we pass it on as a block IO to the code that source runs,
|
|
|
|
// and therefore this is not an error.
|
|
|
|
bool ignore_redirect =
|
|
|
|
in->io_mode == io_mode_t::fd && in->source_fd >= 0 && in->source_fd < 3;
|
|
|
|
if (!ignore_redirect) {
|
|
|
|
local_builtin_stdin = in->source_fd;
|
2017-12-22 21:41:29 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (local_builtin_stdin == -1) return false;
|
|
|
|
|
|
|
|
// Determine if we have a "direct" redirection for stdin.
|
2019-12-13 00:44:24 +00:00
|
|
|
bool stdin_is_directly_redirected = false;
|
2017-12-22 21:41:29 +00:00
|
|
|
if (!p->is_first_in_job) {
|
|
|
|
// We must have a pipe
|
|
|
|
stdin_is_directly_redirected = true;
|
|
|
|
} else {
|
|
|
|
// We are not a pipe. Check if there is a redirection local to the process
|
2019-01-31 20:12:46 +00:00
|
|
|
// that's not io_mode_t::close.
|
2019-12-13 00:44:24 +00:00
|
|
|
for (const auto &redir : p->redirection_specs()) {
|
|
|
|
if (redir.fd == STDIN_FILENO && !redir.is_close()) {
|
|
|
|
stdin_is_directly_redirected = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2017-12-22 21:41:29 +00:00
|
|
|
}
|
|
|
|
|
2020-04-28 16:43:34 +00:00
|
|
|
// Pull out the IOs for stdout and stderr.
|
|
|
|
auto out_io = proc_io_chain.io_for_fd(STDOUT_FILENO);
|
|
|
|
auto err_io = proc_io_chain.io_for_fd(STDERR_FILENO);
|
|
|
|
|
|
|
|
// Set up our streams.
|
2017-12-22 21:41:29 +00:00
|
|
|
streams.stdin_fd = local_builtin_stdin;
|
2020-04-28 16:43:34 +00:00
|
|
|
streams.out_is_redirected = out_io != nullptr;
|
|
|
|
streams.err_is_redirected = err_io != nullptr;
|
|
|
|
streams.out_is_piped = (out_io != nullptr && out_io->io_mode == io_mode_t::pipe);
|
|
|
|
streams.err_is_piped = (err_io != nullptr && err_io->io_mode == io_mode_t::pipe);
|
2017-12-22 21:41:29 +00:00
|
|
|
streams.stdin_is_directly_redirected = stdin_is_directly_redirected;
|
|
|
|
streams.io_chain = &proc_io_chain;
|
|
|
|
|
2018-02-02 22:31:10 +00:00
|
|
|
// Note this call may block for a long time, while the builtin performs I/O.
|
2020-01-31 18:42:21 +00:00
|
|
|
p->status = builtin_run(parser, p->get_argv(), streams);
|
2017-12-22 21:41:29 +00:00
|
|
|
return true; // "success"
|
|
|
|
}
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
/// Handle output from a builtin, by printing the contents of builtin_io_streams to the redirections
|
|
|
|
/// given in io_chain.
|
2019-05-12 21:00:44 +00:00
|
|
|
static bool handle_builtin_output(parser_t &parser, const std::shared_ptr<job_t> &j, process_t *p,
|
2018-11-04 07:58:44 +00:00
|
|
|
io_chain_t *io_chain, const io_streams_t &builtin_io_streams) {
|
2019-03-24 19:29:25 +00:00
|
|
|
assert(p->type == process_type_t::builtin && "Process is not a builtin");
|
2018-09-03 22:56:59 +00:00
|
|
|
|
|
|
|
const output_stream_t &stdout_stream = builtin_io_streams.out;
|
|
|
|
const output_stream_t &stderr_stream = builtin_io_streams.err;
|
|
|
|
|
2019-02-17 22:16:47 +00:00
|
|
|
// Mark if we discarded output.
|
2019-02-25 18:05:42 +00:00
|
|
|
if (stdout_stream.buffer().discarded()) {
|
|
|
|
p->status = proc_status_t::from_exit_code(STATUS_READ_TOO_MUCH);
|
|
|
|
}
|
2019-02-17 22:16:47 +00:00
|
|
|
|
2019-11-10 22:00:30 +00:00
|
|
|
const shared_ptr<const io_data_t> stdout_io = io_chain->io_for_fd(STDOUT_FILENO);
|
|
|
|
const shared_ptr<const io_data_t> stderr_io = io_chain->io_for_fd(STDERR_FILENO);
|
2019-02-17 22:16:47 +00:00
|
|
|
|
|
|
|
// If we are directing output to a buffer, then we can just transfer it directly without needing
|
|
|
|
// to write to the bufferfill pipe. Note this is how we handle explicitly separated stdout
|
|
|
|
// output (i.e. string split0) which can't really be sent through a pipe.
|
|
|
|
// TODO: we're sloppy about handling explicitly separated output.
|
|
|
|
// Theoretically we could have explicitly separated output on stdout and also stderr output; in
|
|
|
|
// that case we ought to thread the exp-sep output through to the io buffer. We're getting away
|
|
|
|
// with this because the only thing that can output exp-sep output is `string split0` which
|
|
|
|
// doesn't also produce stderr. Also note that we never send stderr to a buffer, so there's no
|
|
|
|
// need for a similar check for stderr.
|
|
|
|
bool stdout_done = false;
|
|
|
|
if (stdout_io && stdout_io->io_mode == io_mode_t::bufferfill) {
|
2020-02-21 06:21:49 +00:00
|
|
|
auto stdout_buffer = dynamic_cast<const io_bufferfill_t *>(stdout_io.get())->buffer();
|
2019-02-17 22:16:47 +00:00
|
|
|
stdout_buffer->append_from_stream(stdout_stream);
|
|
|
|
stdout_done = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Figure out any data remaining to write. We may have none in which case we can short-circuit.
|
|
|
|
std::string outbuff = stdout_done ? std::string{} : wcs2string(stdout_stream.contents());
|
|
|
|
std::string errbuff = wcs2string(stderr_stream.contents());
|
|
|
|
|
|
|
|
// If we have no redirections for stdout/stderr, just write them directly.
|
|
|
|
if (!stdout_io && !stderr_io) {
|
|
|
|
bool did_err = false;
|
|
|
|
if (write_loop(STDOUT_FILENO, outbuff.data(), outbuff.size()) < 0) {
|
|
|
|
if (errno != EPIPE) {
|
|
|
|
did_err = true;
|
2019-05-28 21:08:35 +00:00
|
|
|
FLOG(error, L"Error while writing to stdout");
|
2019-02-17 22:16:47 +00:00
|
|
|
wperror(L"write_loop");
|
2018-09-03 22:56:59 +00:00
|
|
|
}
|
|
|
|
}
|
2019-02-17 22:16:47 +00:00
|
|
|
if (write_loop(STDERR_FILENO, errbuff.data(), errbuff.size()) < 0) {
|
|
|
|
if (errno != EPIPE && !did_err) {
|
|
|
|
did_err = true;
|
2019-05-28 21:08:35 +00:00
|
|
|
FLOG(error, L"Error while writing to stderr");
|
2019-02-17 22:16:47 +00:00
|
|
|
wperror(L"write_loop");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (did_err) {
|
|
|
|
redirect_tty_output(); // workaround glibc bug
|
2019-05-28 21:08:35 +00:00
|
|
|
FLOG(error, L"!builtin_io_done and errno != EPIPE");
|
2019-02-17 22:16:47 +00:00
|
|
|
show_stackframe(L'E');
|
|
|
|
}
|
|
|
|
// Clear the buffers to indicate we finished.
|
|
|
|
outbuff.clear();
|
|
|
|
errbuff.clear();
|
2018-02-15 01:08:12 +00:00
|
|
|
}
|
|
|
|
|
2020-01-13 22:29:58 +00:00
|
|
|
// Some historical behavior.
|
|
|
|
if (!outbuff.empty()) fflush(stdout);
|
|
|
|
if (!errbuff.empty()) fflush(stderr);
|
|
|
|
|
2020-01-13 22:46:31 +00:00
|
|
|
// Construct and run our background process.
|
|
|
|
run_internal_process_or_short_circuit(parser, j, p, std::move(outbuff), std::move(errbuff),
|
|
|
|
*io_chain);
|
2020-01-13 22:40:24 +00:00
|
|
|
return true;
|
2018-02-15 01:08:12 +00:00
|
|
|
}
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
/// Executes an external command.
|
|
|
|
/// \return true on success, false if there is an exec error.
|
2019-05-22 20:34:03 +00:00
|
|
|
static bool exec_external_command(parser_t &parser, const std::shared_ptr<job_t> &j, process_t *p,
|
2019-05-05 10:09:25 +00:00
|
|
|
const io_chain_t &proc_io_chain) {
|
2019-03-24 19:29:25 +00:00
|
|
|
assert(p->type == process_type_t::external && "Process is not external");
|
2018-09-03 22:56:59 +00:00
|
|
|
// Get argv and envv before we fork.
|
|
|
|
null_terminated_array_t<char> argv_array;
|
|
|
|
convert_wide_array_to_narrow(p->get_argv_array(), &argv_array);
|
|
|
|
|
2019-01-28 22:35:56 +00:00
|
|
|
// Convert our IO chain to a dup2 sequence.
|
|
|
|
auto dup2s = dup2_list_t::resolve_chain(proc_io_chain);
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
// Ensure that stdin is blocking before we hand it off (see issue #176). It's a
|
|
|
|
// little strange that we only do this with stdin and not with stdout or stderr.
|
|
|
|
// However in practice, setting or clearing O_NONBLOCK on stdin also sets it for the
|
|
|
|
// other two fds, presumably because they refer to the same underlying file
|
|
|
|
// (/dev/tty?).
|
|
|
|
make_fd_blocking(STDIN_FILENO);
|
|
|
|
|
2019-05-22 20:34:03 +00:00
|
|
|
auto export_arr = parser.vars().export_arr();
|
2018-09-03 22:56:59 +00:00
|
|
|
const char *const *argv = argv_array.get();
|
2019-05-10 16:10:43 +00:00
|
|
|
const char *const *envv = export_arr->get();
|
2018-09-03 22:56:59 +00:00
|
|
|
|
|
|
|
std::string actual_cmd_str = wcs2string(p->actual_cmd);
|
|
|
|
const char *actual_cmd = actual_cmd_str.c_str();
|
2019-05-22 20:34:03 +00:00
|
|
|
const wchar_t *file = parser.libdata().current_filename;
|
2018-09-03 22:56:59 +00:00
|
|
|
|
|
|
|
#if FISH_USE_POSIX_SPAWN
|
|
|
|
// Prefer to use posix_spawn, since it's faster on some systems like OS X.
|
2019-12-29 22:49:05 +00:00
|
|
|
bool use_posix_spawn = g_use_posix_spawn && can_use_posix_spawn_for_job(j, dup2s);
|
2018-09-03 22:56:59 +00:00
|
|
|
if (use_posix_spawn) {
|
2019-06-03 19:58:35 +00:00
|
|
|
s_fork_count++; // spawn counts as a fork+exec
|
2018-09-03 22:56:59 +00:00
|
|
|
// Create posix spawn attributes and actions.
|
|
|
|
pid_t pid = 0;
|
|
|
|
posix_spawnattr_t attr = posix_spawnattr_t();
|
|
|
|
posix_spawn_file_actions_t actions = posix_spawn_file_actions_t();
|
2019-12-29 22:49:05 +00:00
|
|
|
bool made_it = fork_actions_make_spawn_properties(&attr, &actions, j.get(), dup2s);
|
2018-09-03 22:56:59 +00:00
|
|
|
if (made_it) {
|
|
|
|
// We successfully made the attributes and actions; actually call
|
|
|
|
// posix_spawn.
|
|
|
|
int spawn_ret =
|
|
|
|
posix_spawn(&pid, actual_cmd, &actions, &attr, const_cast<char *const *>(argv),
|
|
|
|
const_cast<char *const *>(envv));
|
|
|
|
|
|
|
|
// This usleep can be used to test for various race conditions
|
|
|
|
// (https://github.com/fish-shell/fish-shell/issues/360).
|
|
|
|
// usleep(10000);
|
|
|
|
|
|
|
|
if (spawn_ret != 0) {
|
|
|
|
safe_report_exec_error(spawn_ret, actual_cmd, argv, envv);
|
|
|
|
// Make sure our pid isn't set.
|
|
|
|
pid = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Clean up our actions.
|
|
|
|
posix_spawn_file_actions_destroy(&actions);
|
|
|
|
posix_spawnattr_destroy(&attr);
|
|
|
|
}
|
|
|
|
|
|
|
|
// A 0 pid means we failed to posix_spawn. Since we have no pid, we'll never get
|
|
|
|
// told when it's exited, so we have to mark the process as failed.
|
2019-06-03 19:58:35 +00:00
|
|
|
FLOGF(exec_fork, L"Fork #%d, pid %d: spawn external command '%s' from '%ls'",
|
|
|
|
int(s_fork_count), pid, actual_cmd, file ? file : L"<no file>");
|
2018-09-03 22:56:59 +00:00
|
|
|
if (pid == 0) {
|
|
|
|
job_mark_process_as_failed(j, p);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// these are all things do_fork() takes care of normally (for forked processes):
|
|
|
|
p->pid = pid;
|
2020-01-30 00:39:44 +00:00
|
|
|
maybe_assign_pgid_from_child(j, p->pid);
|
2018-09-03 22:56:59 +00:00
|
|
|
|
2020-01-30 19:07:28 +00:00
|
|
|
// In glibc, posix_spawn uses fork() and the pgid group is set on the child side;
|
|
|
|
// therefore the parent may not have seen it be set yet.
|
|
|
|
// Ensure it gets set. See #4715, also https://github.com/Microsoft/WSL/issues/2997.
|
|
|
|
set_child_group(j.get(), p->pid);
|
2019-06-29 22:58:36 +00:00
|
|
|
terminal_maybe_give_to_job(j.get(), false);
|
2018-09-03 22:56:59 +00:00
|
|
|
} else
|
|
|
|
#endif
|
|
|
|
{
|
2019-12-29 22:49:05 +00:00
|
|
|
if (!fork_child_for_process(j, p, dup2s, "external command",
|
2018-09-03 22:56:59 +00:00
|
|
|
[&] { safe_launch_process(p, actual_cmd, argv, envv); })) {
|
|
|
|
return false;
|
|
|
|
}
|
2018-09-03 21:33:53 +00:00
|
|
|
}
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2019-11-15 01:58:39 +00:00
|
|
|
// Given that we are about to execute a function, push a function block and set up the
|
2019-11-10 22:46:21 +00:00
|
|
|
// variable environment.
|
2019-11-15 01:58:39 +00:00
|
|
|
static block_t *function_prepare_environment(parser_t &parser, wcstring_list_t argv,
|
2019-11-10 22:46:21 +00:00
|
|
|
const function_properties_t &props) {
|
|
|
|
// Extract the function name and remaining arguments.
|
|
|
|
wcstring func_name;
|
|
|
|
if (!argv.empty()) {
|
|
|
|
// Extract and remove the function name from argv.
|
|
|
|
func_name = std::move(*argv.begin());
|
|
|
|
argv.erase(argv.begin());
|
|
|
|
}
|
|
|
|
block_t *fb = parser.push_block(block_t::function_block(func_name, argv, props.shadow_scope));
|
|
|
|
auto &vars = parser.vars();
|
|
|
|
|
|
|
|
// Setup the environment for the function. There are three components of the environment:
|
|
|
|
// 1. named arguments
|
|
|
|
// 2. inherited variables
|
|
|
|
// 3. argv
|
|
|
|
|
|
|
|
size_t idx = 0;
|
|
|
|
for (const wcstring &named_arg : props.named_arguments) {
|
|
|
|
if (idx < argv.size()) {
|
|
|
|
vars.set_one(named_arg, ENV_LOCAL | ENV_USER, argv.at(idx));
|
|
|
|
} else {
|
|
|
|
vars.set_empty(named_arg, ENV_LOCAL | ENV_USER);
|
|
|
|
}
|
|
|
|
idx++;
|
|
|
|
}
|
|
|
|
|
2019-11-12 17:53:10 +00:00
|
|
|
for (const auto &kv : props.inherit_vars) {
|
|
|
|
vars.set(kv.first, ENV_LOCAL | ENV_USER, kv.second);
|
2019-11-10 22:46:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
vars.set_argv(std::move(argv));
|
|
|
|
return fb;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Given that we are done executing a function, restore the environment.
|
|
|
|
static void function_restore_environment(parser_t &parser, const block_t *block) {
|
|
|
|
parser.pop_block(block);
|
|
|
|
|
|
|
|
// If we returned due to a return statement, then stop returning now.
|
|
|
|
parser.libdata().returning = false;
|
|
|
|
}
|
|
|
|
|
2019-12-01 00:41:42 +00:00
|
|
|
// The "performer" function of a block or function process.
|
|
|
|
// This accepts a place to execute as \p parser, and a parent job as \p parent, and then executes
|
|
|
|
// the result, returning a status.
|
|
|
|
// This is factored out in this funny way in preparation for concurrent execution.
|
2019-12-08 21:03:42 +00:00
|
|
|
using proc_performer_t = std::function<proc_status_t(parser_t &parser)>;
|
2019-12-01 00:41:42 +00:00
|
|
|
|
|
|
|
// \return a function which may be to run the given process \p.
|
|
|
|
// May return an empty std::function in the rare case that the to-be called fish function no longer
|
|
|
|
// exists. This is just a dumb artifact of the fact that we only capture the functions name, not its
|
|
|
|
// properties, when creating the job; thus a race could delete the function before we fetch its
|
|
|
|
// properties.
|
Introduce the internal jobs for functions
This PR is aimed at improving how job ids are assigned. In particular,
previous to this commit, a job id would be consumed by functions (and
thus aliases). Since it's usual to use functions as command wrappers
this results in awkward job id assignments.
For example if the user is like me and just made the jump from vim -> neovim
then the user might create the following alias:
```
alias vim=nvim
```
Previous to this commit if the user ran `vim` after setting up this
alias, backgrounded (^Z) and ran `jobs` then the output might be:
```
Job Group State Command
2 60267 stopped nvim $argv
```
If the user subsequently opened another vim (nvim) session, backgrounded
and ran jobs then they might see what follows:
```
Job Group State Command
4 70542 stopped nvim $argv
2 60267 stopped nvim $argv
```
These job ids feel unnatural, especially when transitioning away from
e.g. bash where job ids are sequentially incremented (and aliases/functions
don't consume a job id).
See #6053 for more details.
As @ridiculousfish pointed out in
https://github.com/fish-shell/fish-shell/issues/6053#issuecomment-559899400,
we want to elide a job's job id if it corresponds to a single function in the
foreground. This translates to the following prerequisites:
- A job must correspond to a single process (i.e. the job continuation
must be empty)
- A job must be in the foreground (i.e. `&` wasn't appended)
- The job's single process must resolve to a function invocation
If all of these conditions are true then we should mark a job as
"internal" and somehow remove it from consideration when any
infrastructure tries to interact with jobs / job ids.
I saw two paths to implement these requirements:
- At the time of job creation calculate whether or not a job is
"internal" and use a separate list of job ids to track their ids.
Additionally introduce a new flag denoting that a job is internal so
that e.g. `jobs` doesn't list internal jobs
- I started implementing this route but quickly realized I was
computing the same information that would be computed later on (e.g.
"is this job a single process" and "is this jobs statement a
function"). Specifically I was computing data that populate_job_process
would end up computing later anyway. Additionally this added some
weird complexities to the job system (after the change there were two
job id lists AND an additional flag that had to be taken into
consideration)
- Once a function is about to be executed we release the current jobs
job id if the prerequisites are satisfied (which at this point have
been fully computed).
- I opted for this solution since it seems cleaner. In this
implementation "releasing a job id" is done by both calling
`release_job_id` and by marking the internal job_id member variable to
-1. The former operation allows subsequent child jobs to reuse that
same job id (so e.g. the situation described in Motivation doesn't
occur), and the latter ensures that no other job / job id
infrastructure will interact with these jobs because valid jobs have
positive job ids. The second operation causes job_id to become
non-const which leads to the list of code changes outside of `exec.c`
(i.e. a codemod from `job_t::job_id` -> `job_t::job_id()` and moving the
old member variable to a non-const private `job_t::job_id_`)
Note: Its very possible I missed something and setting the job id to -1
will break some other infrastructure, please let me know if so!
I tried to run `make/ninja lint`, but a bunch of non-relevant issues
appeared (e.g. `fatal error: 'config.h' file not found`). I did
successfully clang-format (`git clang-format -f`) and run tests, though.
This PR closes #6053.
2019-12-29 15:46:07 +00:00
|
|
|
static proc_performer_t get_performer_for_process(process_t *p, job_t *job,
|
2019-12-08 21:03:42 +00:00
|
|
|
const io_chain_t &io_chain) {
|
2019-12-01 00:41:42 +00:00
|
|
|
assert((p->type == process_type_t::function || p->type == process_type_t::block_node) &&
|
|
|
|
"Unexpected process type");
|
2019-12-12 00:34:20 +00:00
|
|
|
// Make a lineage for our children.
|
|
|
|
job_lineage_t lineage;
|
2019-12-08 21:03:42 +00:00
|
|
|
lineage.parent_pgid = (job->pgid == INVALID_PID ? none() : maybe_t<pid_t>(job->pgid));
|
2019-12-12 00:34:20 +00:00
|
|
|
lineage.block_io = io_chain;
|
|
|
|
lineage.root_constructed = job->root_constructed;
|
2020-01-30 00:08:10 +00:00
|
|
|
lineage.root_has_job_control = job->wants_job_control();
|
2019-12-08 21:03:42 +00:00
|
|
|
|
2019-12-01 00:41:42 +00:00
|
|
|
if (p->type == process_type_t::block_node) {
|
|
|
|
const parsed_source_ref_t &source = p->block_node_source;
|
|
|
|
tnode_t<grammar::statement> node = p->internal_block_node;
|
|
|
|
assert(source && node && "Process is missing node info");
|
2020-01-24 01:34:46 +00:00
|
|
|
return [=](parser_t &parser) { return parser.eval_node(source, node, lineage).status; };
|
2019-12-01 00:41:42 +00:00
|
|
|
} else {
|
|
|
|
assert(p->type == process_type_t::function);
|
|
|
|
auto props = function_get_properties(p->argv0());
|
|
|
|
if (!props) {
|
|
|
|
FLOGF(error, _(L"Unknown function '%ls'"), p->argv0());
|
|
|
|
return proc_performer_t{};
|
|
|
|
}
|
|
|
|
auto argv = move_to_sharedptr(p->get_argv_array().to_list());
|
2019-12-08 21:03:42 +00:00
|
|
|
return [=](parser_t &parser) {
|
2020-01-03 22:40:28 +00:00
|
|
|
// Pull out the job list from the function.
|
|
|
|
tnode_t<grammar::job_list> body = props->func_node.child<1>();
|
2019-12-01 00:41:42 +00:00
|
|
|
const block_t *fb = function_prepare_environment(parser, *argv, *props);
|
2020-01-03 22:40:28 +00:00
|
|
|
auto res = parser.eval_node(props->parsed_source, body, lineage);
|
2019-12-01 00:41:42 +00:00
|
|
|
function_restore_environment(parser, fb);
|
2019-12-07 19:04:00 +00:00
|
|
|
|
2020-01-24 01:34:46 +00:00
|
|
|
// If the function did not execute anything, treat it as success.
|
|
|
|
if (res.was_empty) {
|
|
|
|
res = proc_status_t::from_exit_code(EXIT_SUCCESS);
|
2019-12-07 19:04:00 +00:00
|
|
|
}
|
2020-01-24 01:34:46 +00:00
|
|
|
return res.status;
|
2019-12-01 00:41:42 +00:00
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
/// Execute a block node or function "process".
|
2019-12-12 22:42:03 +00:00
|
|
|
/// \p conflicts contains the list of fds which pipes should avoid.
|
2019-03-25 04:12:41 +00:00
|
|
|
/// \p allow_buffering if true, permit buffering the output.
|
|
|
|
/// \return true on success, false on error.
|
2019-12-27 05:54:21 +00:00
|
|
|
static bool exec_block_or_func_process(parser_t &parser, const std::shared_ptr<job_t> &j,
|
|
|
|
process_t *p, const fd_set_t &conflicts, io_chain_t io_chain,
|
2019-03-25 04:12:41 +00:00
|
|
|
bool allow_buffering) {
|
2018-09-03 22:56:59 +00:00
|
|
|
// Create an output buffer if we're piping to another process.
|
2019-02-01 00:05:42 +00:00
|
|
|
shared_ptr<io_bufferfill_t> block_output_bufferfill{};
|
2019-03-25 04:12:41 +00:00
|
|
|
if (!p->is_last_in_job && allow_buffering) {
|
2018-09-03 22:56:59 +00:00
|
|
|
// Be careful to handle failure, e.g. too many open fds.
|
2019-12-12 22:42:03 +00:00
|
|
|
block_output_bufferfill = io_bufferfill_t::create(conflicts);
|
2019-02-01 00:05:42 +00:00
|
|
|
if (!block_output_bufferfill) {
|
2018-09-03 22:56:59 +00:00
|
|
|
job_mark_process_as_failed(j, p);
|
|
|
|
return false;
|
|
|
|
}
|
2019-02-01 00:05:42 +00:00
|
|
|
// Teach the job about its bufferfill, and add it to our io chain.
|
|
|
|
io_chain.push_back(block_output_bufferfill);
|
2018-09-03 21:33:53 +00:00
|
|
|
}
|
|
|
|
|
2019-12-31 21:12:24 +00:00
|
|
|
// If this function is the only process in the current job
|
|
|
|
// and that job is in the foreground then mark this job as internal
|
|
|
|
// so it doesn't increment the job id for any jobs created within this
|
|
|
|
// function.
|
|
|
|
if (p->is_first_in_job && p->is_last_in_job && j->flags().foreground) {
|
|
|
|
j->mark_internal();
|
|
|
|
}
|
|
|
|
|
2019-12-01 00:41:42 +00:00
|
|
|
// Get the process performer, and just execute it directly.
|
|
|
|
// Do it in this scoped way so that the performer function can be eagerly deallocating releasing
|
|
|
|
// its captured io chain.
|
2019-12-08 21:03:42 +00:00
|
|
|
if (proc_performer_t performer = get_performer_for_process(p, j.get(), io_chain)) {
|
|
|
|
p->status = performer(parser);
|
2018-09-03 22:56:59 +00:00
|
|
|
} else {
|
2019-12-01 00:41:42 +00:00
|
|
|
return false;
|
2018-09-03 22:56:59 +00:00
|
|
|
}
|
|
|
|
|
2019-02-01 00:05:42 +00:00
|
|
|
// If we have a block output buffer, populate it now.
|
2020-01-13 22:28:28 +00:00
|
|
|
std::string buffer_contents;
|
|
|
|
if (block_output_bufferfill) {
|
|
|
|
// Remove our write pipe and forget it. This may close the pipe, unless another thread has
|
|
|
|
// claimed it (background write) or another process has inherited it.
|
|
|
|
io_chain.remove(block_output_bufferfill);
|
|
|
|
auto block_output_buffer = io_bufferfill_t::finish(std::move(block_output_bufferfill));
|
|
|
|
buffer_contents = block_output_buffer->buffer().newline_serialized();
|
2018-09-03 22:56:59 +00:00
|
|
|
}
|
2019-01-28 22:35:56 +00:00
|
|
|
|
2020-01-13 22:46:31 +00:00
|
|
|
run_internal_process_or_short_circuit(parser, j, p, std::move(buffer_contents),
|
|
|
|
{} /* errdata */, io_chain);
|
2018-09-03 21:33:53 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2019-03-24 21:27:23 +00:00
|
|
|
/// Executes a process \p in job \j, using the pipes \p pipes (which may have invalid fds if this is
|
|
|
|
/// the first or last process).
|
2019-03-25 04:12:41 +00:00
|
|
|
/// \p deferred_pipes represents the pipes from our deferred process; if set ensure they get closed
|
|
|
|
/// in any child. If \p is_deferred_run is true, then this is a deferred run; this affects how
|
|
|
|
/// certain buffering works. \returns true on success, false on exec error.
|
2019-12-27 05:54:21 +00:00
|
|
|
static bool exec_process_in_job(parser_t &parser, process_t *p, const std::shared_ptr<job_t> &j,
|
2019-12-12 00:34:20 +00:00
|
|
|
const io_chain_t &block_io, autoclose_pipes_t pipes,
|
2019-12-12 22:42:03 +00:00
|
|
|
const fd_set_t &conflicts, const autoclose_pipes_t &deferred_pipes,
|
2019-12-12 00:34:20 +00:00
|
|
|
size_t stdout_read_limit, bool is_deferred_run = false) {
|
2018-09-01 21:48:22 +00:00
|
|
|
// The write pipe (destined for stdout) needs to occur before redirections. For example,
|
|
|
|
// with a redirection like this:
|
|
|
|
//
|
|
|
|
// `foo 2>&1 | bar`
|
|
|
|
//
|
|
|
|
// what we want to happen is this:
|
|
|
|
//
|
|
|
|
// dup2(pipe, stdout)
|
|
|
|
// dup2(stdout, stderr)
|
|
|
|
//
|
|
|
|
// so that stdout and stderr both wind up referencing the pipe.
|
|
|
|
//
|
|
|
|
// The read pipe (destined for stdin) is more ambiguous. Imagine a pipeline like this:
|
|
|
|
//
|
|
|
|
// echo alpha | cat < beta.txt
|
|
|
|
//
|
|
|
|
// Should cat output alpha or beta? bash and ksh output 'beta', tcsh gets it right and
|
|
|
|
// complains about ambiguity, and zsh outputs both (!). No shells appear to output 'alpha',
|
|
|
|
// so we match bash here. That would mean putting the pipe first, so that it gets trumped by
|
|
|
|
// the file redirection.
|
|
|
|
//
|
|
|
|
// However, eval does this:
|
|
|
|
//
|
|
|
|
// echo "begin; $argv "\n" ;end <&3 3<&-" | source 3<&0
|
|
|
|
//
|
|
|
|
// which depends on the redirection being evaluated before the pipe. So the write end of the
|
|
|
|
// pipe comes first, the read pipe of the pipe comes last. See issue #966.
|
|
|
|
|
2019-10-19 01:08:22 +00:00
|
|
|
// Maybe trace this process.
|
|
|
|
// TODO: 'and' and 'or' will not show.
|
|
|
|
if (trace_enabled(parser)) {
|
|
|
|
trace_argv(parser, nullptr, p->get_argv_array().to_list());
|
|
|
|
}
|
|
|
|
|
2019-02-01 00:05:42 +00:00
|
|
|
// The IO chain for this process.
|
2019-12-12 00:34:20 +00:00
|
|
|
io_chain_t process_net_io_chain = block_io;
|
2019-12-13 00:44:24 +00:00
|
|
|
|
2019-03-24 21:27:23 +00:00
|
|
|
if (pipes.write.valid()) {
|
|
|
|
process_net_io_chain.push_back(std::make_shared<io_pipe_t>(
|
|
|
|
p->pipe_write_fd, false /* not input */, std::move(pipes.write)));
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
|
|
|
|
2019-12-13 00:44:24 +00:00
|
|
|
// Append IOs from the process's redirection specs.
|
|
|
|
// This may fail.
|
2019-12-13 01:27:48 +00:00
|
|
|
if (!process_net_io_chain.append_from_specs(p->redirection_specs(),
|
|
|
|
parser.vars().get_pwd_slash())) {
|
2019-12-13 00:44:24 +00:00
|
|
|
// Error.
|
|
|
|
return false;
|
|
|
|
}
|
2018-09-01 21:48:22 +00:00
|
|
|
|
|
|
|
// Read pipe goes last.
|
2019-03-24 21:27:23 +00:00
|
|
|
shared_ptr<io_pipe_t> pipe_read{};
|
|
|
|
if (pipes.read.valid()) {
|
|
|
|
pipe_read =
|
|
|
|
std::make_shared<io_pipe_t>(STDIN_FILENO, true /* input */, std::move(pipes.read));
|
2018-09-01 21:48:22 +00:00
|
|
|
process_net_io_chain.push_back(pipe_read);
|
|
|
|
}
|
|
|
|
|
2019-03-24 21:27:23 +00:00
|
|
|
// If we have stashed pipes, make sure those get closed in the child.
|
|
|
|
for (const autoclose_fd_t *afd : {&deferred_pipes.read, &deferred_pipes.write}) {
|
|
|
|
if (afd->valid()) {
|
|
|
|
process_net_io_chain.push_back(std::make_shared<io_close_t>(afd->fd()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-04-13 17:03:25 +00:00
|
|
|
if (p->type != process_type_t::block_node) {
|
2020-01-24 01:34:46 +00:00
|
|
|
// A simple `begin ... end` should not be considered an execution of a command.
|
2019-04-28 23:11:49 +00:00
|
|
|
parser.libdata().exec_count++;
|
2019-04-13 17:03:25 +00:00
|
|
|
}
|
|
|
|
|
Support FOO=bar syntax for passing variables to individual commands
This adds initial support for statements with prefixed variable assignments.
Statments like this are supported:
a=1 b=$a echo $b # outputs 1
Just like in other shells, the left-hand side of each assignment must
be a valid variable identifier (no quoting/escaping). Array indexing
(PATH[1]=/bin ls $PATH) is *not* yet supported, but can be added fairly
easily.
The right hand side may be any valid string token, like a command
substitution, or a brace expansion.
Since `a=* foo` is equivalent to `begin set -lx a *; foo; end`,
the assignment, like `set`, uses nullglob behavior, e.g. below command
can safely be used to check if a directory is empty.
x=/nothing/{,.}* test (count $x) -eq 0
Generic file completion is done after the equal sign, so for example
pressing tab after something like `HOME=/` completes files in the
root directory
Subcommand completion works, so something like
`GIT_DIR=repo.git and command git ` correctly calls git completions
(but the git completion does not use the variable as of now).
The variable assignment is highlighted like an argument.
Closes #6048
2019-10-23 01:13:29 +00:00
|
|
|
const block_t *block = nullptr;
|
|
|
|
cleanup_t pop_block([&]() {
|
|
|
|
if (block) parser.pop_block(block);
|
|
|
|
});
|
|
|
|
if (!p->variable_assignments.empty()) {
|
|
|
|
block = parser.push_block(block_t::variable_assignment_block());
|
|
|
|
}
|
|
|
|
for (const auto &assignment : p->variable_assignments) {
|
|
|
|
parser.vars().set(assignment.variable_name, ENV_LOCAL | ENV_EXPORT, assignment.values);
|
|
|
|
}
|
|
|
|
|
2018-09-03 22:56:59 +00:00
|
|
|
// Execute the process.
|
2019-02-17 01:35:16 +00:00
|
|
|
p->check_generations_before_launch();
|
2018-09-01 21:48:22 +00:00
|
|
|
switch (p->type) {
|
2019-03-24 19:29:25 +00:00
|
|
|
case process_type_t::function:
|
|
|
|
case process_type_t::block_node: {
|
2019-03-25 04:12:41 +00:00
|
|
|
// Allow buffering unless this is a deferred run. If deferred, then processes after us
|
|
|
|
// were already launched, so they are ready to receive (or reject) our output.
|
|
|
|
bool allow_buffering = !is_deferred_run;
|
2019-12-12 22:42:03 +00:00
|
|
|
if (!exec_block_or_func_process(parser, j, p, conflicts, process_net_io_chain,
|
2019-03-25 04:12:41 +00:00
|
|
|
allow_buffering)) {
|
2018-09-03 22:56:59 +00:00
|
|
|
return false;
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-03-24 19:29:25 +00:00
|
|
|
case process_type_t::builtin: {
|
2018-09-03 22:56:59 +00:00
|
|
|
io_streams_t builtin_io_streams{stdout_read_limit};
|
2020-04-26 00:11:36 +00:00
|
|
|
if (j->pgid != INVALID_PID) builtin_io_streams.parent_pgid = j->pgid;
|
2020-02-19 17:43:32 +00:00
|
|
|
if (!exec_internal_builtin_proc(parser, p, pipe_read.get(), process_net_io_chain,
|
2018-09-03 22:56:59 +00:00
|
|
|
builtin_io_streams)) {
|
|
|
|
return false;
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
2019-05-12 21:00:44 +00:00
|
|
|
if (!handle_builtin_output(parser, j, p, &process_net_io_chain, builtin_io_streams)) {
|
2018-09-03 22:56:59 +00:00
|
|
|
return false;
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-03-24 19:29:25 +00:00
|
|
|
case process_type_t::external: {
|
2019-05-22 20:34:03 +00:00
|
|
|
if (!exec_external_command(parser, j, p, process_net_io_chain)) {
|
2018-09-03 22:56:59 +00:00
|
|
|
return false;
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-03-24 19:29:25 +00:00
|
|
|
case process_type_t::exec: {
|
2018-09-01 21:48:22 +00:00
|
|
|
// We should have handled exec up above.
|
2019-03-24 19:29:25 +00:00
|
|
|
DIE("process_type_t::exec process found in pipeline, where it should never be. "
|
|
|
|
"Aborting.");
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
|
|
|
}
|
2018-09-03 22:56:59 +00:00
|
|
|
return true;
|
2018-09-01 21:48:22 +00:00
|
|
|
}
|
|
|
|
|
2019-03-24 21:27:23 +00:00
|
|
|
// Do we have a fish internal process that pipes into a real process? If so, we are going to
|
|
|
|
// launch it last (if there's more than one, just the last one). That is to prevent buffering
|
|
|
|
// from blocking further processes. See #1396.
|
|
|
|
// Example:
|
|
|
|
// for i in (seq 1 5); sleep 1; echo $i; end | cat
|
|
|
|
// This should show the output as it comes, not buffer until the end.
|
|
|
|
// Any such process (only one per job) will be called the "deferred" process.
|
|
|
|
static process_t *get_deferred_process(const shared_ptr<job_t> &j) {
|
2019-03-31 18:20:49 +00:00
|
|
|
// By enumerating in reverse order, we can avoid walking the entire list
|
|
|
|
for (auto i = j->processes.rbegin(); i != j->processes.rend(); ++i) {
|
|
|
|
const auto &p = *i;
|
2019-03-24 21:27:23 +00:00
|
|
|
if (p->type == process_type_t::exec) {
|
|
|
|
// No tail reordering for execs.
|
|
|
|
return nullptr;
|
|
|
|
} else if (p->type != process_type_t::external) {
|
2019-03-31 18:20:49 +00:00
|
|
|
if (p->is_last_in_job) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
return p.get();
|
2019-03-24 21:27:23 +00:00
|
|
|
}
|
|
|
|
}
|
2019-03-31 18:20:49 +00:00
|
|
|
return nullptr;
|
2019-03-24 21:27:23 +00:00
|
|
|
}
|
|
|
|
|
2020-02-20 01:22:54 +00:00
|
|
|
// Given that we are about to execute an exec() call, check if the parser is interactive and there
|
|
|
|
// are extant background jobs. If so, warn the user and do not exec().
|
|
|
|
// \return true if we should allow exec, false to disallow it.
|
|
|
|
static bool allow_exec_with_background_jobs(parser_t &parser) {
|
|
|
|
// If we're not interactive, we cannot warn.
|
|
|
|
if (!parser.is_interactive()) return true;
|
|
|
|
|
|
|
|
// Construct the list of running background jobs.
|
|
|
|
job_list_t bgs = jobs_requiring_warning_on_exit(parser);
|
|
|
|
if (bgs.empty()) return true;
|
|
|
|
|
|
|
|
// Compare run counts, so we only warn once.
|
|
|
|
uint64_t current_run_count = reader_run_count();
|
|
|
|
uint64_t &last_exec_run_count = parser.libdata().last_exec_run_counter;
|
|
|
|
if (isatty(STDIN_FILENO) && current_run_count - 1 != last_exec_run_count) {
|
|
|
|
print_exit_warning_for_jobs(bgs);
|
|
|
|
last_exec_run_count = current_run_count;
|
|
|
|
return false;
|
|
|
|
} else {
|
2020-02-20 03:35:04 +00:00
|
|
|
hup_jobs(parser.jobs());
|
2020-02-20 01:22:54 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-27 05:54:21 +00:00
|
|
|
bool exec_job(parser_t &parser, const shared_ptr<job_t> &j, const job_lineage_t &lineage) {
|
2018-10-18 01:07:45 +00:00
|
|
|
assert(j && "null job_t passed to exec_job!");
|
2018-09-29 04:13:13 +00:00
|
|
|
|
2018-11-18 23:14:08 +00:00
|
|
|
// Set to true if something goes wrong while executing the job, in which case the cleanup
|
|
|
|
// code will kick in.
|
2012-11-19 00:30:30 +00:00
|
|
|
bool exec_error = false;
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
// If fish was invoked with -n or --no-execute, then no_exec will be set and we do nothing.
|
2019-05-12 22:04:18 +00:00
|
|
|
if (no_exec()) {
|
2018-11-18 23:14:08 +00:00
|
|
|
return true;
|
2013-03-25 23:06:12 +00:00
|
|
|
}
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2020-01-04 22:53:26 +00:00
|
|
|
pid_t pgrp = getpgrp();
|
|
|
|
// Check to see if we should reclaim the foreground pgrp after the job finishes or stops.
|
|
|
|
const bool reclaim_foreground_pgrp = (tcgetpgrp(STDIN_FILENO) == pgrp);
|
|
|
|
|
2020-01-30 00:39:44 +00:00
|
|
|
// Perhaps we know our pgroup already.
|
|
|
|
assert(j->pgid == INVALID_PID && "Should not yet have a pid.");
|
2020-01-30 19:14:31 +00:00
|
|
|
switch (j->pgroup_provenance) {
|
2020-01-30 00:39:44 +00:00
|
|
|
case pgroup_provenance_t::lineage:
|
|
|
|
assert(*lineage.parent_pgid != INVALID_PID && "pgid should be none, not INVALID_PID");
|
|
|
|
j->pgid = *lineage.parent_pgid;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case pgroup_provenance_t::fish_itself:
|
|
|
|
j->pgid = pgrp;
|
|
|
|
break;
|
|
|
|
|
|
|
|
// The remaining cases are all deferred until later.
|
|
|
|
case pgroup_provenance_t::unassigned:
|
|
|
|
case pgroup_provenance_t::first_external_proc:
|
|
|
|
break;
|
2019-06-27 00:20:37 +00:00
|
|
|
}
|
|
|
|
|
2019-12-11 19:49:51 +00:00
|
|
|
const size_t stdout_read_limit = parser.libdata().read_limit;
|
2019-12-12 00:34:20 +00:00
|
|
|
|
2019-12-12 22:42:03 +00:00
|
|
|
// Get the list of all FDs so we can ensure our pipes do not conflict.
|
|
|
|
fd_set_t conflicts = lineage.block_io.fd_set();
|
2019-12-12 00:34:20 +00:00
|
|
|
for (const auto &p : j->processes) {
|
2019-12-13 00:44:24 +00:00
|
|
|
for (const auto &spec : p->redirection_specs()) {
|
|
|
|
conflicts.add(spec.fd);
|
2019-12-12 22:42:03 +00:00
|
|
|
}
|
2019-12-12 00:34:20 +00:00
|
|
|
}
|
2019-03-24 21:27:23 +00:00
|
|
|
|
|
|
|
// Handle an exec call.
|
2019-03-24 19:29:25 +00:00
|
|
|
if (j->processes.front()->type == process_type_t::exec) {
|
2020-02-20 01:22:54 +00:00
|
|
|
// If we are interactive, perhaps disallow exec if there are background jobs.
|
|
|
|
if (!allow_exec_with_background_jobs(parser)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2019-12-12 22:42:03 +00:00
|
|
|
internal_exec(parser.vars(), j.get(), lineage.block_io);
|
2019-02-11 16:10:42 +00:00
|
|
|
// internal_exec only returns if it failed to set up redirections.
|
|
|
|
// In case of an successful exec, this code is not reached.
|
2020-01-13 22:18:43 +00:00
|
|
|
int status = j->flags().negate ? 0 : 1;
|
2019-05-12 21:00:44 +00:00
|
|
|
parser.set_last_statuses(statuses_t::just(status));
|
2020-01-13 22:18:43 +00:00
|
|
|
|
|
|
|
// A false return tells the caller to remove the job from the list.
|
2019-02-11 16:10:42 +00:00
|
|
|
return false;
|
2012-11-19 00:30:30 +00:00
|
|
|
}
|
2020-02-17 10:38:21 +00:00
|
|
|
cleanup_t timer = push_timer(j->flags().has_time_prefix && !no_exec());
|
2016-04-29 02:41:54 +00:00
|
|
|
|
2019-03-24 21:27:23 +00:00
|
|
|
// Get the deferred process, if any. We will have to remember its pipes.
|
|
|
|
autoclose_pipes_t deferred_pipes;
|
|
|
|
process_t *const deferred_process = get_deferred_process(j);
|
|
|
|
|
2016-04-29 02:41:54 +00:00
|
|
|
// This loop loops over every process_t in the job, starting it as appropriate. This turns out
|
|
|
|
// to be rather complex, since a process_t can be one of many rather different things.
|
|
|
|
//
|
|
|
|
// The loop also has to handle pipelining between the jobs.
|
|
|
|
//
|
|
|
|
// We can have up to three pipes "in flight" at a time:
|
|
|
|
//
|
|
|
|
// 1. The pipe the current process should read from (courtesy of the previous process)
|
|
|
|
// 2. The pipe that the current process should write to
|
|
|
|
// 3. The pipe that the next process should read from (courtesy of us)
|
|
|
|
//
|
2018-09-01 21:48:22 +00:00
|
|
|
autoclose_fd_t pipe_next_read;
|
2019-03-24 21:27:23 +00:00
|
|
|
for (const auto &p : j->processes) {
|
|
|
|
// proc_pipes is the pipes applied to this process. That is, it is the read end
|
|
|
|
// containing the output of the previous process (if any), plus the write end that will
|
|
|
|
// output to the next process (if any).
|
|
|
|
autoclose_pipes_t proc_pipes;
|
|
|
|
proc_pipes.read = std::move(pipe_next_read);
|
|
|
|
if (!p->is_last_in_job) {
|
2019-12-12 22:42:03 +00:00
|
|
|
auto pipes = make_autoclose_pipes(conflicts);
|
2019-03-24 21:27:23 +00:00
|
|
|
if (!pipes) {
|
2020-01-19 12:38:47 +00:00
|
|
|
FLOGF(warning, PIPE_ERROR);
|
2019-03-24 21:27:23 +00:00
|
|
|
wperror(L"pipe");
|
|
|
|
job_mark_process_as_failed(j, p.get());
|
|
|
|
exec_error = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
pipe_next_read = std::move(pipes->read);
|
|
|
|
proc_pipes.write = std::move(pipes->write);
|
2019-03-29 03:22:58 +00:00
|
|
|
}
|
2019-03-24 21:27:23 +00:00
|
|
|
|
2019-03-29 03:22:58 +00:00
|
|
|
if (p.get() == deferred_process) {
|
|
|
|
deferred_pipes = std::move(proc_pipes);
|
|
|
|
} else {
|
2019-12-12 00:34:20 +00:00
|
|
|
if (!exec_process_in_job(parser, p.get(), j, lineage.block_io, std::move(proc_pipes),
|
2019-12-12 22:42:03 +00:00
|
|
|
conflicts, deferred_pipes, stdout_read_limit)) {
|
2019-03-29 03:22:58 +00:00
|
|
|
exec_error = true;
|
|
|
|
break;
|
2019-03-24 21:27:23 +00:00
|
|
|
}
|
2017-01-23 17:28:34 +00:00
|
|
|
}
|
2012-11-19 00:30:30 +00:00
|
|
|
}
|
2018-09-01 21:25:44 +00:00
|
|
|
pipe_next_read.close();
|
2016-04-29 02:41:54 +00:00
|
|
|
|
2019-03-24 21:27:23 +00:00
|
|
|
// Now execute any deferred process.
|
|
|
|
if (!exec_error && deferred_process) {
|
|
|
|
assert(deferred_pipes.write.valid() && "Deferred process should always have a write pipe");
|
2019-12-12 00:34:20 +00:00
|
|
|
if (!exec_process_in_job(parser, deferred_process, j, lineage.block_io,
|
2019-12-12 22:42:03 +00:00
|
|
|
std::move(deferred_pipes), conflicts, {}, stdout_read_limit,
|
|
|
|
true)) {
|
2019-03-24 21:27:23 +00:00
|
|
|
exec_error = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Introduce the internal jobs for functions
This PR is aimed at improving how job ids are assigned. In particular,
previous to this commit, a job id would be consumed by functions (and
thus aliases). Since it's usual to use functions as command wrappers
this results in awkward job id assignments.
For example if the user is like me and just made the jump from vim -> neovim
then the user might create the following alias:
```
alias vim=nvim
```
Previous to this commit if the user ran `vim` after setting up this
alias, backgrounded (^Z) and ran `jobs` then the output might be:
```
Job Group State Command
2 60267 stopped nvim $argv
```
If the user subsequently opened another vim (nvim) session, backgrounded
and ran jobs then they might see what follows:
```
Job Group State Command
4 70542 stopped nvim $argv
2 60267 stopped nvim $argv
```
These job ids feel unnatural, especially when transitioning away from
e.g. bash where job ids are sequentially incremented (and aliases/functions
don't consume a job id).
See #6053 for more details.
As @ridiculousfish pointed out in
https://github.com/fish-shell/fish-shell/issues/6053#issuecomment-559899400,
we want to elide a job's job id if it corresponds to a single function in the
foreground. This translates to the following prerequisites:
- A job must correspond to a single process (i.e. the job continuation
must be empty)
- A job must be in the foreground (i.e. `&` wasn't appended)
- The job's single process must resolve to a function invocation
If all of these conditions are true then we should mark a job as
"internal" and somehow remove it from consideration when any
infrastructure tries to interact with jobs / job ids.
I saw two paths to implement these requirements:
- At the time of job creation calculate whether or not a job is
"internal" and use a separate list of job ids to track their ids.
Additionally introduce a new flag denoting that a job is internal so
that e.g. `jobs` doesn't list internal jobs
- I started implementing this route but quickly realized I was
computing the same information that would be computed later on (e.g.
"is this job a single process" and "is this jobs statement a
function"). Specifically I was computing data that populate_job_process
would end up computing later anyway. Additionally this added some
weird complexities to the job system (after the change there were two
job id lists AND an additional flag that had to be taken into
consideration)
- Once a function is about to be executed we release the current jobs
job id if the prerequisites are satisfied (which at this point have
been fully computed).
- I opted for this solution since it seems cleaner. In this
implementation "releasing a job id" is done by both calling
`release_job_id` and by marking the internal job_id member variable to
-1. The former operation allows subsequent child jobs to reuse that
same job id (so e.g. the situation described in Motivation doesn't
occur), and the latter ensures that no other job / job id
infrastructure will interact with these jobs because valid jobs have
positive job ids. The second operation causes job_id to become
non-const which leads to the list of code changes outside of `exec.c`
(i.e. a codemod from `job_t::job_id` -> `job_t::job_id()` and moving the
old member variable to a non-const private `job_t::job_id_`)
Note: Its very possible I missed something and setting the job id to -1
will break some other infrastructure, please let me know if so!
I tried to run `make/ninja lint`, but a bunch of non-relevant issues
appeared (e.g. `fatal error: 'config.h' file not found`). I did
successfully clang-format (`git clang-format -f`) and run tests, though.
This PR closes #6053.
2019-12-29 15:46:07 +00:00
|
|
|
FLOGF(exec_job_exec, L"Executed job %d from command '%ls' with pgrp %d", j->job_id(),
|
2019-06-03 19:58:35 +00:00
|
|
|
j->command_wcstr(), j->pgid);
|
2018-10-02 16:19:56 +00:00
|
|
|
|
2019-12-11 02:32:56 +00:00
|
|
|
j->mark_constructed();
|
2018-10-02 17:30:23 +00:00
|
|
|
if (!j->is_foreground()) {
|
2018-09-14 07:36:26 +00:00
|
|
|
parser.vars().set_one(L"last_pid", ENV_GLOBAL, to_string(j->pgid));
|
2012-11-19 00:30:30 +00:00
|
|
|
}
|
2012-11-18 10:23:22 +00:00
|
|
|
|
2018-11-18 23:14:08 +00:00
|
|
|
if (exec_error) {
|
|
|
|
return false;
|
2012-11-19 00:30:30 +00:00
|
|
|
}
|
2018-11-18 23:14:08 +00:00
|
|
|
|
2019-05-05 05:12:31 +00:00
|
|
|
j->continue_job(parser, reclaim_foreground_pgrp, false);
|
2018-11-18 23:14:08 +00:00
|
|
|
return true;
|
2011-12-27 03:18:46 +00:00
|
|
|
}
|
2010-09-18 01:51:16 +00:00
|
|
|
|
2020-01-24 01:34:46 +00:00
|
|
|
/// Populate \p lst with the output of \p buffer, perhaps splitting lines according to \p split.
|
|
|
|
static void populate_subshell_output(wcstring_list_t *lst, const io_buffer_t &buffer, bool split) {
|
2018-05-30 04:11:50 +00:00
|
|
|
// Walk over all the elements.
|
2020-01-24 01:34:46 +00:00
|
|
|
for (const auto &elem : buffer.buffer().elements()) {
|
2018-05-30 04:11:50 +00:00
|
|
|
if (elem.is_explicitly_separated()) {
|
|
|
|
// Just append this one.
|
|
|
|
lst->push_back(str2wcstring(elem.contents));
|
|
|
|
continue;
|
|
|
|
}
|
2014-08-29 01:27:23 +00:00
|
|
|
|
2018-05-30 04:11:50 +00:00
|
|
|
// Not explicitly separated. We have to split it explicitly.
|
|
|
|
assert(!elem.is_explicitly_separated() && "should not be explicitly separated");
|
|
|
|
const char *begin = elem.contents.data();
|
|
|
|
const char *end = begin + elem.contents.size();
|
2020-01-24 01:34:46 +00:00
|
|
|
if (split) {
|
2018-05-30 04:11:50 +00:00
|
|
|
const char *cursor = begin;
|
|
|
|
while (cursor < end) {
|
|
|
|
// Look for the next separator.
|
2020-04-02 23:04:04 +00:00
|
|
|
auto stop = static_cast<const char *>(std::memchr(cursor, '\n', end - cursor));
|
2019-11-19 02:34:50 +00:00
|
|
|
const bool hit_separator = (stop != nullptr);
|
2018-05-30 04:11:50 +00:00
|
|
|
if (!hit_separator) {
|
|
|
|
// If it's not found, just use the end.
|
|
|
|
stop = end;
|
|
|
|
}
|
|
|
|
// Stop now points at the first character we do not want to copy.
|
|
|
|
lst->push_back(str2wcstring(cursor, stop - cursor));
|
2016-10-30 23:04:13 +00:00
|
|
|
|
2018-05-30 04:11:50 +00:00
|
|
|
// If we hit a separator, skip over it; otherwise we're at the end.
|
|
|
|
cursor = stop + (hit_separator ? 1 : 0);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// We're not splitting output, but we still want to trim off a trailing newline.
|
|
|
|
if (end != begin && end[-1] == '\n') {
|
|
|
|
--end;
|
|
|
|
}
|
|
|
|
lst->push_back(str2wcstring(begin, end - begin));
|
2012-11-18 10:23:22 +00:00
|
|
|
}
|
|
|
|
}
|
2005-09-20 13:26:39 +00:00
|
|
|
}
|
2012-02-08 07:35:41 +00:00
|
|
|
|
2020-01-24 01:34:46 +00:00
|
|
|
/// Execute \p cmd in a subshell in \p parser. If \p lst is not null, populate it with the output.
|
|
|
|
/// Return $status in \p out_status.
|
2020-03-11 18:06:52 +00:00
|
|
|
/// If \p parent_pgid is set, any spawned commands should join that pgroup.
|
2020-01-24 01:34:46 +00:00
|
|
|
/// If \p apply_exit_status is false, then reset $status back to its original value.
|
|
|
|
/// \p is_subcmd controls whether we apply a read limit.
|
|
|
|
/// \p break_expand is used to propagate whether the result should be "expansion breaking" in the
|
|
|
|
/// sense that subshells used during string expansion should halt that expansion. \return the value
|
|
|
|
/// of $status.
|
2020-03-11 18:06:52 +00:00
|
|
|
static int exec_subshell_internal(const wcstring &cmd, parser_t &parser, maybe_t<pid_t> parent_pgid,
|
|
|
|
wcstring_list_t *lst, bool *break_expand, bool apply_exit_status,
|
|
|
|
bool is_subcmd) {
|
2012-02-26 21:27:31 +00:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2020-01-24 01:34:46 +00:00
|
|
|
auto &ld = parser.libdata();
|
|
|
|
|
|
|
|
scoped_push<bool> is_subshell(&ld.is_subshell, true);
|
|
|
|
scoped_push<size_t> read_limit(&ld.read_limit, is_subcmd ? read_byte_limit : 0);
|
|
|
|
|
|
|
|
auto prev_statuses = parser.get_last_statuses();
|
|
|
|
const cleanup_t put_back([&] {
|
|
|
|
if (!apply_exit_status) {
|
|
|
|
parser.set_last_statuses(prev_statuses);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
const bool split_output = !parser.vars().get(L"IFS").missing_or_empty();
|
|
|
|
|
|
|
|
// IO buffer creation may fail (e.g. if we have too many open files to make a pipe), so this may
|
|
|
|
// be null.
|
|
|
|
auto bufferfill = io_bufferfill_t::create(fd_set_t{}, ld.read_limit);
|
|
|
|
if (!bufferfill) {
|
|
|
|
*break_expand = true;
|
|
|
|
return STATUS_CMD_ERROR;
|
|
|
|
}
|
2020-03-11 18:06:52 +00:00
|
|
|
eval_res_t eval_res =
|
|
|
|
parser.eval(cmd, io_chain_t{bufferfill}, parent_pgid, block_type_t::subst);
|
2020-01-24 01:34:46 +00:00
|
|
|
std::shared_ptr<io_buffer_t> buffer = io_bufferfill_t::finish(std::move(bufferfill));
|
|
|
|
if (buffer->buffer().discarded()) {
|
|
|
|
*break_expand = true;
|
|
|
|
return STATUS_READ_TOO_MUCH;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (eval_res.break_expand) {
|
|
|
|
*break_expand = true;
|
|
|
|
return eval_res.status.status_value();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (lst) {
|
|
|
|
populate_subshell_output(lst, *buffer, split_output);
|
|
|
|
}
|
|
|
|
*break_expand = false;
|
|
|
|
return eval_res.status.status_value();
|
2012-02-08 07:35:41 +00:00
|
|
|
}
|
|
|
|
|
2020-03-11 18:06:52 +00:00
|
|
|
int exec_subshell_for_expand(const wcstring &cmd, parser_t &parser, maybe_t<pid_t> parent_pgid,
|
|
|
|
wcstring_list_t &outputs) {
|
2012-02-26 21:27:31 +00:00
|
|
|
ASSERT_IS_MAIN_THREAD();
|
2020-01-24 01:34:46 +00:00
|
|
|
bool break_expand = false;
|
2020-03-11 18:06:52 +00:00
|
|
|
int ret = exec_subshell_internal(cmd, parser, parent_pgid, &outputs, &break_expand, true, true);
|
2020-01-24 01:34:46 +00:00
|
|
|
// Only return an error code if we should break expansion.
|
|
|
|
return break_expand ? ret : STATUS_CMD_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
int exec_subshell(const wcstring &cmd, parser_t &parser, bool apply_exit_status) {
|
|
|
|
bool break_expand = false;
|
2020-03-11 18:06:52 +00:00
|
|
|
return exec_subshell_internal(cmd, parser, none(), nullptr, &break_expand, apply_exit_status,
|
|
|
|
false);
|
2020-01-24 01:34:46 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int exec_subshell(const wcstring &cmd, parser_t &parser, wcstring_list_t &outputs,
|
|
|
|
bool apply_exit_status) {
|
|
|
|
bool break_expand = false;
|
2020-03-11 18:06:52 +00:00
|
|
|
return exec_subshell_internal(cmd, parser, none(), &outputs, &break_expand, apply_exit_status,
|
|
|
|
false);
|
2012-02-08 07:35:41 +00:00
|
|
|
}
|