fish-shell/src/io.cpp

358 lines
12 KiB
C++
Raw Normal View History

// Utilities for io redirection.
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include <cstring>
#include <cwchar>
#include "common.h"
#include "exec.h"
#include "fallback.h" // IWYU pragma: keep
#include "io.h"
2019-02-01 09:58:06 +00:00
#include "iothread.h"
#include "redirection.h"
#include "wutil.h" // IWYU pragma: keep
io_data_t::~io_data_t() = default;
void io_close_t::print() const { std::fwprintf(stderr, L"close %d\n", fd); }
2013-01-09 08:02:04 +00:00
void io_fd_t::print() const { std::fwprintf(stderr, L"FD map %d -> %d\n", old_fd, fd); }
2013-01-15 07:37:33 +00:00
void io_file_t::print() const { std::fwprintf(stderr, L"file (%s)\n", filename_cstr); }
2013-01-15 08:18:03 +00:00
void io_pipe_t::print() const {
std::fwprintf(stderr, L"pipe {%d} (input: %s)\n", pipe_fd(), is_input_ ? "yes" : "no");
}
void io_bufferfill_t::print() const { std::fwprintf(stderr, L"bufferfill {%d}\n", write_fd_.fd()); }
void io_buffer_t::append_from_stream(const output_stream_t &stream) {
if (stream.empty()) return;
2019-02-01 09:58:06 +00:00
scoped_lock locker(append_lock_);
if (buffer_.discarded()) return;
if (stream.buffer().discarded()) {
buffer_.set_discard();
return;
}
buffer_.append_wide_buffer(stream.buffer());
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::run_background_fillthread(autoclose_fd_t readfd) {
// Here we are running the background fillthread, executing in a background thread.
// Our plan is:
// 1. poll via select() until the fd is readable.
// 2. Acquire the append lock.
// 3. read until EAGAIN (would block), appending
// 4. release the lock
// The purpose of holding the lock around the read calls is to ensure that data from background
// processes isn't weirdly interspersed with data directly transferred (from a builtin to a
// buffer).
2019-02-01 09:58:06 +00:00
const int fd = readfd.fd();
// 100 msec poll rate. Note that in most cases, the write end of the pipe will be closed so
// select() will return; the polling is important only for weird cases like a background process
// launched in a command substitution.
const long poll_timeout_usec = 100000;
struct timeval tv = {};
tv.tv_usec = poll_timeout_usec;
bool shutdown = false;
while (!shutdown) {
bool readable = false;
// Poll if our fd is readable.
// Do this even if the shutdown flag is set. It's important we wait for the fd at least
// once. For short-lived processes, it's possible for the process to execute, produce output
// (fits in the pipe buffer) and be reaped before we are even scheduled. So always wait at
// least once on the fd. Note that doesn't mean we will wait for the full poll duration;
// typically what will happen is our pipe will be widowed and so this will return quickly.
// It's only for weird cases (e.g. a background process launched inside a command
// substitution) that we'll wait out the entire poll time.
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
int ret = select(fd + 1, &fds, NULL, NULL, &tv);
// select(2) is allowed to (and does) update `tv` to indicate how much time was left, so we
// need to restore the desired value each time.
tv.tv_usec = poll_timeout_usec;
2019-02-01 09:58:06 +00:00
readable = ret > 0;
if (ret < 0 && errno != EINTR) {
// Surprising error.
wperror(L"select");
return;
}
// Only check the shutdown flag if we timed out.
// It's important that if select() indicated we were readable, that we call select() again
// allowing it to time out. Note the typical case is that the fd will be closed, in which
// case select will return immediately.
if (!readable) {
2019-02-01 09:58:06 +00:00
shutdown = this->shutdown_fillthread_.load(std::memory_order_relaxed);
}
if (readable || shutdown) {
// Now either our fd is readable, or we have set the shutdown flag.
// Either way acquire the lock and read until we reach EOF, or EAGAIN / EINTR.
scoped_lock locker(append_lock_);
ssize_t ret;
do {
errno = 0;
char buff[4096];
2019-02-01 09:58:06 +00:00
ret = read(fd, buff, sizeof buff);
if (ret > 0) {
buffer_.append(&buff[0], &buff[ret]);
} else if (ret == 0) {
shutdown = true;
} else if (ret == -1 && errno == 0) {
// No specific error. We assume we just return,
// since that's what we do in read_blocked.
return;
2019-02-01 09:58:06 +00:00
} else if (errno != EINTR && errno != EAGAIN) {
wperror(L"read");
return;
}
} while (ret > 0);
}
}
2019-02-01 09:58:06 +00:00
assert(shutdown && "Should only exit loop if shutdown flag is set");
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::begin_background_fillthread(autoclose_fd_t fd) {
ASSERT_IS_MAIN_THREAD();
assert(!fillthread_ && "Already have a fillthread");
// We want our background thread to own the fd but it's not easy to move into a std::function.
// Use a shared_ptr.
auto fdref = move_to_sharedptr(std::move(fd));
2019-02-01 09:58:06 +00:00
// Our function to read until the receiver is closed.
// It's OK to capture 'this' by value because 'this' owns the background thread and joins it
// before dtor.
std::function<void(void)> func = [this, fdref]() {
this->run_background_fillthread(std::move(*fdref));
};
pthread_t fillthread{};
if (!make_pthread(&fillthread, std::move(func))) {
wperror(L"make_pthread");
}
2019-02-01 09:58:06 +00:00
fillthread_ = fillthread;
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::complete_background_fillthread() {
ASSERT_IS_MAIN_THREAD();
assert(fillthread_ && "Should have a fillthread");
shutdown_fillthread_.store(true, std::memory_order_relaxed);
void *ignored = nullptr;
int err = pthread_join(*fillthread_, &ignored);
DIE_ON_FAILURE(err);
fillthread_.reset();
}
shared_ptr<io_bufferfill_t> io_bufferfill_t::create(const io_chain_t &conflicts,
size_t buffer_limit) {
// Construct our pipes.
auto pipes = make_autoclose_pipes(conflicts);
if (!pipes) {
return nullptr;
}
// Our buffer will read from the read end of the pipe. This end must be non-blocking. This is
2019-02-01 09:58:06 +00:00
// because our fillthread needs to poll to decide if it should shut down, and also accept input
// from direct buffer transfers.
if (make_fd_nonblocking(pipes->read.fd())) {
debug(1, PIPE_ERROR);
wperror(L"fcntl");
return nullptr;
}
2019-02-01 09:58:06 +00:00
// Our fillthread gets the read end of the pipe; out_pipe gets the write end.
auto buffer = std::make_shared<io_buffer_t>(buffer_limit);
buffer->begin_background_fillthread(std::move(pipes->read));
return std::make_shared<io_bufferfill_t>(std::move(pipes->write), buffer);
2019-02-01 09:58:06 +00:00
}
2019-02-01 09:58:06 +00:00
std::shared_ptr<io_buffer_t> io_bufferfill_t::finish(std::shared_ptr<io_bufferfill_t> &&filler) {
// The io filler is passed in. This typically holds the only instance of the write side of the
// pipe used by the buffer's fillthread (except for that side held by other processes). Get the
// buffer out of the bufferfill and clear the shared_ptr; this will typically widow the pipe.
// Then allow the buffer to finish.
assert(filler && "Null pointer in finish");
auto buffer = filler->buffer();
filler.reset();
buffer->complete_background_fillthread();
return buffer;
}
io_pipe_t::~io_pipe_t() = default;
io_bufferfill_t::~io_bufferfill_t() = default;
2019-02-01 09:58:06 +00:00
io_buffer_t::~io_buffer_t() {
assert(!fillthread_ && "io_buffer_t destroyed with outstanding fillthread");
2019-02-01 09:58:06 +00:00
}
void io_chain_t::remove(const shared_ptr<const io_data_t> &element) {
// See if you can guess why std::find doesn't work here.
for (io_chain_t::iterator iter = this->begin(); iter != this->end(); ++iter) {
if (*iter == element) {
this->erase(iter);
break;
}
}
}
2019-02-01 02:49:52 +00:00
void io_chain_t::push_back(shared_ptr<io_data_t> element) {
// Ensure we never push back NULL.
2019-02-01 02:49:52 +00:00
assert(element.get() != nullptr);
std::vector<shared_ptr<io_data_t> >::push_back(std::move(element));
}
2019-02-01 02:49:52 +00:00
void io_chain_t::push_front(shared_ptr<io_data_t> element) {
assert(element.get() != nullptr);
this->insert(this->begin(), std::move(element));
}
void io_chain_t::append(const io_chain_t &chain) {
this->insert(this->end(), chain.begin(), chain.end());
}
#if 0
// This isn't used so the lint tools were complaining about its presence. I'm keeping it in the
// source because it could be useful for debugging.
void io_print(const io_chain_t &chain)
{
if (chain.empty())
{
std::fwprintf(stderr, L"Empty chain %p\n", &chain);
return;
}
std::fwprintf(stderr, L"Chain %p (%ld items):\n", &chain, (long)chain.size());
for (size_t i=0; i < chain.size(); i++)
{
const shared_ptr<io_data_t> &io = chain.at(i);
if (io.get() == NULL)
{
std::fwprintf(stderr, L"\t(null)\n");
}
else
{
std::fwprintf(stderr, L"\t%lu: fd:%d, ", (unsigned long)i, io->fd);
io->print();
}
}
}
#endif
int move_fd_to_unused(int fd, const io_chain_t &io_chain, bool cloexec) {
2016-10-31 04:18:59 +00:00
if (fd < 0 || io_chain.get_io_for_fd(fd).get() == NULL) {
return fd;
}
2016-10-31 04:18:59 +00:00
// We have fd >= 0, and it's a conflict. dup it and recurse. Note that we recurse before
// anything is closed; this forces the kernel to give us a new one (or report fd exhaustion).
int new_fd = fd;
int tmp_fd;
do {
tmp_fd = dup(fd);
} while (tmp_fd < 0 && errno == EINTR);
assert(tmp_fd != fd);
if (tmp_fd < 0) {
// Likely fd exhaustion.
new_fd = -1;
} else {
// Ok, we have a new candidate fd. Recurse. If we get a valid fd, either it's the same as
// what we gave it, or it's a new fd and what we gave it has been closed. If we get a
// negative value, the fd also has been closed.
if (cloexec) set_cloexec(tmp_fd);
2016-10-31 04:18:59 +00:00
new_fd = move_fd_to_unused(tmp_fd, io_chain);
}
2016-10-31 04:18:59 +00:00
// We're either returning a new fd or an error. In both cases, we promise to close the old one.
assert(new_fd != fd);
int saved_errno = errno;
exec_close(fd);
errno = saved_errno;
return new_fd;
}
static bool pipe_avoid_conflicts_with_io_chain(int fds[2], const io_chain_t &ios) {
bool success = true;
for (int i = 0; i < 2; i++) {
fds[i] = move_fd_to_unused(fds[i], ios);
if (fds[i] < 0) {
success = false;
break;
}
}
// If any fd failed, close all valid fds.
if (!success) {
int saved_errno = errno;
for (int i = 0; i < 2; i++) {
if (fds[i] >= 0) {
exec_close(fds[i]);
fds[i] = -1;
}
}
errno = saved_errno;
}
return success;
}
maybe_t<autoclose_pipes_t> make_autoclose_pipes(const io_chain_t &ios) {
int pipes[2] = {-1, -1};
if (pipe(pipes) < 0) {
debug(1, PIPE_ERROR);
wperror(L"pipe");
return none();
}
set_cloexec(pipes[0]);
set_cloexec(pipes[1]);
if (!pipe_avoid_conflicts_with_io_chain(pipes, ios)) {
// The pipes are closed on failure here.
return none();
}
autoclose_pipes_t result;
result.read = autoclose_fd_t(pipes[0]);
result.write = autoclose_fd_t(pipes[1]);
return {std::move(result)};
}
/// Return the last IO for the given fd.
shared_ptr<const io_data_t> io_chain_t::get_io_for_fd(int fd) const {
size_t idx = this->size();
while (idx--) {
const shared_ptr<io_data_t> &data = this->at(idx);
if (data->fd == fd) {
return data;
}
}
return shared_ptr<const io_data_t>();
}
shared_ptr<io_data_t> io_chain_t::get_io_for_fd(int fd) {
size_t idx = this->size();
while (idx--) {
const shared_ptr<io_data_t> &data = this->at(idx);
if (data->fd == fd) {
return data;
}
}
return shared_ptr<io_data_t>();
}
/// The old function returned the last match, so we mimic that.
shared_ptr<const io_data_t> io_chain_get(const io_chain_t &src, int fd) {
return src.get_io_for_fd(fd);
}
shared_ptr<io_data_t> io_chain_get(io_chain_t &src, int fd) { return src.get_io_for_fd(fd); }