dioxus/packages/core/src/virtual_dom.rs
2021-06-16 23:37:55 -04:00

977 lines
35 KiB
Rust

//! # VirtualDOM Implementation for Rust
//! This module provides the primary mechanics to create a hook-based, concurrent VDOM for Rust.
//!
//! In this file, multiple items are defined. This file is big, but should be documented well to
//! navigate the innerworkings of the Dom. We try to keep these main mechanics in this file to limit
//! the possible exposed API surface (keep fields private). This particular implementation of VDOM
//! is extremely efficient, but relies on some unsafety under the hood to do things like manage
//! micro-heaps for components. We are currently working on refactoring the safety out into safe(r)
//! abstractions, but current tests (MIRI and otherwise) show no issues with the current implementation.
//!
//! Included is:
//! - The [`VirtualDom`] itself
//! - The [`Scope`] object for mangning component lifecycle
//! - The [`ActiveFrame`] object for managing the Scope`s microheap
//! - The [`Context`] object for exposing VirtualDOM API to components
//! - The [`NodeCtx`] object for lazyily exposing the `Context` API to the nodebuilder API
//! - The [`Hook`] object for exposing state management in components.
//!
//! This module includes just the barebones for a complete VirtualDOM API.
//! Additional functionality is defined in the respective files.
use crate::{arena::ScopeArena, innerlude::*};
use bumpalo::Bump;
use generational_arena::Arena;
use std::{
any::{Any, TypeId},
cell::RefCell,
collections::{HashMap, HashSet, VecDeque},
fmt::Debug,
future::Future,
ops::Deref,
pin::Pin,
rc::{Rc, Weak},
};
pub type ScopeIdx = generational_arena::Index;
/// An integrated virtual node system that progresses events and diffs UI trees.
/// Differences are converted into patches which a renderer can use to draw the UI.
pub struct VirtualDom {
/// All mounted components are arena allocated to make additions, removals, and references easy to work with
/// A generational arena is used to re-use slots of deleted scopes without having to resize the underlying arena.
///
/// This is wrapped in an UnsafeCell because we will need to get mutable access to unique values in unique bump arenas
/// and rusts's guartnees cannot prove that this is safe. We will need to maintain the safety guarantees manually.
pub components: ScopeArena,
/// The index of the root component
/// Should always be the first (gen=0, id=0)
pub base_scope: ScopeIdx,
/// All components dump their updates into a queue to be processed
pub(crate) event_queue: EventQueue,
/// a strong allocation to the "caller" for the original component and its props
#[doc(hidden)]
_root_caller: Rc<OpaqueComponent>,
// _root_caller: Rc<OpaqueComponent<'static>>,
/// Type of the original ctx. This is stored as TypeId so VirtualDom does not need to be generic.
///
/// Whenver props need to be updated, an Error will be thrown if the new props do not
/// match the props used to create the VirtualDom.
#[doc(hidden)]
_root_prop_type: std::any::TypeId,
}
// ======================================
// Public Methods for the VirtualDom
// ======================================
impl VirtualDom {
/// Create a new instance of the Dioxus Virtual Dom with no properties for the root component.
///
/// This means that the root component must either consumes its own context, or statics are used to generate the page.
/// The root component can access things like routing in its context.
///
/// As an end-user, you'll want to use the Renderer's "new" method instead of this method.
/// Directly creating the VirtualDOM is only useful when implementing a new renderer.
///
///
/// ```ignore
/// // Directly from a closure
///
/// let dom = VirtualDom::new(|ctx| ctx.render(rsx!{ div {"hello world"} }));
///
/// // or pass in...
///
/// let root = |ctx| {
/// ctx.render(rsx!{
/// div {"hello world"}
/// })
/// }
/// let dom = VirtualDom::new(root);
///
/// // or directly from a fn
///
/// fn Example(ctx: Context<()>) -> VNode {
/// ctx.render(rsx!{ div{"hello world"} })
/// }
///
/// let dom = VirtualDom::new(Example);
/// ```
pub fn new(root: impl Fn(Context<()>) -> VNode + 'static) -> Self {
Self::new_with_props(root, ())
}
/// Start a new VirtualDom instance with a dependent ctx.
/// Later, the props can be updated by calling "update" with a new set of props, causing a set of re-renders.
///
/// This is useful when a component tree can be driven by external state (IE SSR) but it would be too expensive
/// to toss out the entire tree.
///
/// ```ignore
/// // Directly from a closure
///
/// let dom = VirtualDom::new(|ctx| ctx.render(rsx!{ div {"hello world"} }));
///
/// // or pass in...
///
/// let root = |ctx| {
/// ctx.render(rsx!{
/// div {"hello world"}
/// })
/// }
/// let dom = VirtualDom::new(root);
///
/// // or directly from a fn
///
/// fn Example(ctx: Context, props: &SomeProps) -> VNode {
/// ctx.render(rsx!{ div{"hello world"} })
/// }
///
/// let dom = VirtualDom::new(Example);
/// ```
pub fn new_with_props<P: Properties + 'static>(
root: impl Fn(Context<P>) -> VNode + 'static,
root_props: P,
) -> Self {
let components = ScopeArena::new(Arena::new());
// Normally, a component would be passed as a child in the RSX macro which automatically produces OpaqueComponents
// Here, we need to make it manually, using an RC to force the Weak reference to stick around for the main scope.
let _root_caller: Rc<OpaqueComponent> = Rc::new(move |scope| {
// let _root_caller: Rc<OpaqueComponent<'static>> = Rc::new(move |scope| {
// the lifetime of this closure is just as long as the lifetime on the scope reference
// this closure moves root props (which is static) into this closure
let props = unsafe { &*(&root_props as *const _) };
root(Context { props, scope })
});
// Create a weak reference to the OpaqueComponent for the root scope to use as its render function
let caller_ref = Rc::downgrade(&_root_caller);
// Build a funnel for hooks to send their updates into. The `use_hook` method will call into the update funnel.
let event_queue = EventQueue::default();
let _event_queue = event_queue.clone();
// Make the first scope
// We don't run the component though, so renderers will need to call "rebuild" when they initialize their DOM
let link = components.clone();
let base_scope = components
.with(|arena| {
arena.insert_with(move |myidx| {
let event_channel = _event_queue.new_channel(0, myidx);
Scope::new(caller_ref, myidx, None, 0, event_channel, link, &[])
})
})
.unwrap();
Self {
_root_caller,
base_scope,
event_queue,
components,
_root_prop_type: TypeId::of::<P>(),
}
}
/// Performs a *full* rebuild of the virtual dom, returning every edit required to generate the actual dom rom scratch
/// Currently this doesn't do what we want it to do
pub fn rebuild<'s>(&'s mut self) -> Result<EditList<'s>> {
let mut diff_machine = DiffMachine::new(
self.components.clone(),
self.base_scope,
self.event_queue.clone(),
);
// Schedule an update and then immediately call it on the root component
// This is akin to a hook being called from a listener and requring a re-render
// Instead, this is done on top-level component
let base = self.components.try_get(self.base_scope)?;
let update = &base.event_channel;
update();
self.progress_completely(&mut diff_machine)?;
Ok(diff_machine.consume())
}
}
// ======================================
// Private Methods for the VirtualDom
// ======================================
impl VirtualDom {
/// This method is the most sophisticated way of updating the virtual dom after an external event has been triggered.
///
/// Given a synthetic event, the component that triggered the event, and the index of the callback, this runs the virtual
/// dom to completion, tagging components that need updates, compressing events together, and finally emitting a single
/// change list.
///
/// If implementing an external renderer, this is the perfect method to combine with an async event loop that waits on
/// listeners, something like this:
///
/// ```ignore
/// while let Ok(event) = receiver.recv().await {
/// let edits = self.internal_dom.progress_with_event(event)?;
/// for edit in &edits {
/// patch_machine.handle_edit(edit);
/// }
/// }
/// ```
///
/// Note: this method is not async and does not provide suspense-like functionality. It is up to the renderer to provide the
/// executor and handlers for suspense as show in the example.
///
/// ```ignore
/// let (sender, receiver) = channel::new();
/// sender.send(EventTrigger::start());
///
/// let mut dom = VirtualDom::new();
/// dom.suspense_handler(|event| sender.send(event));
///
/// while let Ok(diffs) = dom.progress_with_event(receiver.recv().await) {
/// render(diffs);
/// }
///
/// ```
//
// Developer notes:
// ----
// This method has some pretty complex safety guarantees to uphold.
// We interact with bump arenas, raw pointers, and use UnsafeCell to get a partial borrow of the arena.
// The final EditList has edits that pull directly from the Bump Arenas which add significant complexity
// in crafting a 100% safe solution with traditional lifetimes. Consider this method to be internally unsafe
// but the guarantees provide a safe, fast, and efficient abstraction for the VirtualDOM updating framework.
//
// A good project would be to remove all unsafe from this crate and move the unsafety into safer abstractions.
pub fn progress_with_event(&mut self, event: EventTrigger) -> Result<EditList> {
let id = event.component_id.clone();
self.components.try_get_mut(id)?.call_listener(event)?;
let mut diff_machine =
DiffMachine::new(self.components.clone(), id, self.event_queue.clone());
self.progress_completely(&mut diff_machine)?;
Ok(diff_machine.consume())
}
/// Consume the event queue, descending depth-first.
/// Only ever run each component once.
///
/// The DiffMachine logs its progress as it goes which might be useful for certain types of renderers.
pub(crate) fn progress_completely<'s>(
&'s mut self,
diff_machine: &'_ mut DiffMachine<'s>,
) -> Result<()> {
// Add this component to the list of components that need to be difed
// #[allow(unused_assignments)]
// let mut cur_height: u32 = 0;
// Now, there are events in the queue
let mut updates = self.event_queue.0.as_ref().borrow_mut();
// Order the nodes by their height, we want the nodes with the smallest depth on top
// This prevents us from running the same component multiple times
updates.sort_unstable();
log::debug!("There are: {:#?} updates to be processed", updates.len());
// Iterate through the triggered nodes (sorted by height) and begin to diff them
for update in updates.drain(..) {
log::debug!("Running updates for: {:#?}", update);
// Make sure this isn't a node we've already seen, we don't want to double-render anything
// If we double-renderer something, this would cause memory safety issues
if diff_machine.seen_nodes.contains(&update.idx) {
continue;
}
// Now, all the "seen nodes" are nodes that got notified by running this listener
diff_machine.seen_nodes.insert(update.idx.clone());
// Start a new mutable borrow to components
// We are guaranteeed that this scope is unique because we are tracking which nodes have modified
let cur_component = self.components.try_get_mut(update.idx).unwrap();
// let inner: &'s mut _ = unsafe { &mut *self.components.0.borrow().arena.get() };
// let cur_component = inner.get_mut(update.idx).unwrap();
cur_component.run_scope()?;
// diff_machine.change_list.load_known_root(1);
diff_machine.diff_node(cur_component.old_frame(), cur_component.next_frame());
// cur_height = cur_component.height;
// log::debug!(
// "Processing update: {:#?} with height {}",
// &update.idx,
// cur_height
// );
}
Ok(())
}
pub fn base_scope(&self) -> &Scope {
todo!()
}
}
// TODO!
// These impls are actually wrong. The DOM needs to have a mutex implemented.
unsafe impl Sync for VirtualDom {}
unsafe impl Send for VirtualDom {}
/// Every component in Dioxus is represented by a `Scope`.
///
/// Scopes contain the state for hooks, the component's props, and other lifecycle information.
///
/// Scopes are allocated in a generational arena. As components are mounted/unmounted, they will replace slots of dead components.
/// The actual contents of the hooks, though, will be allocated with the standard allocator. These should not allocate as frequently.
pub struct Scope {
// The parent's scope ID
pub parent: Option<ScopeIdx>,
// IDs of children that this scope has created
// This enables us to drop the children and their children when this scope is destroyed
pub(crate) descendents: RefCell<HashSet<ScopeIdx>>,
child_nodes: &'static [VNode<'static>],
// A reference to the list of components.
// This lets us traverse the component list whenever we need to access our parent or children.
arena_link: ScopeArena,
pub shared_contexts: RefCell<HashMap<TypeId, Rc<dyn Any>>>,
// Our own ID accessible from the component map
pub arena_idx: ScopeIdx,
pub height: u32,
pub event_channel: Rc<dyn Fn() + 'static>,
// pub event_queue: EventQueue,
pub caller: Weak<OpaqueComponent>,
// pub caller: Weak<OpaqueComponent<'static>>,
pub hookidx: RefCell<usize>,
// ==========================
// slightly unsafe stuff
// ==========================
// an internal, highly efficient storage of vnodes
pub frames: ActiveFrame,
// These hooks are actually references into the hook arena
// These two could be combined with "OwningRef" to remove unsafe usage
// or we could dedicate a tiny bump arena just for them
// could also use ourborous
hooks: RefCell<Vec<Hook>>,
// Unsafety:
// - is self-refenrential and therefore needs to point into the bump
// Stores references into the listeners attached to the vnodes
// NEEDS TO BE PRIVATE
pub(crate) listeners: RefCell<Vec<*const dyn Fn(VirtualEvent)>>,
}
// We need to pin the hook so it doesn't move as we initialize the list of hooks
type Hook = Pin<Box<dyn std::any::Any>>;
type EventChannel = Rc<dyn Fn()>;
impl Scope {
// we are being created in the scope of an existing component (where the creator_node lifetime comes into play)
// we are going to break this lifetime by force in order to save it on ourselves.
// To make sure that the lifetime isn't truly broken, we receive a Weak RC so we can't keep it around after the parent dies.
// This should never happen, but is a good check to keep around
//
// Scopes cannot be made anywhere else except for this file
// Therefore, their lifetimes are connected exclusively to the virtual dom
pub fn new<'creator_node>(
caller: Weak<OpaqueComponent>,
// caller: Weak<OpaqueComponent<'creator_node>>,
arena_idx: ScopeIdx,
parent: Option<ScopeIdx>,
height: u32,
event_channel: EventChannel,
arena_link: ScopeArena,
child_nodes: &'creator_node [VNode<'creator_node>],
) -> Self {
log::debug!(
"New scope created, height is {}, idx is {:?}",
height,
arena_idx
);
// The function to run this scope is actually located in the parent's bump arena.
// Every time the parent is updated, that function is invalidated via double-buffering wiping the old frame.
// If children try to run this invalid caller, it *will* result in UB.
//
// During the lifecycle progression process, this caller will need to be updated. Right now,
// until formal safety abstractions are implemented, we will just use unsafe to "detach" the caller
// lifetime from the bump arena, exposing ourselves to this potential for invalidation. Truthfully,
// this is a bit of a hack, but will remain this way until we've figured out a cleaner solution.
//
// Not the best solution, so TODO on removing this in favor of a dedicated resource abstraction.
let caller = unsafe {
std::mem::transmute::<
Weak<OpaqueComponent>,
Weak<OpaqueComponent>,
// Weak<OpaqueComponent<'creator_node>>,
// Weak<OpaqueComponent<'static>>,
>(caller)
};
let child_nodes = unsafe { std::mem::transmute(child_nodes) };
Self {
child_nodes: child_nodes,
caller,
parent,
arena_idx,
height,
event_channel,
arena_link,
frames: ActiveFrame::new(),
hooks: Default::default(),
shared_contexts: Default::default(),
listeners: Default::default(),
hookidx: Default::default(),
descendents: Default::default(),
}
}
pub fn update_caller<'creator_node>(&mut self, caller: Weak<OpaqueComponent>) {
// pub fn update_caller<'creator_node>(&mut self, caller: Weak<OpaqueComponent<'creator_node>>) {
let broken_caller = unsafe {
std::mem::transmute::<
Weak<OpaqueComponent>,
Weak<OpaqueComponent>,
// Weak<OpaqueComponent<'creator_node>>,
// Weak<OpaqueComponent<'static>>,
>(caller)
};
self.caller = broken_caller;
}
/// Create a new context and run the component with references from the Virtual Dom
/// This function downcasts the function pointer based on the stored props_type
///
/// Props is ?Sized because we borrow the props and don't need to know the size. P (sized) is used as a marker (unsized)
pub fn run_scope<'sel>(&'sel mut self) -> Result<()> {
// Cycle to the next frame and then reset it
// This breaks any latent references, invalidating every pointer referencing into it.
self.frames.next().bump.reset();
// Remove all the outdated listeners
//
self.listeners
.try_borrow_mut()
.ok()
.ok_or(Error::FatalInternal("Borrowing listener failed"))?
.drain(..);
*self.hookidx.borrow_mut() = 0;
let caller = self
.caller
.upgrade()
.ok_or(Error::FatalInternal("Failed to get caller"))?;
// Cast the caller ptr from static to one with our own reference
let c2: &OpaqueComponent = caller.as_ref();
let c3: &OpaqueComponent = unsafe { std::mem::transmute(c2) };
// let c2: &OpaqueComponent<'static> = caller.as_ref();
// let c3: &OpaqueComponent<'sel> = unsafe { std::mem::transmute(c2) };
let unsafe_head = unsafe { self.own_vnodes(c3) };
self.frames.cur_frame_mut().head_node = unsafe_head;
Ok(())
}
// this is its own function so we can preciesly control how lifetimes flow
unsafe fn own_vnodes<'a>(&'a self, f: &OpaqueComponent) -> VNode<'static> {
let new_head: VNode<'a> = f(self);
let out: VNode<'static> = std::mem::transmute(new_head);
out
}
// A safe wrapper around calling listeners
// calling listeners will invalidate the list of listeners
// The listener list will be completely drained because the next frame will write over previous listeners
pub fn call_listener(&mut self, trigger: EventTrigger) -> Result<()> {
let EventTrigger {
listener_id, event, ..
} = trigger;
//
unsafe {
// Convert the raw ptr into an actual object
// This operation is assumed to be safe
let listener_fn = self
.listeners
.try_borrow()
.ok()
.ok_or(Error::FatalInternal("Borrowing listener failed"))?
.get(listener_id as usize)
.ok_or(Error::FatalInternal("Event should exist if triggered"))?
.as_ref()
.ok_or(Error::FatalInternal("Raw event ptr is invalid"))?;
// Run the callback with the user event
listener_fn(event);
}
Ok(())
}
pub fn next_frame<'bump>(&'bump self) -> &'bump VNode<'bump> {
self.frames.current_head_node()
}
pub fn old_frame<'bump>(&'bump self) -> &'bump VNode<'bump> {
self.frames.prev_head_node()
}
pub fn cur_frame(&self) -> &BumpFrame {
self.frames.cur_frame()
}
}
/// Components in Dioxus use the "Context" object to interact with their lifecycle.
/// This lets components schedule updates, integrate hooks, and expose their context via the context api.
///
/// Properties passed down from the parent component are also directly accessible via the exposed "props" field.
///
/// ```ignore
/// #[derive(Properties)]
/// struct Props {
/// name: String
///
/// }
///
/// fn example(ctx: Context, props: &Props -> VNode {
/// html! {
/// <div> "Hello, {ctx.ctx.name}" </div>
/// }
/// }
/// ```
// todo: force lifetime of source into T as a valid lifetime too
// it's definitely possible, just needs some more messing around
pub struct Context<'src, T> {
pub props: &'src T,
pub scope: &'src Scope,
}
impl<'src, T> Copy for Context<'src, T> {}
impl<'src, T> Clone for Context<'src, T> {
fn clone(&self) -> Self {
Self {
props: self.props,
scope: self.scope,
}
}
}
impl<'a, T> Deref for Context<'a, T> {
type Target = &'a T;
fn deref(&self) -> &Self::Target {
&self.props
}
}
impl<'src, T> Scoped<'src> for Context<'src, T> {
fn get_scope(&self) -> &'src Scope {
self.scope
}
}
pub trait Scoped<'src>: Sized {
fn get_scope(&self) -> &'src Scope;
/// Access the children elements passed into the component
fn children(&self) -> &'src [VNode<'src>] {
// We're re-casting the nodes back out
// They don't really have a static lifetime
unsafe {
let scope = self.get_scope();
let nodes = scope.child_nodes;
nodes
}
}
/// Create a subscription that schedules a future render for the reference component
fn schedule_update(&self) -> Rc<dyn Fn() + 'static> {
self.get_scope().event_channel.clone()
}
/// Take a lazy VNode structure and actually build it with the context of the VDom's efficient VNode allocator.
///
/// This function consumes the context and absorb the lifetime, so these VNodes *must* be returned.
///
/// ## Example
///
/// ```ignore
/// fn Component(ctx: Context<()>) -> VNode {
/// // Lazy assemble the VNode tree
/// let lazy_tree = html! {<div> "Hello World" </div>};
///
/// // Actually build the tree and allocate it
/// ctx.render(lazy_tree)
/// }
///```
fn render<'a, F: for<'b> FnOnce(&'b NodeCtx<'src>) -> VNode<'src> + 'src + 'a>(
self,
lazy_nodes: LazyNodes<'src, F>,
) -> VNode<'src> {
lazy_nodes.into_vnode(&NodeCtx {
scope_ref: self.get_scope(),
listener_id: 0.into(),
})
}
// impl<'scope> Context<'scope> {
/// Store a value between renders
///
/// - Initializer: closure used to create the initial hook state
/// - Runner: closure used to output a value every time the hook is used
/// - Cleanup: closure used to teardown the hook once the dom is cleaned up
///
/// ```ignore
/// // use_ref is the simplest way of storing a value between renders
/// pub fn use_ref<T: 'static>(initial_value: impl FnOnce() -> T + 'static) -> Rc<RefCell<T>> {
/// use_hook(
/// || Rc::new(RefCell::new(initial_value())),
/// |state| state.clone(),
/// |_| {},
/// )
/// }
/// ```
fn use_hook<InternalHookState: 'static, Output: 'src>(
&self,
// The closure that builds the hook state
initializer: impl FnOnce() -> InternalHookState,
// The closure that takes the hookstate and returns some value
runner: impl FnOnce(&'src mut InternalHookState) -> Output,
// The closure that cleans up whatever mess is left when the component gets torn down
// TODO: add this to the "clean up" group for when the component is dropped
_cleanup: impl FnOnce(InternalHookState),
) -> Output {
let scope = self.get_scope();
let idx = *scope.hookidx.borrow();
// Grab out the hook list
let mut hooks = scope.hooks.borrow_mut();
// If the idx is the same as the hook length, then we need to add the current hook
if idx >= hooks.len() {
let new_state = initializer();
hooks.push(Box::pin(new_state));
}
*scope.hookidx.borrow_mut() += 1;
let stable_ref = hooks
.get_mut(idx)
.expect("Should not fail, idx is validated")
.as_mut();
let pinned_state = unsafe { Pin::get_unchecked_mut(stable_ref) };
let internal_state = pinned_state.downcast_mut::<InternalHookState>().expect(
r###"
Unable to retrive the hook that was initialized in this index.
Consult the `rules of hooks` to understand how to use hooks properly.
You likely used the hook in a conditional. Hooks rely on consistent ordering between renders.
Any function prefixed with "use" should not be called conditionally.
"###,
);
// We extend the lifetime of the internal state
runner(unsafe { &mut *(internal_state as *mut _) })
}
/// This hook enables the ability to expose state to children further down the VirtualDOM Tree.
///
/// This is a hook, so it may not be called conditionally!
///
/// The init method is ran *only* on first use, otherwise it is ignored. However, it uses hooks (ie `use`)
/// so don't put it in a conditional.
///
/// When the component is dropped, so is the context. Be aware of this behavior when consuming
/// the context via Rc/Weak.
///
///
///
fn use_create_context<T: 'static>(&self, init: impl Fn() -> T) {
let scope = self.get_scope();
let mut ctxs = scope.shared_contexts.borrow_mut();
let ty = TypeId::of::<T>();
let is_initialized = self.use_hook(
|| false,
|s| {
let i = s.clone();
*s = true;
i
},
|_| {},
);
match (is_initialized, ctxs.contains_key(&ty)) {
// Do nothing, already initialized and already exists
(true, true) => {}
// Needs to be initialized
(false, false) => {
log::debug!("Initializing context...");
ctxs.insert(ty, Rc::new(init()));
}
_ => debug_assert!(false, "Cannot initialize two contexts of the same type"),
}
}
/// There are hooks going on here!
fn use_context<T: 'static>(&self) -> &'src Rc<T> {
self.try_use_context().unwrap()
}
/// Uses a context, storing the cached value around
fn try_use_context<T: 'static>(&self) -> Result<&'src Rc<T>> {
struct UseContextHook<C> {
par: Option<Rc<C>>,
we: Option<Weak<C>>,
}
self.use_hook(
move || UseContextHook {
par: None as Option<Rc<T>>,
we: None as Option<Weak<T>>,
},
move |hook| {
let scope = self.get_scope();
let mut scope = Some(scope);
if let Some(we) = &hook.we {
if let Some(re) = we.upgrade() {
hook.par = Some(re);
return Ok(hook.par.as_ref().unwrap());
}
}
let ty = TypeId::of::<T>();
while let Some(inner) = scope {
log::debug!("Searching {:#?} for valid shared_context", inner.arena_idx);
let shared_contexts = inner.shared_contexts.borrow();
if let Some(shared_ctx) = shared_contexts.get(&ty) {
log::debug!("found matching ctx");
let rc = shared_ctx
.clone()
.downcast::<T>()
.expect("Should not fail, already validated the type from the hashmap");
hook.we = Some(Rc::downgrade(&rc));
hook.par = Some(rc);
return Ok(hook.par.as_ref().unwrap());
} else {
match inner.parent {
Some(parent_id) => {
let parent = inner
.arena_link
.try_get(parent_id)
.map_err(|_| Error::FatalInternal("Failed to find parent"))?;
scope = Some(parent);
}
None => return Err(Error::MissingSharedContext),
}
}
}
Err(Error::MissingSharedContext)
},
|_| {},
)
}
fn suspend<O>(
&self,
f: impl Future<Output = O>,
g: impl FnOnce(O) -> VNode<'src> + 'src,
) -> VNode<'src> {
todo!()
}
}
// ==================================================================================
// Supporting structs for the above abstractions
// ==================================================================================
// We actually allocate the properties for components in their parent's properties
// We then expose a handle to use those props for render in the form of "OpaqueComponent"
pub type OpaqueComponent = dyn for<'b> Fn(&'b Scope) -> VNode<'b>;
#[derive(PartialEq, Debug, Clone, Default)]
pub struct EventQueue(pub Rc<RefCell<Vec<HeightMarker>>>);
impl EventQueue {
pub fn new_channel(&self, height: u32, idx: ScopeIdx) -> Rc<dyn Fn()> {
let inner = self.clone();
let marker = HeightMarker { height, idx };
Rc::new(move || {
log::debug!("channel updated {:#?}", marker);
inner.0.as_ref().borrow_mut().push(marker)
})
}
}
/// A helper type that lets scopes be ordered by their height
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct HeightMarker {
pub idx: ScopeIdx,
pub height: u32,
}
impl Ord for HeightMarker {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.height.cmp(&other.height)
}
}
impl PartialOrd for HeightMarker {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
// NodeCtx is used to build VNodes in the component's memory space.
// This struct adds metadata to the final VNode about listeners, attributes, and children
#[derive(Clone)]
pub struct NodeCtx<'a> {
pub scope_ref: &'a Scope,
pub listener_id: RefCell<usize>,
}
impl<'a> NodeCtx<'a> {
pub fn bump(&self) -> &'a Bump {
&self.scope_ref.cur_frame().bump
}
}
impl Debug for NodeCtx<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Ok(())
}
}
#[derive(Debug, PartialEq, Hash)]
pub struct ContextId {
// Which component is the scope in
original: ScopeIdx,
// What's the height of the scope
height: u32,
// Which scope is it (in order)
id: u32,
}
pub struct ActiveFrame {
// We use a "generation" for users of contents in the bump frames to ensure their data isn't broken
pub generation: RefCell<usize>,
// The double-buffering situation that we will use
pub frames: [BumpFrame; 2],
}
pub struct BumpFrame {
pub bump: Bump,
pub head_node: VNode<'static>,
}
impl ActiveFrame {
pub fn new() -> Self {
Self::from_frames(
BumpFrame {
bump: Bump::new(),
head_node: VNode::text(""),
},
BumpFrame {
bump: Bump::new(),
head_node: VNode::text(""),
},
)
}
pub fn from_frames(a: BumpFrame, b: BumpFrame) -> Self {
Self {
generation: 0.into(),
frames: [a, b],
}
}
pub fn cur_frame(&self) -> &BumpFrame {
match *self.generation.borrow() & 1 == 0 {
true => &self.frames[0],
false => &self.frames[1],
}
}
pub fn cur_frame_mut(&mut self) -> &mut BumpFrame {
match *self.generation.borrow() & 1 == 0 {
true => &mut self.frames[0],
false => &mut self.frames[1],
}
}
pub fn current_head_node<'b>(&'b self) -> &'b VNode<'b> {
let raw_node = match *self.generation.borrow() & 1 == 0 {
true => &self.frames[0],
false => &self.frames[1],
};
// Give out our self-referential item with our own borrowed lifetime
unsafe {
let unsafe_head = &raw_node.head_node;
let safe_node = std::mem::transmute::<&VNode<'static>, &VNode<'b>>(unsafe_head);
safe_node
}
}
pub fn prev_head_node<'b>(&'b self) -> &'b VNode<'b> {
let raw_node = match *self.generation.borrow() & 1 != 0 {
true => &self.frames[0],
false => &self.frames[1],
};
// Give out our self-referential item with our own borrowed lifetime
unsafe {
let unsafe_head = &raw_node.head_node;
let safe_node = std::mem::transmute::<&VNode<'static>, &VNode<'b>>(unsafe_head);
safe_node
}
}
pub fn next(&mut self) -> &mut BumpFrame {
*self.generation.borrow_mut() += 1;
if *self.generation.borrow() % 2 == 0 {
&mut self.frames[0]
} else {
&mut self.frames[1]
}
}
}