mirror of
https://github.com/DioxusLabs/dioxus
synced 2024-12-20 17:43:49 +00:00
1128 lines
44 KiB
Rust
1128 lines
44 KiB
Rust
#![warn(clippy::pedantic)]
|
|
#![allow(clippy::cast_possible_truncation)]
|
|
|
|
//! This module contains the stateful [`DiffState`] and all methods to diff [`VNode`]s, their properties, and their children.
|
|
//!
|
|
//! The [`DiffState`] calculates the diffs between the old and new frames, updates the new nodes, and generates a set
|
|
//! of mutations for the renderer to apply.
|
|
//!
|
|
//! ## Notice:
|
|
//!
|
|
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
|
|
//! Components, Fragments, Suspense, `SubTree` memoization, incremental diffing, cancellation, pausing, priority
|
|
//! scheduling, and additional batching operations.
|
|
//!
|
|
//! ## Implementation Details:
|
|
//!
|
|
//! ### IDs for elements
|
|
//! --------------------
|
|
//! All nodes are addressed by their IDs.
|
|
//! We don't necessarily require that DOM changes happen instantly during the diffing process, so the implementor may choose
|
|
//! to batch nodes if it is more performant for their application. The element IDs are indices into the internal element
|
|
//! array. The expectation is that implementors will use the ID as an index into a Vec of real nodes, allowing for passive
|
|
//! garbage collection as the [`crate::VirtualDom`] replaces old nodes.
|
|
//!
|
|
//! When new vnodes are created through `cx.render`, they won't know which real node they correspond to. During diffing,
|
|
//! we always make sure to copy over the ID. If we don't do this properly, the [`ElementId`] will be populated incorrectly
|
|
//! and brick the user's page.
|
|
//!
|
|
//! ### Fragment Support
|
|
//! --------------------
|
|
//! Fragments (nodes without a parent) are supported through a combination of "replace with" and anchor vnodes. Fragments
|
|
//! can be particularly challenging when they are empty, so the anchor node lets us "reserve" a spot for the empty
|
|
//! fragment to be replaced with when it is no longer empty. This is guaranteed by logic in the [`crate::innerlude::NodeFactory`] - it is
|
|
//! impossible to craft a fragment with 0 elements - they must always have at least a single placeholder element. Adding
|
|
//! "dummy" nodes _is_ inefficient, but it makes our diffing algorithm faster and the implementation is completely up to
|
|
//! the platform.
|
|
//!
|
|
//! Other implementations either don't support fragments or use a "child + sibling" pattern to represent them. Our code is
|
|
//! vastly simpler and more performant when we can just create a placeholder element while the fragment has no children.
|
|
//!
|
|
//! ### Suspense
|
|
//! ------------
|
|
//! Dioxus implements Suspense slightly differently than React. In React, each fiber is manually progressed until it runs
|
|
//! into a promise-like value. React will then work on the next "ready" fiber, checking back on the previous fiber once
|
|
//! it has finished its new work. In Dioxus, we use a similar approach, but try to completely render the tree before
|
|
//! switching sub-fibers. Instead, each future is submitted into a futures-queue and the node is manually loaded later on.
|
|
//! Due to the frequent calls to [`crate::virtual_dom::VirtualDom::work_with_deadline`] we can get the pure "fetch-as-you-render" behavior of React Fiber.
|
|
//!
|
|
//! We're able to use this approach because we use placeholder nodes - futures that aren't ready still get submitted to
|
|
//! DOM, but as a placeholder.
|
|
//!
|
|
//! Right now, the "suspense" queue is intertwined with hooks. In the future, we should allow any future to drive attributes
|
|
//! and contents, without the need for a `use_suspense` hook. In the interim, this is the quickest way to get Suspense working.
|
|
//!
|
|
//! ## Subtree Memoization
|
|
//! -----------------------
|
|
//! We also employ "subtree memoization" which saves us from having to check trees which hold no dynamic content. We can
|
|
//! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the
|
|
//! calls to "create" propagate this information upwards. Structures like the one below are entirely static:
|
|
//! ```rust, ignore
|
|
//! rsx!( div { class: "hello world", "this node is entirely static" } )
|
|
//! ```
|
|
//! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so it's up to the reconciler to
|
|
//! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP and depends on comp-time
|
|
//! hashing of the subtree from the rsx! macro. We do a very limited form of static analysis via static string pointers as
|
|
//! a way of short-circuiting the most expensive checks.
|
|
//!
|
|
//! ## Bloom Filter and Heuristics
|
|
//! ------------------------------
|
|
//! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are
|
|
//! currently very rough, but will get better as time goes on. The information currently tracked includes the size of a
|
|
//! bump arena after first render, the number of hooks, and the number of nodes in the tree.
|
|
//!
|
|
//! ## Garbage Collection
|
|
//! ---------------------
|
|
//! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garbage
|
|
//! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then
|
|
//! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient.
|
|
//!
|
|
//! The IDs used by the key/map are just an index into a Vec. This means that Dioxus will drive the key allocation strategy
|
|
//! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes
|
|
//! for the client. As new nodes are created, old nodes will be over-written.
|
|
//!
|
|
//! ## Further Reading and Thoughts
|
|
//! ----------------------------
|
|
//! There are more ways of increasing diff performance here that are currently not implemented.
|
|
//! - Strong memoization of subtrees.
|
|
//! - Guided diffing.
|
|
//! - Certain web-dom-specific optimizations.
|
|
//!
|
|
//! More info on how to improve this diffing algorithm:
|
|
//! - <https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/>
|
|
|
|
use crate::innerlude::{
|
|
AnyProps, ElementId, Mutations, ScopeArena, ScopeId, VComponent, VElement, VFragment, VNode,
|
|
VPlaceholder, VText,
|
|
};
|
|
use fxhash::{FxHashMap, FxHashSet};
|
|
use smallvec::{smallvec, SmallVec};
|
|
|
|
pub(crate) struct DiffState<'bump> {
|
|
pub(crate) scopes: &'bump ScopeArena,
|
|
pub(crate) mutations: Mutations<'bump>,
|
|
pub(crate) force_diff: bool,
|
|
pub(crate) element_stack: SmallVec<[ElementId; 10]>,
|
|
pub(crate) scope_stack: SmallVec<[ScopeId; 5]>,
|
|
}
|
|
|
|
impl<'b> DiffState<'b> {
|
|
pub fn new(scopes: &'b ScopeArena) -> Self {
|
|
Self {
|
|
scopes,
|
|
mutations: Mutations::new(),
|
|
force_diff: false,
|
|
element_stack: smallvec![],
|
|
scope_stack: smallvec![],
|
|
}
|
|
}
|
|
|
|
pub fn diff_scope(&mut self, scopeid: ScopeId) {
|
|
let (old, new) = (self.scopes.wip_head(scopeid), self.scopes.fin_head(scopeid));
|
|
let scope = self.scopes.get_scope(scopeid).unwrap();
|
|
|
|
self.scope_stack.push(scopeid);
|
|
self.element_stack.push(scope.container);
|
|
{
|
|
self.diff_node(old, new);
|
|
}
|
|
self.element_stack.pop();
|
|
self.scope_stack.pop();
|
|
|
|
self.mutations.mark_dirty_scope(scopeid);
|
|
}
|
|
|
|
pub fn diff_node(&mut self, old_node: &'b VNode<'b>, new_node: &'b VNode<'b>) {
|
|
use VNode::{Component, Element, Fragment, Placeholder, Text};
|
|
match (old_node, new_node) {
|
|
(Text(old), Text(new)) => {
|
|
self.diff_text_nodes(old, new, old_node, new_node);
|
|
}
|
|
|
|
(Placeholder(old), Placeholder(new)) => {
|
|
self.diff_placeholder_nodes(old, new, old_node, new_node);
|
|
}
|
|
|
|
(Element(old), Element(new)) => {
|
|
self.diff_element_nodes(old, new, old_node, new_node);
|
|
}
|
|
|
|
(Component(old), Component(new)) => {
|
|
self.diff_component_nodes(old_node, new_node, *old, *new);
|
|
}
|
|
|
|
(Fragment(old), Fragment(new)) => {
|
|
self.diff_fragment_nodes(old, new);
|
|
}
|
|
|
|
(
|
|
Component(_) | Fragment(_) | Text(_) | Element(_) | Placeholder(_),
|
|
Component(_) | Fragment(_) | Text(_) | Element(_) | Placeholder(_),
|
|
) => self.replace_node(old_node, new_node),
|
|
}
|
|
}
|
|
|
|
pub fn create_node(&mut self, node: &'b VNode<'b>) -> usize {
|
|
match node {
|
|
VNode::Text(vtext) => self.create_text_node(vtext, node),
|
|
VNode::Placeholder(anchor) => self.create_anchor_node(anchor, node),
|
|
VNode::Element(element) => self.create_element_node(element, node),
|
|
VNode::Fragment(frag) => self.create_fragment_node(frag),
|
|
VNode::Component(component) => self.create_component_node(*component),
|
|
}
|
|
}
|
|
|
|
fn create_text_node(&mut self, text: &'b VText<'b>, node: &'b VNode<'b>) -> usize {
|
|
let real_id = self.scopes.reserve_node(node);
|
|
text.id.set(Some(real_id));
|
|
self.mutations.create_text_node(text.text, real_id);
|
|
1
|
|
}
|
|
|
|
fn create_anchor_node(&mut self, anchor: &'b VPlaceholder, node: &'b VNode<'b>) -> usize {
|
|
let real_id = self.scopes.reserve_node(node);
|
|
anchor.id.set(Some(real_id));
|
|
self.mutations.create_placeholder(real_id);
|
|
1
|
|
}
|
|
|
|
fn create_element_node(&mut self, element: &'b VElement<'b>, node: &'b VNode<'b>) -> usize {
|
|
let VElement {
|
|
tag: tag_name,
|
|
listeners,
|
|
attributes,
|
|
children,
|
|
namespace,
|
|
id: dom_id,
|
|
parent: parent_id,
|
|
..
|
|
} = &element;
|
|
|
|
parent_id.set(self.element_stack.last().copied());
|
|
|
|
let real_id = self.scopes.reserve_node(node);
|
|
|
|
dom_id.set(Some(real_id));
|
|
|
|
self.element_stack.push(real_id);
|
|
{
|
|
self.mutations.create_element(tag_name, *namespace, real_id);
|
|
|
|
let cur_scope_id = self.current_scope();
|
|
|
|
for listener in listeners.iter() {
|
|
listener.mounted_node.set(Some(real_id));
|
|
self.mutations.new_event_listener(listener, cur_scope_id);
|
|
}
|
|
|
|
for attr in attributes.iter() {
|
|
self.mutations.set_attribute(attr, real_id.as_u64());
|
|
}
|
|
|
|
if !children.is_empty() {
|
|
self.create_and_append_children(children);
|
|
}
|
|
}
|
|
self.element_stack.pop();
|
|
|
|
1
|
|
}
|
|
|
|
fn create_fragment_node(&mut self, frag: &'b VFragment<'b>) -> usize {
|
|
self.create_children(frag.children)
|
|
}
|
|
|
|
fn create_component_node(&mut self, vcomponent: &'b VComponent<'b>) -> usize {
|
|
let parent_idx = self.current_scope();
|
|
|
|
// the component might already exist - if it does, we need to reuse it
|
|
// this makes figure out when to drop the component more complicated
|
|
let new_idx = if let Some(idx) = vcomponent.scope.get() {
|
|
assert!(self.scopes.get_scope(idx).is_some());
|
|
idx
|
|
} else {
|
|
// Insert a new scope into our component list
|
|
let props: Box<dyn AnyProps + 'b> = vcomponent.props.borrow_mut().take().unwrap();
|
|
let props: Box<dyn AnyProps + 'static> = unsafe { std::mem::transmute(props) };
|
|
self.scopes.new_with_key(
|
|
vcomponent.user_fc,
|
|
props,
|
|
Some(parent_idx),
|
|
self.element_stack.last().copied().unwrap(),
|
|
0,
|
|
)
|
|
};
|
|
|
|
// Actually initialize the caller's slot with the right address
|
|
vcomponent.scope.set(Some(new_idx));
|
|
|
|
log::trace!(
|
|
"created component \"{}\", id: {:?} parent {:?}",
|
|
vcomponent.fn_name,
|
|
new_idx,
|
|
parent_idx,
|
|
);
|
|
|
|
// if vcomponent.can_memoize {
|
|
// // todo: implement promotion logic. save us from boxing props that we don't need
|
|
// } else {
|
|
// // track this component internally so we know the right drop order
|
|
// }
|
|
|
|
self.enter_scope(new_idx);
|
|
|
|
let created = {
|
|
// Run the scope for one iteration to initialize it
|
|
self.scopes.run_scope(new_idx);
|
|
self.mutations.mark_dirty_scope(new_idx);
|
|
|
|
// Take the node that was just generated from running the component
|
|
let nextnode = self.scopes.fin_head(new_idx);
|
|
self.create_node(nextnode)
|
|
};
|
|
|
|
self.leave_scope();
|
|
|
|
created
|
|
}
|
|
|
|
pub(crate) fn diff_text_nodes(
|
|
&mut self,
|
|
old: &'b VText<'b>,
|
|
new: &'b VText<'b>,
|
|
_old_node: &'b VNode<'b>,
|
|
new_node: &'b VNode<'b>,
|
|
) {
|
|
if std::ptr::eq(old, new) {
|
|
return;
|
|
}
|
|
|
|
// if the node is comming back not assigned, that means it was borrowed but removed
|
|
let root = match old.id.get() {
|
|
Some(id) => id,
|
|
None => self.scopes.reserve_node(new_node),
|
|
};
|
|
|
|
if old.text != new.text {
|
|
self.mutations.set_text(new.text, root.as_u64());
|
|
}
|
|
|
|
self.scopes.update_node(new_node, root);
|
|
|
|
new.id.set(Some(root));
|
|
}
|
|
|
|
pub(crate) fn diff_placeholder_nodes(
|
|
&mut self,
|
|
old: &'b VPlaceholder,
|
|
new: &'b VPlaceholder,
|
|
_old_node: &'b VNode<'b>,
|
|
new_node: &'b VNode<'b>,
|
|
) {
|
|
if std::ptr::eq(old, new) {
|
|
return;
|
|
}
|
|
|
|
// if the node is comming back not assigned, that means it was borrowed but removed
|
|
let root = match old.id.get() {
|
|
Some(id) => id,
|
|
None => self.scopes.reserve_node(new_node),
|
|
};
|
|
|
|
self.scopes.update_node(new_node, root);
|
|
new.id.set(Some(root));
|
|
}
|
|
|
|
fn diff_element_nodes(
|
|
&mut self,
|
|
old: &'b VElement<'b>,
|
|
new: &'b VElement<'b>,
|
|
old_node: &'b VNode<'b>,
|
|
new_node: &'b VNode<'b>,
|
|
) {
|
|
if std::ptr::eq(old, new) {
|
|
return;
|
|
}
|
|
|
|
// if the node is comming back not assigned, that means it was borrowed but removed
|
|
let root = match old.id.get() {
|
|
Some(id) => id,
|
|
None => self.scopes.reserve_node(new_node),
|
|
};
|
|
|
|
// If the element type is completely different, the element needs to be re-rendered completely
|
|
// This is an optimization React makes due to how users structure their code
|
|
//
|
|
// This case is rather rare (typically only in non-keyed lists)
|
|
if new.tag != old.tag || new.namespace != old.namespace {
|
|
self.replace_node(old_node, new_node);
|
|
return;
|
|
}
|
|
|
|
self.scopes.update_node(new_node, root);
|
|
|
|
new.id.set(Some(root));
|
|
new.parent.set(old.parent.get());
|
|
|
|
// todo: attributes currently rely on the element on top of the stack, but in theory, we only need the id of the
|
|
// element to modify its attributes.
|
|
// it would result in fewer instructions if we just set the id directly.
|
|
// it would also clean up this code some, but that's not very important anyways
|
|
|
|
// Diff Attributes
|
|
//
|
|
// It's extraordinarily rare to have the number/order of attributes change
|
|
// In these cases, we just completely erase the old set and make a new set
|
|
//
|
|
// TODO: take a more efficient path than this
|
|
if old.attributes.len() == new.attributes.len() {
|
|
for (old_attr, new_attr) in old.attributes.iter().zip(new.attributes.iter()) {
|
|
if old_attr.value != new_attr.value || new_attr.is_volatile {
|
|
self.mutations.set_attribute(new_attr, root.as_u64());
|
|
}
|
|
}
|
|
} else {
|
|
for attribute in old.attributes {
|
|
self.mutations.remove_attribute(attribute, root.as_u64());
|
|
}
|
|
for attribute in new.attributes {
|
|
self.mutations.set_attribute(attribute, root.as_u64());
|
|
}
|
|
}
|
|
|
|
// Diff listeners
|
|
//
|
|
// It's extraordinarily rare to have the number/order of listeners change
|
|
// In the cases where the listeners change, we completely wipe the data attributes and add new ones
|
|
//
|
|
// We also need to make sure that all listeners are properly attached to the parent scope (fix_listener)
|
|
//
|
|
// TODO: take a more efficient path than this
|
|
let cur_scope_id = self.current_scope();
|
|
|
|
if old.listeners.len() == new.listeners.len() {
|
|
for (old_l, new_l) in old.listeners.iter().zip(new.listeners.iter()) {
|
|
new_l.mounted_node.set(old_l.mounted_node.get());
|
|
if old_l.event != new_l.event {
|
|
self.mutations
|
|
.remove_event_listener(old_l.event, root.as_u64());
|
|
self.mutations.new_event_listener(new_l, cur_scope_id);
|
|
}
|
|
}
|
|
} else {
|
|
for listener in old.listeners {
|
|
self.mutations
|
|
.remove_event_listener(listener.event, root.as_u64());
|
|
}
|
|
for listener in new.listeners {
|
|
listener.mounted_node.set(Some(root));
|
|
self.mutations.new_event_listener(listener, cur_scope_id);
|
|
}
|
|
}
|
|
|
|
match (old.children.len(), new.children.len()) {
|
|
(0, 0) => {}
|
|
(0, _) => {
|
|
self.mutations.push_root(root);
|
|
let created = self.create_children(new.children);
|
|
self.mutations.append_children(created as u32);
|
|
self.mutations.pop_root();
|
|
}
|
|
(_, _) => self.diff_children(old.children, new.children),
|
|
};
|
|
}
|
|
|
|
fn diff_component_nodes(
|
|
&mut self,
|
|
old_node: &'b VNode<'b>,
|
|
new_node: &'b VNode<'b>,
|
|
old: &'b VComponent<'b>,
|
|
new: &'b VComponent<'b>,
|
|
) {
|
|
let scope_addr = old
|
|
.scope
|
|
.get()
|
|
.expect("existing component nodes should have a scope");
|
|
|
|
if std::ptr::eq(old, new) {
|
|
return;
|
|
}
|
|
|
|
// Make sure we're dealing with the same component (by function pointer)
|
|
if old.user_fc == new.user_fc {
|
|
self.enter_scope(scope_addr);
|
|
{
|
|
// Make sure the new component vnode is referencing the right scope id
|
|
new.scope.set(Some(scope_addr));
|
|
|
|
// make sure the component's caller function is up to date
|
|
let scope = self
|
|
.scopes
|
|
.get_scope(scope_addr)
|
|
.unwrap_or_else(|| panic!("could not find {:?}", scope_addr));
|
|
|
|
// take the new props out regardless
|
|
// when memoizing, push to the existing scope if memoization happens
|
|
let new_props = new
|
|
.props
|
|
.borrow_mut()
|
|
.take()
|
|
.expect("new component props should exist");
|
|
|
|
let should_diff = {
|
|
if old.can_memoize {
|
|
// safety: we trust the implementation of "memoize"
|
|
let props_are_the_same = unsafe {
|
|
let new_ref = new_props.as_ref();
|
|
scope.props.borrow().as_ref().unwrap().memoize(new_ref)
|
|
};
|
|
!props_are_the_same || self.force_diff
|
|
} else {
|
|
true
|
|
}
|
|
};
|
|
|
|
if should_diff {
|
|
let _old_props = scope
|
|
.props
|
|
.replace(unsafe { std::mem::transmute(Some(new_props)) });
|
|
|
|
// this should auto drop the previous props
|
|
self.scopes.run_scope(scope_addr);
|
|
self.mutations.mark_dirty_scope(scope_addr);
|
|
|
|
self.diff_node(
|
|
self.scopes.wip_head(scope_addr),
|
|
self.scopes.fin_head(scope_addr),
|
|
);
|
|
} else {
|
|
// memoization has taken place
|
|
drop(new_props);
|
|
};
|
|
}
|
|
self.leave_scope();
|
|
} else {
|
|
self.replace_node(old_node, new_node);
|
|
}
|
|
}
|
|
|
|
fn diff_fragment_nodes(&mut self, old: &'b VFragment<'b>, new: &'b VFragment<'b>) {
|
|
if std::ptr::eq(old, new) {
|
|
return;
|
|
}
|
|
|
|
// This is the case where options or direct vnodes might be used.
|
|
// In this case, it's faster to just skip ahead to their diff
|
|
if old.children.len() == 1 && new.children.len() == 1 {
|
|
if !std::ptr::eq(old, new) {
|
|
self.diff_node(&old.children[0], &new.children[0]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
debug_assert!(!old.children.is_empty());
|
|
debug_assert!(!new.children.is_empty());
|
|
|
|
self.diff_children(old.children, new.children);
|
|
}
|
|
|
|
// Diff the given set of old and new children.
|
|
//
|
|
// The parent must be on top of the change list stack when this function is
|
|
// entered:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// the change list stack is in the same state when this function returns.
|
|
//
|
|
// If old no anchors are provided, then it's assumed that we can freely append to the parent.
|
|
//
|
|
// Remember, non-empty lists does not mean that there are real elements, just that there are virtual elements.
|
|
//
|
|
// Fragment nodes cannot generate empty children lists, so we can assume that when a list is empty, it belongs only
|
|
// to an element, and appending makes sense.
|
|
fn diff_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
|
|
if std::ptr::eq(old, new) {
|
|
return;
|
|
}
|
|
|
|
// Remember, fragments can never be empty (they always have a single child)
|
|
match (old, new) {
|
|
([], []) => {}
|
|
([], _) => self.create_and_append_children(new),
|
|
(_, []) => self.remove_nodes(old, true),
|
|
_ => {
|
|
let new_is_keyed = new[0].key().is_some();
|
|
let old_is_keyed = old[0].key().is_some();
|
|
|
|
debug_assert!(
|
|
new.iter().all(|n| n.key().is_some() == new_is_keyed),
|
|
"all siblings must be keyed or all siblings must be non-keyed"
|
|
);
|
|
debug_assert!(
|
|
old.iter().all(|o| o.key().is_some() == old_is_keyed),
|
|
"all siblings must be keyed or all siblings must be non-keyed"
|
|
);
|
|
|
|
if new_is_keyed && old_is_keyed {
|
|
self.diff_keyed_children(old, new);
|
|
} else {
|
|
self.diff_non_keyed_children(old, new);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Diff children that are not keyed.
|
|
//
|
|
// The parent must be on the top of the change list stack when entering this
|
|
// function:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// the change list stack is in the same state when this function returns.
|
|
fn diff_non_keyed_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
|
|
use std::cmp::Ordering;
|
|
|
|
// Handled these cases in `diff_children` before calling this function.
|
|
debug_assert!(!new.is_empty());
|
|
debug_assert!(!old.is_empty());
|
|
|
|
match old.len().cmp(&new.len()) {
|
|
Ordering::Greater => self.remove_nodes(&old[new.len()..], true),
|
|
Ordering::Less => self.create_and_insert_after(&new[old.len()..], old.last().unwrap()),
|
|
Ordering::Equal => {}
|
|
}
|
|
|
|
for (new, old) in new.iter().zip(old.iter()) {
|
|
self.diff_node(old, new);
|
|
}
|
|
}
|
|
|
|
// Diffing "keyed" children.
|
|
//
|
|
// With keyed children, we care about whether we delete, move, or create nodes
|
|
// versus mutate existing nodes in place. Presumably there is some sort of CSS
|
|
// transition animation that makes the virtual DOM diffing algorithm
|
|
// observable. By specifying keys for nodes, we know which virtual DOM nodes
|
|
// must reuse (or not reuse) the same physical DOM nodes.
|
|
//
|
|
// This is loosely based on Inferno's keyed patching implementation. However, we
|
|
// have to modify the algorithm since we are compiling the diff down into change
|
|
// list instructions that will be executed later, rather than applying the
|
|
// changes to the DOM directly as we compare virtual DOMs.
|
|
//
|
|
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
|
|
//
|
|
// The stack is empty upon entry.
|
|
fn diff_keyed_children(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
|
|
if cfg!(debug_assertions) {
|
|
let mut keys = fxhash::FxHashSet::default();
|
|
let mut assert_unique_keys = |children: &'b [VNode<'b>]| {
|
|
keys.clear();
|
|
for child in children {
|
|
let key = child.key();
|
|
debug_assert!(
|
|
key.is_some(),
|
|
"if any sibling is keyed, all siblings must be keyed"
|
|
);
|
|
keys.insert(key);
|
|
}
|
|
debug_assert_eq!(
|
|
children.len(),
|
|
keys.len(),
|
|
"keyed siblings must each have a unique key"
|
|
);
|
|
};
|
|
assert_unique_keys(old);
|
|
assert_unique_keys(new);
|
|
}
|
|
|
|
// First up, we diff all the nodes with the same key at the beginning of the
|
|
// children.
|
|
//
|
|
// `shared_prefix_count` is the count of how many nodes at the start of
|
|
// `new` and `old` share the same keys.
|
|
let (left_offset, right_offset) = match self.diff_keyed_ends(old, new) {
|
|
Some(count) => count,
|
|
None => return,
|
|
};
|
|
|
|
// Ok, we now hopefully have a smaller range of children in the middle
|
|
// within which to re-order nodes with the same keys, remove old nodes with
|
|
// now-unused keys, and create new nodes with fresh keys.
|
|
|
|
let old_middle = &old[left_offset..(old.len() - right_offset)];
|
|
let new_middle = &new[left_offset..(new.len() - right_offset)];
|
|
|
|
debug_assert!(
|
|
!((old_middle.len() == new_middle.len()) && old_middle.is_empty()),
|
|
"keyed children must have the same number of children"
|
|
);
|
|
|
|
if new_middle.is_empty() {
|
|
// remove the old elements
|
|
self.remove_nodes(old_middle, true);
|
|
} else if old_middle.is_empty() {
|
|
// there were no old elements, so just create the new elements
|
|
// we need to find the right "foothold" though - we shouldn't use the "append" at all
|
|
if left_offset == 0 {
|
|
// insert at the beginning of the old list
|
|
let foothold = &old[old.len() - right_offset];
|
|
self.create_and_insert_before(new_middle, foothold);
|
|
} else if right_offset == 0 {
|
|
// insert at the end the old list
|
|
let foothold = old.last().unwrap();
|
|
self.create_and_insert_after(new_middle, foothold);
|
|
} else {
|
|
// inserting in the middle
|
|
let foothold = &old[left_offset - 1];
|
|
self.create_and_insert_after(new_middle, foothold);
|
|
}
|
|
} else {
|
|
self.diff_keyed_middle(old_middle, new_middle);
|
|
}
|
|
}
|
|
|
|
/// Diff both ends of the children that share keys.
|
|
///
|
|
/// Returns a left offset and right offset of that indicates a smaller section to pass onto the middle diffing.
|
|
///
|
|
/// If there is no offset, then this function returns None and the diffing is complete.
|
|
fn diff_keyed_ends(
|
|
&mut self,
|
|
old: &'b [VNode<'b>],
|
|
new: &'b [VNode<'b>],
|
|
) -> Option<(usize, usize)> {
|
|
let mut left_offset = 0;
|
|
|
|
for (old, new) in old.iter().zip(new.iter()) {
|
|
// abort early if we finally run into nodes with different keys
|
|
if old.key() != new.key() {
|
|
break;
|
|
}
|
|
self.diff_node(old, new);
|
|
left_offset += 1;
|
|
}
|
|
|
|
// If that was all of the old children, then create and append the remaining
|
|
// new children and we're finished.
|
|
if left_offset == old.len() {
|
|
self.create_and_insert_after(&new[left_offset..], old.last().unwrap());
|
|
return None;
|
|
}
|
|
|
|
// And if that was all of the new children, then remove all of the remaining
|
|
// old children and we're finished.
|
|
if left_offset == new.len() {
|
|
self.remove_nodes(&old[left_offset..], true);
|
|
return None;
|
|
}
|
|
|
|
// if the shared prefix is less than either length, then we need to walk backwards
|
|
let mut right_offset = 0;
|
|
for (old, new) in old.iter().rev().zip(new.iter().rev()) {
|
|
// abort early if we finally run into nodes with different keys
|
|
if old.key() != new.key() {
|
|
break;
|
|
}
|
|
self.diff_node(old, new);
|
|
right_offset += 1;
|
|
}
|
|
|
|
Some((left_offset, right_offset))
|
|
}
|
|
|
|
// The most-general, expensive code path for keyed children diffing.
|
|
//
|
|
// We find the longest subsequence within `old` of children that are relatively
|
|
// ordered the same way in `new` (via finding a longest-increasing-subsequence
|
|
// of the old child's index within `new`). The children that are elements of
|
|
// this subsequence will remain in place, minimizing the number of DOM moves we
|
|
// will have to do.
|
|
//
|
|
// Upon entry to this function, the change list stack must be empty.
|
|
//
|
|
// This function will load the appropriate nodes onto the stack and do diffing in place.
|
|
//
|
|
// Upon exit from this function, it will be restored to that same self.
|
|
#[allow(clippy::too_many_lines)]
|
|
fn diff_keyed_middle(&mut self, old: &'b [VNode<'b>], new: &'b [VNode<'b>]) {
|
|
/*
|
|
1. Map the old keys into a numerical ordering based on indices.
|
|
2. Create a map of old key to its index
|
|
3. Map each new key to the old key, carrying over the old index.
|
|
- IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
|
|
- if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist
|
|
|
|
now, we should have a list of integers that indicates where in the old list the new items map to.
|
|
|
|
4. Compute the LIS of this list
|
|
- this indicates the longest list of new children that won't need to be moved.
|
|
|
|
5. Identify which nodes need to be removed
|
|
6. Identify which nodes will need to be diffed
|
|
|
|
7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
|
|
- if the item already existed, just move it to the right place.
|
|
|
|
8. Finally, generate instructions to remove any old children.
|
|
9. Generate instructions to finally diff children that are the same between both
|
|
*/
|
|
|
|
// 0. Debug sanity checks
|
|
// Should have already diffed the shared-key prefixes and suffixes.
|
|
debug_assert_ne!(new.first().map(VNode::key), old.first().map(VNode::key));
|
|
debug_assert_ne!(new.last().map(VNode::key), old.last().map(VNode::key));
|
|
|
|
// 1. Map the old keys into a numerical ordering based on indices.
|
|
// 2. Create a map of old key to its index
|
|
// IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
|
|
let old_key_to_old_index = old
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, o)| (o.key().unwrap(), i))
|
|
.collect::<FxHashMap<_, _>>();
|
|
|
|
let mut shared_keys = FxHashSet::default();
|
|
|
|
// 3. Map each new key to the old key, carrying over the old index.
|
|
let new_index_to_old_index = new
|
|
.iter()
|
|
.map(|node| {
|
|
let key = node.key().unwrap();
|
|
if let Some(&index) = old_key_to_old_index.get(&key) {
|
|
shared_keys.insert(key);
|
|
index
|
|
} else {
|
|
u32::MAX as usize
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// If none of the old keys are reused by the new children, then we remove all the remaining old children and
|
|
// create the new children afresh.
|
|
if shared_keys.is_empty() {
|
|
if let Some(first_old) = old.get(0) {
|
|
self.remove_nodes(&old[1..], true);
|
|
let nodes_created = self.create_children(new);
|
|
self.replace_inner(first_old, nodes_created);
|
|
} else {
|
|
// I think this is wrong - why are we appending?
|
|
// only valid of the if there are no trailing elements
|
|
self.create_and_append_children(new);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// remove any old children that are not shared
|
|
// todo: make this an iterator
|
|
for child in old {
|
|
let key = child.key().unwrap();
|
|
if !shared_keys.contains(&key) {
|
|
self.remove_nodes([child], true);
|
|
}
|
|
}
|
|
|
|
// 4. Compute the LIS of this list
|
|
let mut lis_sequence = Vec::default();
|
|
lis_sequence.reserve(new_index_to_old_index.len());
|
|
|
|
let mut predecessors = vec![0; new_index_to_old_index.len()];
|
|
let mut starts = vec![0; new_index_to_old_index.len()];
|
|
|
|
longest_increasing_subsequence::lis_with(
|
|
&new_index_to_old_index,
|
|
&mut lis_sequence,
|
|
|a, b| a < b,
|
|
&mut predecessors,
|
|
&mut starts,
|
|
);
|
|
|
|
// the lis comes out backwards, I think. can't quite tell.
|
|
lis_sequence.sort_unstable();
|
|
|
|
// if a new node gets u32 max and is at the end, then it might be part of our LIS (because u32 max is a valid LIS)
|
|
if lis_sequence.last().map(|f| new_index_to_old_index[*f]) == Some(u32::MAX as usize) {
|
|
lis_sequence.pop();
|
|
}
|
|
|
|
for idx in &lis_sequence {
|
|
self.diff_node(&old[new_index_to_old_index[*idx]], &new[*idx]);
|
|
}
|
|
|
|
let mut nodes_created = 0;
|
|
|
|
// add mount instruction for the first items not covered by the lis
|
|
let last = *lis_sequence.last().unwrap();
|
|
if last < (new.len() - 1) {
|
|
for (idx, new_node) in new[(last + 1)..].iter().enumerate() {
|
|
let new_idx = idx + last + 1;
|
|
let old_index = new_index_to_old_index[new_idx];
|
|
if old_index == u32::MAX as usize {
|
|
nodes_created += self.create_node(new_node);
|
|
} else {
|
|
self.diff_node(&old[old_index], new_node);
|
|
nodes_created += self.push_all_real_nodes(new_node);
|
|
}
|
|
}
|
|
|
|
self.mutations.insert_after(
|
|
self.find_last_element(&new[last]).unwrap(),
|
|
nodes_created as u32,
|
|
);
|
|
nodes_created = 0;
|
|
}
|
|
|
|
// for each spacing, generate a mount instruction
|
|
let mut lis_iter = lis_sequence.iter().rev();
|
|
let mut last = *lis_iter.next().unwrap();
|
|
for next in lis_iter {
|
|
if last - next > 1 {
|
|
for (idx, new_node) in new[(next + 1)..last].iter().enumerate() {
|
|
let new_idx = idx + next + 1;
|
|
let old_index = new_index_to_old_index[new_idx];
|
|
if old_index == u32::MAX as usize {
|
|
nodes_created += self.create_node(new_node);
|
|
} else {
|
|
self.diff_node(&old[old_index], new_node);
|
|
nodes_created += self.push_all_real_nodes(new_node);
|
|
}
|
|
}
|
|
|
|
self.mutations.insert_before(
|
|
self.find_first_element(&new[last]).unwrap(),
|
|
nodes_created as u32,
|
|
);
|
|
|
|
nodes_created = 0;
|
|
}
|
|
last = *next;
|
|
}
|
|
|
|
// add mount instruction for the last items not covered by the lis
|
|
let first_lis = *lis_sequence.first().unwrap();
|
|
if first_lis > 0 {
|
|
for (idx, new_node) in new[..first_lis].iter().enumerate() {
|
|
let old_index = new_index_to_old_index[idx];
|
|
if old_index == u32::MAX as usize {
|
|
nodes_created += self.create_node(new_node);
|
|
} else {
|
|
self.diff_node(&old[old_index], new_node);
|
|
nodes_created += self.push_all_real_nodes(new_node);
|
|
}
|
|
}
|
|
|
|
self.mutations.insert_before(
|
|
self.find_first_element(&new[first_lis]).unwrap(),
|
|
nodes_created as u32,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn replace_node(&mut self, old: &'b VNode<'b>, new: &'b VNode<'b>) {
|
|
let nodes_created = self.create_node(new);
|
|
self.replace_inner(old, nodes_created);
|
|
}
|
|
|
|
fn replace_inner(&mut self, old: &'b VNode<'b>, nodes_created: usize) {
|
|
match old {
|
|
VNode::Element(el) => {
|
|
let id = old
|
|
.try_mounted_id()
|
|
.unwrap_or_else(|| panic!("broke on {:?}", old));
|
|
|
|
self.mutations.replace_with(id, nodes_created as u32);
|
|
self.remove_nodes(el.children, false);
|
|
self.scopes.collect_garbage(id);
|
|
}
|
|
|
|
VNode::Text(_) | VNode::Placeholder(_) => {
|
|
let id = old
|
|
.try_mounted_id()
|
|
.unwrap_or_else(|| panic!("broke on {:?}", old));
|
|
|
|
self.mutations.replace_with(id, nodes_created as u32);
|
|
self.scopes.collect_garbage(id);
|
|
}
|
|
|
|
VNode::Fragment(f) => {
|
|
self.replace_inner(&f.children[0], nodes_created);
|
|
self.remove_nodes(f.children.iter().skip(1), true);
|
|
}
|
|
|
|
VNode::Component(c) => {
|
|
log::trace!("Replacing component {:?}", old);
|
|
let scope_id = c.scope.get().unwrap();
|
|
let node = self.scopes.fin_head(scope_id);
|
|
|
|
self.enter_scope(scope_id);
|
|
{
|
|
self.replace_inner(node, nodes_created);
|
|
|
|
log::trace!("Replacing component x2 {:?}", old);
|
|
|
|
let scope = self.scopes.get_scope(scope_id).unwrap();
|
|
c.scope.set(None);
|
|
let props = scope.props.take().unwrap();
|
|
c.props.borrow_mut().replace(props);
|
|
self.scopes.try_remove(scope_id);
|
|
}
|
|
self.leave_scope();
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn remove_nodes(&mut self, nodes: impl IntoIterator<Item = &'b VNode<'b>>, gen_muts: bool) {
|
|
for node in nodes {
|
|
match node {
|
|
VNode::Text(t) => {
|
|
// this check exists because our null node will be removed but does not have an ID
|
|
if let Some(id) = t.id.get() {
|
|
self.scopes.collect_garbage(id);
|
|
t.id.set(None);
|
|
|
|
if gen_muts {
|
|
self.mutations.remove(id.as_u64());
|
|
}
|
|
}
|
|
}
|
|
VNode::Placeholder(a) => {
|
|
let id = a.id.get().unwrap();
|
|
self.scopes.collect_garbage(id);
|
|
a.id.set(None);
|
|
|
|
if gen_muts {
|
|
self.mutations.remove(id.as_u64());
|
|
}
|
|
}
|
|
VNode::Element(e) => {
|
|
let id = e.id.get().unwrap();
|
|
|
|
if gen_muts {
|
|
self.mutations.remove(id.as_u64());
|
|
}
|
|
|
|
self.scopes.collect_garbage(id);
|
|
e.id.set(None);
|
|
|
|
self.remove_nodes(e.children, false);
|
|
}
|
|
|
|
VNode::Fragment(f) => {
|
|
self.remove_nodes(f.children, gen_muts);
|
|
}
|
|
|
|
VNode::Component(c) => {
|
|
self.enter_scope(c.scope.get().unwrap());
|
|
{
|
|
let scope_id = c.scope.get().unwrap();
|
|
let root = self.scopes.root_node(scope_id);
|
|
self.remove_nodes([root], gen_muts);
|
|
|
|
let scope = self.scopes.get_scope(scope_id).unwrap();
|
|
c.scope.set(None);
|
|
|
|
let props = scope.props.take().unwrap();
|
|
c.props.borrow_mut().replace(props);
|
|
self.scopes.try_remove(scope_id);
|
|
}
|
|
self.leave_scope();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn create_children(&mut self, nodes: &'b [VNode<'b>]) -> usize {
|
|
let mut created = 0;
|
|
for node in nodes {
|
|
created += self.create_node(node);
|
|
}
|
|
created
|
|
}
|
|
|
|
fn create_and_append_children(&mut self, nodes: &'b [VNode<'b>]) {
|
|
let created = self.create_children(nodes);
|
|
self.mutations.append_children(created as u32);
|
|
}
|
|
|
|
fn create_and_insert_after(&mut self, nodes: &'b [VNode<'b>], after: &'b VNode<'b>) {
|
|
let created = self.create_children(nodes);
|
|
let last = self.find_last_element(after).unwrap();
|
|
self.mutations.insert_after(last, created as u32);
|
|
}
|
|
|
|
fn create_and_insert_before(&mut self, nodes: &'b [VNode<'b>], before: &'b VNode<'b>) {
|
|
let created = self.create_children(nodes);
|
|
let first = self.find_first_element(before).unwrap();
|
|
self.mutations.insert_before(first, created as u32);
|
|
}
|
|
|
|
fn current_scope(&self) -> ScopeId {
|
|
self.scope_stack.last().copied().expect("no current scope")
|
|
}
|
|
|
|
fn enter_scope(&mut self, scope: ScopeId) {
|
|
self.scope_stack.push(scope);
|
|
}
|
|
|
|
fn leave_scope(&mut self) {
|
|
self.scope_stack.pop();
|
|
}
|
|
|
|
fn find_last_element(&self, vnode: &'b VNode<'b>) -> Option<ElementId> {
|
|
let mut search_node = Some(vnode);
|
|
loop {
|
|
match &search_node.take().unwrap() {
|
|
VNode::Text(t) => break t.id.get(),
|
|
VNode::Element(t) => break t.id.get(),
|
|
VNode::Placeholder(t) => break t.id.get(),
|
|
VNode::Fragment(frag) => search_node = frag.children.last(),
|
|
VNode::Component(el) => {
|
|
let scope_id = el.scope.get().unwrap();
|
|
search_node = Some(self.scopes.root_node(scope_id));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn find_first_element(&self, vnode: &'b VNode<'b>) -> Option<ElementId> {
|
|
let mut search_node = Some(vnode);
|
|
loop {
|
|
match &search_node.take().expect("search node to have an ID") {
|
|
VNode::Text(t) => break t.id.get(),
|
|
VNode::Element(t) => break t.id.get(),
|
|
VNode::Placeholder(t) => break t.id.get(),
|
|
VNode::Fragment(frag) => search_node = Some(&frag.children[0]),
|
|
VNode::Component(el) => {
|
|
let scope = el.scope.get().expect("element to have a scope assigned");
|
|
search_node = Some(self.scopes.root_node(scope));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// recursively push all the nodes of a tree onto the stack and return how many are there
|
|
fn push_all_real_nodes(&mut self, node: &'b VNode<'b>) -> usize {
|
|
match node {
|
|
VNode::Text(_) | VNode::Placeholder(_) | VNode::Element(_) => {
|
|
self.mutations.push_root(node.mounted_id());
|
|
1
|
|
}
|
|
|
|
VNode::Fragment(frag) => {
|
|
let mut added = 0;
|
|
for child in frag.children {
|
|
added += self.push_all_real_nodes(child);
|
|
}
|
|
added
|
|
}
|
|
|
|
VNode::Component(c) => {
|
|
let scope_id = c.scope.get().unwrap();
|
|
let root = self.scopes.root_node(scope_id);
|
|
self.push_all_real_nodes(root)
|
|
}
|
|
}
|
|
}
|
|
}
|