mirror of
https://github.com/DioxusLabs/dioxus
synced 2024-12-19 09:03:13 +00:00
1733 lines
65 KiB
Rust
1733 lines
65 KiB
Rust
//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
|
|
//!
|
|
//! The [`DiffMachine`] calculates the diffs between the old and new frames, updates the new nodes, and generates a set
|
|
//! of mutations for the RealDom to apply.
|
|
//!
|
|
//! ## Notice:
|
|
//!
|
|
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
|
|
//! Components, Fragments, Suspense, SubTree memoization, incremental diffing, cancelation, NodeRefs, and additional
|
|
//! batching operations.
|
|
//!
|
|
//! ## Implementation Details:
|
|
//!
|
|
//! ### IDs for elements
|
|
//! --------------------
|
|
//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
|
|
//! We don't necessarily require that DOM changes happen instantly during the diffing process, so the implementor may choose
|
|
//! to batch nodes if it is more performant for their application. The element IDs are indicies into the internal element
|
|
//! array. The expectation is that implemenetors will use the ID as an index into a Vec of real nodes, allowing for passive
|
|
//! garbage collection as the VirtualDOM replaces old nodes.
|
|
//!
|
|
//! When new vnodes are created through `cx.render`, they won't know which real node they correspond to. During diffing,
|
|
//! we always make sure to copy over the ID. If we don't do this properly, the ElementId will be populated incorrectly
|
|
//! and brick the user's page.
|
|
//!
|
|
//! ### Fragment Support
|
|
//! --------------------
|
|
//! Fragments (nodes without a parent) are supported through a combination of "replace with" and anchor vnodes. Fragments
|
|
//! can be particularly challenging when they are empty, so the anchor node lets us "reserve" a spot for the empty
|
|
//! fragment to be replaced with when it is no longer empty. This is guaranteed by logic in the NodeFactory - it is
|
|
//! impossible to craft a fragment with 0 elements - they must always have at least a single placeholder element. Adding
|
|
//! "dummy" nodes _is_ inefficient, but it makes our diffing algorithm faster and the implementation is completely up to
|
|
//! the platform.
|
|
//!
|
|
//! Other implementations either don't support fragments or use a "child + sibling" pattern to represent them. Our code is
|
|
//! vastly simpler and more performant when we can just create a placeholder element while the fragment has no children.
|
|
//!
|
|
//! ## Subtree Memoization
|
|
//! -----------------------
|
|
//! We also employ "subtree memoization" which saves us from having to check trees which take no dynamic content. We can
|
|
//! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the
|
|
//! calls to "create" propogate this information upwards. Structures like the one below are entirely static:
|
|
//! ```rust
|
|
//! rsx!( div { class: "hello world", "this node is entirely static" } )
|
|
//! ```
|
|
//! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so its up to the reconciler to
|
|
//! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP and depends on comp-time
|
|
//! hashing of the subtree from the rsx! macro. We do a very limited form of static analysis via static string pointers as
|
|
//! a way of short-circuiting the most expensive checks.
|
|
//!
|
|
//! ## Bloom Filter and Heuristics
|
|
//! ------------------------------
|
|
//! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are
|
|
//! currently very rough, but will get better as time goes on. The information currently tracked includes the size of a
|
|
//! bump arena after first render, the number of hooks, and the number of nodes in the tree.
|
|
//!
|
|
//! ## Garbage Collection
|
|
//! ---------------------
|
|
//! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garabge
|
|
//! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then
|
|
//! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient.
|
|
//!
|
|
//! The IDs used by the key/map are just an index into a vec. This means that Dioxus will drive the key allocation strategy
|
|
//! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes
|
|
//! for the client. As new nodes are created, old nodes will be over-written.
|
|
//!
|
|
//! ## Further Reading and Thoughts
|
|
//! ----------------------------
|
|
//! There are more ways of increasing diff performance here that are currently not implemented.
|
|
//! More info on how to improve this diffing algorithm:
|
|
//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
|
|
|
|
use crate::{arena::SharedResources, innerlude::*};
|
|
use futures_util::Future;
|
|
use fxhash::{FxBuildHasher, FxHashMap, FxHashSet};
|
|
use indexmap::IndexSet;
|
|
use smallvec::{smallvec, SmallVec};
|
|
|
|
use std::{
|
|
any::Any, cell::Cell, cmp::Ordering, collections::HashSet, marker::PhantomData, pin::Pin,
|
|
};
|
|
use DomEdit::*;
|
|
|
|
/// Our DiffMachine is an iterative tree differ.
|
|
///
|
|
/// It uses techniques of a stack machine to allow pausing and restarting of the diff algorithm. This
|
|
/// was origially implemented using recursive techniques, but Rust lacks the abilty to call async functions recursively,
|
|
/// meaning we could not "pause" the original diffing algorithm.
|
|
///
|
|
/// Instead, we use a traditional stack machine approach to diff and create new nodes. The diff algorithm periodically
|
|
/// calls "yield_now" which allows the machine to pause and return control to the caller. The caller can then wait for
|
|
/// the next period of idle time, preventing our diff algorithm from blocking the main thread.
|
|
///
|
|
/// Funnily enough, this stack machine's entire job is to create instructions for another stack machine to execute. It's
|
|
/// stack machines all the way down!
|
|
pub struct DiffMachine<'bump> {
|
|
vdom: &'bump SharedResources,
|
|
|
|
pub mutations: Mutations<'bump>,
|
|
|
|
pub nodes_created_stack: SmallVec<[usize; 10]>,
|
|
|
|
pub instructions: SmallVec<[DiffInstruction<'bump>; 10]>,
|
|
|
|
pub scope_stack: SmallVec<[ScopeId; 5]>,
|
|
|
|
pub diffed: FxHashSet<ScopeId>,
|
|
|
|
pub seen_scopes: FxHashSet<ScopeId>,
|
|
}
|
|
|
|
/// The stack instructions we use to diff and create new nodes.
|
|
///
|
|
/// Right now, we insert an instruction for every child node we want to create and diff. This can be less efficient than
|
|
/// a custom iterator type - but this is current easier to implement. In the future, let's try interact with the stack less.
|
|
#[derive(Debug)]
|
|
pub enum DiffInstruction<'a> {
|
|
DiffNode {
|
|
old: &'a VNode<'a>,
|
|
new: &'a VNode<'a>,
|
|
},
|
|
|
|
DiffChildren {
|
|
progress: usize,
|
|
old: &'a [VNode<'a>],
|
|
new: &'a [VNode<'a>],
|
|
},
|
|
|
|
Create {
|
|
node: &'a VNode<'a>,
|
|
},
|
|
CreateChildren {
|
|
progress: usize,
|
|
children: &'a [VNode<'a>],
|
|
},
|
|
|
|
// todo: merge this into the create instruction?
|
|
Append,
|
|
InsertAfter,
|
|
InsertBefore,
|
|
Replace {
|
|
with: usize,
|
|
},
|
|
}
|
|
|
|
impl<'bump> DiffMachine<'bump> {
|
|
pub(crate) fn new(
|
|
edits: Mutations<'bump>,
|
|
cur_scope: ScopeId,
|
|
shared: &'bump SharedResources,
|
|
) -> Self {
|
|
Self {
|
|
instructions: smallvec![],
|
|
nodes_created_stack: smallvec![],
|
|
mutations: edits,
|
|
scope_stack: smallvec![cur_scope],
|
|
vdom: shared,
|
|
diffed: FxHashSet::default(),
|
|
seen_scopes: FxHashSet::default(),
|
|
}
|
|
}
|
|
|
|
pub fn new_headless(shared: &'bump SharedResources) -> Self {
|
|
let edits = Mutations::new();
|
|
let cur_scope = ScopeId(0);
|
|
Self::new(edits, cur_scope, shared)
|
|
}
|
|
|
|
//
|
|
pub async fn diff_scope(&mut self, id: ScopeId) -> Result<()> {
|
|
let component = self.get_scope_mut(&id).ok_or_else(|| Error::NotMounted)?;
|
|
let (old, new) = (component.frames.wip_head(), component.frames.fin_head());
|
|
self.diff_node(old, new);
|
|
Ok(())
|
|
}
|
|
|
|
/// Progress the diffing for this "fiber"
|
|
///
|
|
/// This method implements a depth-first iterative tree traversal.
|
|
///
|
|
/// We do depth-first to maintain high cache locality (nodes were originally generated recursively) and because we
|
|
/// only need a stack (not a queue) of lists
|
|
pub async fn work(&mut self) -> Result<()> {
|
|
// todo: don't move the reused instructions around
|
|
// defer to individual functions so the compiler produces better code
|
|
// large functions tend to be difficult for the compiler to work with
|
|
while let Some(instruction) = self.instructions.last_mut() {
|
|
log::debug!("Handling diff instruction: {:?}", instruction);
|
|
match instruction {
|
|
DiffInstruction::DiffNode { old, new, .. } => {
|
|
let (old, new) = (*old, *new);
|
|
self.instructions.pop();
|
|
self.diff_node(old, new);
|
|
}
|
|
|
|
// this is slightly more complicated, we need to find a way to pause our LIS code
|
|
DiffInstruction::DiffChildren { progress, old, new } => {
|
|
todo!()
|
|
}
|
|
|
|
DiffInstruction::Create { node, .. } => {
|
|
let node = *node;
|
|
self.instructions.pop();
|
|
self.create_node(node);
|
|
}
|
|
|
|
DiffInstruction::CreateChildren { progress, children } => {
|
|
if let Some(child) = children.get(*progress) {
|
|
*progress += 1;
|
|
self.create_node(child);
|
|
} else {
|
|
self.instructions.pop();
|
|
}
|
|
}
|
|
|
|
DiffInstruction::Append => {
|
|
let many = self.nodes_created_stack.pop().unwrap();
|
|
self.edit_append_children(many as u32);
|
|
self.instructions.pop();
|
|
}
|
|
|
|
DiffInstruction::Replace { with } => {
|
|
let with = *with;
|
|
let many = self.nodes_created_stack.pop().unwrap();
|
|
self.edit_replace_with(with as u32, many as u32);
|
|
self.instructions.pop();
|
|
}
|
|
|
|
DiffInstruction::InsertAfter => {
|
|
let n = self.nodes_created_stack.pop().unwrap();
|
|
self.edit_insert_after(n as u32);
|
|
self.instructions.pop();
|
|
}
|
|
|
|
DiffInstruction::InsertBefore => {
|
|
let n = self.nodes_created_stack.pop().unwrap();
|
|
self.edit_insert_before(n as u32);
|
|
self.instructions.pop();
|
|
}
|
|
};
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// =================================
|
|
// Tools for creating new nodes
|
|
// =================================
|
|
|
|
fn create_node(&mut self, node: &'bump VNode<'bump>) {
|
|
match node {
|
|
VNode::Text(vtext) => self.create_text_node(vtext),
|
|
VNode::Suspended(suspended) => self.create_suspended_node(suspended),
|
|
VNode::Anchor(anchor) => self.create_anchor_node(anchor),
|
|
VNode::Element(element) => self.create_element_node(element),
|
|
VNode::Fragment(frag) => self.create_fragment_node(frag),
|
|
VNode::Component(component) => self.create_component_node(component),
|
|
}
|
|
}
|
|
|
|
fn create_text_node(&mut self, vtext: &'bump VText<'bump>) {
|
|
let real_id = self.vdom.reserve_node();
|
|
self.edit_create_text_node(vtext.text, real_id);
|
|
vtext.dom_id.set(Some(real_id));
|
|
*self.nodes_created_stack.last_mut().unwrap() += 1;
|
|
}
|
|
|
|
fn create_suspended_node(&mut self, suspended: &'bump VSuspended) {
|
|
let real_id = self.vdom.reserve_node();
|
|
self.edit_create_placeholder(real_id);
|
|
suspended.node.set(Some(real_id));
|
|
*self.nodes_created_stack.last_mut().unwrap() += 1;
|
|
}
|
|
|
|
fn create_anchor_node(&mut self, anchor: &'bump VAnchor) {
|
|
let real_id = self.vdom.reserve_node();
|
|
self.edit_create_placeholder(real_id);
|
|
anchor.dom_id.set(Some(real_id));
|
|
*self.nodes_created_stack.last_mut().unwrap() += 1;
|
|
}
|
|
|
|
fn create_element_node(&mut self, element: &'bump VElement<'bump>) {
|
|
let VElement {
|
|
tag_name,
|
|
listeners,
|
|
attributes,
|
|
children,
|
|
namespace,
|
|
dom_id,
|
|
..
|
|
} = element;
|
|
|
|
let real_id = self.vdom.reserve_node();
|
|
self.edit_create_element(tag_name, *namespace, real_id);
|
|
*self.nodes_created_stack.last_mut().unwrap() += 1;
|
|
dom_id.set(Some(real_id));
|
|
|
|
let cur_scope = self.current_scope().unwrap();
|
|
|
|
listeners.iter().for_each(|listener| {
|
|
self.fix_listener(listener);
|
|
listener.mounted_node.set(Some(real_id));
|
|
self.edit_new_event_listener(listener, cur_scope.clone());
|
|
});
|
|
|
|
for attr in *attributes {
|
|
self.edit_set_attribute(attr);
|
|
}
|
|
|
|
self.instructions.push(DiffInstruction::Append);
|
|
|
|
self.nodes_created_stack.push(0);
|
|
self.instructions.push(DiffInstruction::CreateChildren {
|
|
children,
|
|
progress: 0,
|
|
});
|
|
}
|
|
|
|
fn create_fragment_node(&mut self, frag: &'bump VFragment<'bump>) {
|
|
self.instructions.push(DiffInstruction::CreateChildren {
|
|
children: frag.children,
|
|
progress: 0,
|
|
});
|
|
}
|
|
|
|
fn create_component_node(&mut self, vcomponent: &'bump VComponent<'bump>) {
|
|
let caller = vcomponent.caller.clone();
|
|
|
|
let parent_idx = self.scope_stack.last().unwrap().clone();
|
|
|
|
// Insert a new scope into our component list
|
|
let new_idx = self.vdom.insert_scope_with_key(|new_idx| {
|
|
let parent_scope = self.get_scope(&parent_idx).unwrap();
|
|
let height = parent_scope.height + 1;
|
|
Scope::new(
|
|
caller,
|
|
new_idx,
|
|
Some(parent_idx),
|
|
height,
|
|
ScopeChildren(vcomponent.children),
|
|
self.vdom.clone(),
|
|
)
|
|
});
|
|
|
|
// Actually initialize the caller's slot with the right address
|
|
vcomponent.ass_scope.set(Some(new_idx));
|
|
|
|
if !vcomponent.can_memoize {
|
|
let cur_scope = self.get_scope_mut(&parent_idx).unwrap();
|
|
let extended = vcomponent as *const VComponent;
|
|
let extended: *const VComponent<'static> = unsafe { std::mem::transmute(extended) };
|
|
cur_scope.borrowed_props.borrow_mut().push(extended);
|
|
}
|
|
|
|
// TODO:
|
|
// add noderefs to current noderef list Noderefs
|
|
// add effects to current effect list Effects
|
|
|
|
let new_component = self.get_scope_mut(&new_idx).unwrap();
|
|
|
|
// Run the scope for one iteration to initialize it
|
|
match new_component.run_scope() {
|
|
Ok(_g) => {
|
|
// all good, new nodes exist
|
|
}
|
|
Err(err) => {
|
|
// failed to run. this is the first time the component ran, and it failed
|
|
// we manually set its head node to an empty fragment
|
|
panic!("failing components not yet implemented");
|
|
}
|
|
}
|
|
|
|
// Take the node that was just generated from running the component
|
|
let nextnode = new_component.frames.fin_head();
|
|
|
|
// // Push the new scope onto the stack
|
|
// self.scope_stack.push(new_idx);
|
|
|
|
// // Run the creation algorithm with this scope on the stack
|
|
self.instructions
|
|
.push(DiffInstruction::Create { node: nextnode });
|
|
|
|
// let meta = self.create_vnode(nextnode);
|
|
|
|
// // pop the scope off the stack
|
|
// self.scope_stack.pop();
|
|
|
|
// if meta.added_to_stack == 0 {
|
|
// panic!("Components should *always* generate nodes - even if they fail");
|
|
// }
|
|
|
|
// // Finally, insert this scope as a seen node.
|
|
self.seen_scopes.insert(new_idx);
|
|
}
|
|
|
|
// =================================
|
|
// Tools for diffing nodes
|
|
// =================================
|
|
|
|
pub fn diff_node(&mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>) {
|
|
use VNode::*;
|
|
match (old_node, new_node) {
|
|
// Check the most common cases first
|
|
(Text(old), Text(new)) => self.diff_text_nodes(old, new),
|
|
(Element(old), Element(new)) => self.diff_element_nodes(old, new),
|
|
(Component(old), Component(new)) => self.diff_component_nodes(old, new),
|
|
(Fragment(old), Fragment(new)) => self.diff_fragment_nodes(old, new),
|
|
(Anchor(old), Anchor(new)) => new.dom_id.set(old.dom_id.get()),
|
|
|
|
(
|
|
Component(_) | Fragment(_) | Text(_) | Element(_) | Anchor(_),
|
|
Component(_) | Fragment(_) | Text(_) | Element(_) | Anchor(_),
|
|
) => {
|
|
self.replace_and_create_many_with_many([old_node], [new_node]);
|
|
}
|
|
|
|
// TODO: these don't properly clean up any data
|
|
(Suspended(old), new) => {
|
|
self.replace_and_create_many_with_many([old_node], [new_node]);
|
|
}
|
|
|
|
// a node that was once real is now suspended
|
|
(old, Suspended(_)) => {
|
|
self.replace_and_create_many_with_many([old_node], [new_node]);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn diff_text_nodes(&mut self, old: &'bump VText<'bump>, new: &'bump VText<'bump>) {
|
|
let root = old.dom_id.get().unwrap();
|
|
|
|
if old.text != new.text {
|
|
self.edit_push_root(root);
|
|
self.edit_set_text(new.text);
|
|
self.edit_pop();
|
|
}
|
|
|
|
new.dom_id.set(Some(root));
|
|
}
|
|
|
|
fn diff_element_nodes(&mut self, old: &'bump VElement<'bump>, new: &'bump VElement<'bump>) {
|
|
let root = old.dom_id.get().unwrap();
|
|
|
|
// If the element type is completely different, the element needs to be re-rendered completely
|
|
// This is an optimization React makes due to how users structure their code
|
|
//
|
|
// This case is rather rare (typically only in non-keyed lists)
|
|
if new.tag_name != old.tag_name || new.namespace != old.namespace {
|
|
todo!();
|
|
// self.replace_node_with_node(root, old_node, new_node);
|
|
return;
|
|
}
|
|
|
|
new.dom_id.set(Some(root));
|
|
|
|
// Don't push the root if we don't have to
|
|
let mut has_comitted = false;
|
|
let mut please_commit = |edits: &mut Vec<DomEdit>| {
|
|
if !has_comitted {
|
|
has_comitted = true;
|
|
edits.push(PushRoot { id: root.as_u64() });
|
|
}
|
|
};
|
|
|
|
// Diff Attributes
|
|
//
|
|
// It's extraordinarily rare to have the number/order of attributes change
|
|
// In these cases, we just completely erase the old set and make a new set
|
|
//
|
|
// TODO: take a more efficient path than this
|
|
if old.attributes.len() == new.attributes.len() {
|
|
for (old_attr, new_attr) in old.attributes.iter().zip(new.attributes.iter()) {
|
|
if old_attr.value != new_attr.value {
|
|
please_commit(&mut self.mutations.edits);
|
|
self.edit_set_attribute(new_attr);
|
|
}
|
|
}
|
|
} else {
|
|
// TODO: provide some sort of report on how "good" the diffing was
|
|
please_commit(&mut self.mutations.edits);
|
|
for attribute in old.attributes {
|
|
self.edit_remove_attribute(attribute);
|
|
}
|
|
for attribute in new.attributes {
|
|
self.edit_set_attribute(attribute)
|
|
}
|
|
}
|
|
|
|
// Diff listeners
|
|
//
|
|
// It's extraordinarily rare to have the number/order of listeners change
|
|
// In the cases where the listeners change, we completely wipe the data attributes and add new ones
|
|
//
|
|
// We also need to make sure that all listeners are properly attached to the parent scope (fix_listener)
|
|
//
|
|
// TODO: take a more efficient path than this
|
|
let cur_scope: ScopeId = self.scope_stack.last().unwrap().clone();
|
|
if old.listeners.len() == new.listeners.len() {
|
|
for (old_l, new_l) in old.listeners.iter().zip(new.listeners.iter()) {
|
|
if old_l.event != new_l.event {
|
|
please_commit(&mut self.mutations.edits);
|
|
self.edit_remove_event_listener(old_l.event);
|
|
self.edit_new_event_listener(new_l, cur_scope);
|
|
}
|
|
new_l.mounted_node.set(old_l.mounted_node.get());
|
|
self.fix_listener(new_l);
|
|
}
|
|
} else {
|
|
please_commit(&mut self.mutations.edits);
|
|
for listener in old.listeners {
|
|
self.edit_remove_event_listener(listener.event);
|
|
}
|
|
for listener in new.listeners {
|
|
listener.mounted_node.set(Some(root));
|
|
self.edit_new_event_listener(listener, cur_scope);
|
|
|
|
// Make sure the listener gets attached to the scope list
|
|
self.fix_listener(listener);
|
|
}
|
|
}
|
|
|
|
if has_comitted {
|
|
self.edit_pop();
|
|
}
|
|
|
|
self.diff_children(old.children, new.children);
|
|
}
|
|
|
|
fn diff_component_nodes(
|
|
&mut self,
|
|
old: &'bump VComponent<'bump>,
|
|
new: &'bump VComponent<'bump>,
|
|
) {
|
|
let scope_addr = old.ass_scope.get().unwrap();
|
|
|
|
// Make sure we're dealing with the same component (by function pointer)
|
|
if old.user_fc == new.user_fc {
|
|
//
|
|
self.scope_stack.push(scope_addr);
|
|
|
|
// Make sure the new component vnode is referencing the right scope id
|
|
new.ass_scope.set(Some(scope_addr));
|
|
|
|
// make sure the component's caller function is up to date
|
|
let scope = self.get_scope_mut(&scope_addr).unwrap();
|
|
|
|
scope.update_scope_dependencies(new.caller.clone(), ScopeChildren(new.children));
|
|
|
|
// React doesn't automatically memoize, but we do.
|
|
let compare = old.comparator.unwrap();
|
|
|
|
match compare(new) {
|
|
true => {
|
|
// the props are the same...
|
|
}
|
|
false => {
|
|
// the props are different...
|
|
scope.run_scope().unwrap();
|
|
self.diff_node(scope.frames.wip_head(), scope.frames.fin_head());
|
|
}
|
|
}
|
|
|
|
self.scope_stack.pop();
|
|
|
|
self.seen_scopes.insert(scope_addr);
|
|
} else {
|
|
todo!();
|
|
|
|
// let mut old_iter = RealChildIterator::new(old_node, &self.vdom);
|
|
// let first = old_iter
|
|
// .next()
|
|
// .expect("Components should generate a placeholder root");
|
|
|
|
// // remove any leftovers
|
|
// for to_remove in old_iter {
|
|
// self.edit_push_root(to_remove.direct_id());
|
|
// self.edit_remove();
|
|
// }
|
|
|
|
// // seems like we could combine this into a single instruction....
|
|
// self.replace_node_with_node(first.direct_id(), old_node, new_node);
|
|
|
|
// // Wipe the old one and plant the new one
|
|
// let old_scope = old.ass_scope.get().unwrap();
|
|
// self.destroy_scopes(old_scope);
|
|
}
|
|
}
|
|
|
|
fn diff_fragment_nodes(&mut self, old: &'bump VFragment<'bump>, new: &'bump VFragment<'bump>) {
|
|
// This is the case where options or direct vnodes might be used.
|
|
// In this case, it's faster to just skip ahead to their diff
|
|
if old.children.len() == 1 && new.children.len() == 1 {
|
|
self.diff_node(&old.children[0], &new.children[0]);
|
|
return;
|
|
}
|
|
|
|
self.diff_children(old.children, new.children);
|
|
}
|
|
|
|
/// Destroy a scope and all of its descendents.
|
|
///
|
|
/// Calling this will run the destuctors on all hooks in the tree.
|
|
/// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
|
|
fn destroy_scopes(&mut self, old_scope: ScopeId) {
|
|
let mut nodes_to_delete = vec![old_scope];
|
|
let mut scopes_to_explore = vec![old_scope];
|
|
|
|
// explore the scope tree breadth first
|
|
while let Some(scope_id) = scopes_to_explore.pop() {
|
|
// If we're planning on deleting this node, then we don't need to both rendering it
|
|
self.seen_scopes.insert(scope_id);
|
|
let scope = self.get_scope(&scope_id).unwrap();
|
|
for child in scope.descendents.borrow().iter() {
|
|
// Add this node to be explored
|
|
scopes_to_explore.push(child.clone());
|
|
|
|
// Also add it for deletion
|
|
nodes_to_delete.push(child.clone());
|
|
}
|
|
}
|
|
|
|
// Delete all scopes that we found as part of this subtree
|
|
for node in nodes_to_delete {
|
|
log::debug!("Removing scope {:#?}", node);
|
|
let _scope = self.vdom.try_remove(node).unwrap();
|
|
// do anything we need to do to delete the scope
|
|
// I think we need to run the destructors on the hooks
|
|
// TODO
|
|
}
|
|
}
|
|
|
|
// Diff the given set of old and new children.
|
|
//
|
|
// The parent must be on top of the change list stack when this function is
|
|
// entered:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// the change list stack is in the same state when this function returns.
|
|
//
|
|
// If old no anchors are provided, then it's assumed that we can freely append to the parent.
|
|
//
|
|
// Remember, non-empty lists does not mean that there are real elements, just that there are virtual elements.
|
|
fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
|
|
const IS_EMPTY: bool = true;
|
|
const IS_NOT_EMPTY: bool = false;
|
|
|
|
match (old.is_empty(), new.is_empty()) {
|
|
(IS_EMPTY, IS_EMPTY) => {}
|
|
|
|
// Completely adding new nodes, removing any placeholder if it exists
|
|
(IS_EMPTY, IS_NOT_EMPTY) => {
|
|
todo!();
|
|
// let meta = todo!();
|
|
// let meta = self.create_children(new);
|
|
// let meta = self.create_children(new);
|
|
// self.edit_append_children(meta.added_to_stack);
|
|
}
|
|
|
|
// Completely removing old nodes and putting an anchor in its place
|
|
// no anchor (old has nodes) and the new is empty
|
|
// remove all the old nodes
|
|
(IS_NOT_EMPTY, IS_EMPTY) => {
|
|
for node in old {
|
|
self.remove_vnode(node);
|
|
}
|
|
}
|
|
|
|
(IS_NOT_EMPTY, IS_NOT_EMPTY) => {
|
|
let first_old = &old[0];
|
|
let first_new = &new[0];
|
|
|
|
match (&first_old, &first_new) {
|
|
// Anchors can only appear in empty fragments
|
|
(VNode::Anchor(old_anchor), VNode::Anchor(new_anchor)) => {
|
|
old_anchor.dom_id.set(new_anchor.dom_id.get());
|
|
}
|
|
|
|
// Replace the anchor with whatever new nodes are coming down the pipe
|
|
(VNode::Anchor(anchor), _) => {
|
|
self.edit_push_root(anchor.dom_id.get().unwrap());
|
|
let mut added = 0;
|
|
for el in new {
|
|
todo!();
|
|
// let meta = self.create_vnode(el);
|
|
// added += meta.added_to_stack;
|
|
}
|
|
self.edit_replace_with(1, added);
|
|
}
|
|
|
|
// Replace whatever nodes are sitting there with the anchor
|
|
(_, VNode::Anchor(anchor)) => {
|
|
self.replace_and_create_many_with_many(old, [first_new]);
|
|
}
|
|
|
|
// Use the complex diff algorithm to diff the nodes
|
|
_ => {
|
|
let new_is_keyed = new[0].key().is_some();
|
|
let old_is_keyed = old[0].key().is_some();
|
|
|
|
debug_assert!(
|
|
new.iter().all(|n| n.key().is_some() == new_is_keyed),
|
|
"all siblings must be keyed or all siblings must be non-keyed"
|
|
);
|
|
debug_assert!(
|
|
old.iter().all(|o| o.key().is_some() == old_is_keyed),
|
|
"all siblings must be keyed or all siblings must be non-keyed"
|
|
);
|
|
|
|
if new_is_keyed && old_is_keyed {
|
|
self.diff_keyed_children(old, new);
|
|
} else {
|
|
self.diff_non_keyed_children(old, new);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Diffing "keyed" children.
|
|
//
|
|
// With keyed children, we care about whether we delete, move, or create nodes
|
|
// versus mutate existing nodes in place. Presumably there is some sort of CSS
|
|
// transition animation that makes the virtual DOM diffing algorithm
|
|
// observable. By specifying keys for nodes, we know which virtual DOM nodes
|
|
// must reuse (or not reuse) the same physical DOM nodes.
|
|
//
|
|
// This is loosely based on Inferno's keyed patching implementation. However, we
|
|
// have to modify the algorithm since we are compiling the diff down into change
|
|
// list instructions that will be executed later, rather than applying the
|
|
// changes to the DOM directly as we compare virtual DOMs.
|
|
//
|
|
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
|
|
//
|
|
// The stack is empty upon entry.
|
|
fn diff_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
|
|
if cfg!(debug_assertions) {
|
|
let mut keys = fxhash::FxHashSet::default();
|
|
let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| {
|
|
keys.clear();
|
|
for child in children {
|
|
let key = child.key();
|
|
debug_assert!(
|
|
key.is_some(),
|
|
"if any sibling is keyed, all siblings must be keyed"
|
|
);
|
|
keys.insert(key);
|
|
}
|
|
debug_assert_eq!(
|
|
children.len(),
|
|
keys.len(),
|
|
"keyed siblings must each have a unique key"
|
|
);
|
|
};
|
|
assert_unique_keys(old);
|
|
assert_unique_keys(new);
|
|
}
|
|
|
|
// First up, we diff all the nodes with the same key at the beginning of the
|
|
// children.
|
|
//
|
|
// `shared_prefix_count` is the count of how many nodes at the start of
|
|
// `new` and `old` share the same keys.
|
|
//
|
|
// TODO: just inline this
|
|
let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
|
|
KeyedPrefixResult::Finished => return,
|
|
KeyedPrefixResult::MoreWorkToDo(count) => count,
|
|
};
|
|
|
|
// Next, we find out how many of the nodes at the end of the children have
|
|
// the same key. We do _not_ diff them yet, since we want to emit the change
|
|
// list instructions such that they can be applied in a single pass over the
|
|
// DOM. Instead, we just save this information for later.
|
|
//
|
|
// `shared_suffix_count` is the count of how many nodes at the end of `new`
|
|
// and `old` share the same keys.
|
|
let shared_suffix_count = old[shared_prefix_count..]
|
|
.iter()
|
|
.rev()
|
|
.zip(new[shared_prefix_count..].iter().rev())
|
|
.take_while(|&(old, new)| old.key() == new.key())
|
|
.count();
|
|
|
|
let old_shared_suffix_start = old.len() - shared_suffix_count;
|
|
let new_shared_suffix_start = new.len() - shared_suffix_count;
|
|
|
|
// Ok, we now hopefully have a smaller range of children in the middle
|
|
// within which to re-order nodes with the same keys, remove old nodes with
|
|
// now-unused keys, and create new nodes with fresh keys.
|
|
self.diff_keyed_middle(
|
|
&old[shared_prefix_count..old_shared_suffix_start],
|
|
&new[shared_prefix_count..new_shared_suffix_start],
|
|
shared_prefix_count,
|
|
shared_suffix_count,
|
|
old_shared_suffix_start,
|
|
);
|
|
|
|
// Finally, diff the nodes at the end of `old` and `new` that share keys.
|
|
let old_suffix = &old[old_shared_suffix_start..];
|
|
let new_suffix = &new[new_shared_suffix_start..];
|
|
debug_assert_eq!(old_suffix.len(), new_suffix.len());
|
|
if !old_suffix.is_empty() {
|
|
self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
|
|
}
|
|
}
|
|
|
|
// Diff the prefix of children in `new` and `old` that share the same keys in
|
|
// the same order.
|
|
//
|
|
// The stack is empty upon entry.
|
|
fn diff_keyed_prefix(
|
|
&mut self,
|
|
old: &'bump [VNode<'bump>],
|
|
new: &'bump [VNode<'bump>],
|
|
) -> KeyedPrefixResult {
|
|
let mut shared_prefix_count = 0;
|
|
|
|
for (old, new) in old.iter().zip(new.iter()) {
|
|
// abort early if we finally run into nodes with different keys
|
|
if old.key() != new.key() {
|
|
break;
|
|
}
|
|
self.diff_node(old, new);
|
|
shared_prefix_count += 1;
|
|
}
|
|
|
|
// If that was all of the old children, then create and append the remaining
|
|
// new children and we're finished.
|
|
if shared_prefix_count == old.len() {
|
|
// Load the last element
|
|
let last_node = self.find_last_element(new.last().unwrap()).direct_id();
|
|
self.edit_push_root(last_node);
|
|
|
|
// Create the new children and insert them after
|
|
//
|
|
todo!();
|
|
// let meta = self.create_children(&new[shared_prefix_count..]);
|
|
// self.edit_insert_after(meta.added_to_stack);
|
|
|
|
return KeyedPrefixResult::Finished;
|
|
}
|
|
|
|
// And if that was all of the new children, then remove all of the remaining
|
|
// old children and we're finished.
|
|
if shared_prefix_count == new.len() {
|
|
self.remove_children(&old[shared_prefix_count..]);
|
|
return KeyedPrefixResult::Finished;
|
|
}
|
|
|
|
KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
|
|
}
|
|
|
|
// Create the given children and append them to the parent node.
|
|
//
|
|
// The parent node must currently be on top of the change list stack:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// When this function returns, the change list stack is in the same state.
|
|
pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) {
|
|
for child in new {
|
|
todo!();
|
|
// let meta = self.create_vnode(child);
|
|
// self.edit_append_children(meta.added_to_stack);
|
|
}
|
|
}
|
|
|
|
// The most-general, expensive code path for keyed children diffing.
|
|
//
|
|
// We find the longest subsequence within `old` of children that are relatively
|
|
// ordered the same way in `new` (via finding a longest-increasing-subsequence
|
|
// of the old child's index within `new`). The children that are elements of
|
|
// this subsequence will remain in place, minimizing the number of DOM moves we
|
|
// will have to do.
|
|
//
|
|
// Upon entry to this function, the change list stack must be empty.
|
|
//
|
|
// This function will load the appropriate nodes onto the stack and do diffing in place.
|
|
//
|
|
// Upon exit from this function, it will be restored to that same state.
|
|
fn diff_keyed_middle(
|
|
&mut self,
|
|
old: &'bump [VNode<'bump>],
|
|
mut new: &'bump [VNode<'bump>],
|
|
shared_prefix_count: usize,
|
|
shared_suffix_count: usize,
|
|
old_shared_suffix_start: usize,
|
|
) {
|
|
// Should have already diffed the shared-key prefixes and suffixes.
|
|
debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
|
|
debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
|
|
|
|
// // The algorithm below relies upon using `u32::MAX` as a sentinel
|
|
// // value, so if we have that many new nodes, it won't work. This
|
|
// // check is a bit academic (hence only enabled in debug), since
|
|
// // wasm32 doesn't have enough address space to hold that many nodes
|
|
// // in memory.
|
|
// debug_assert!(new.len() < u32::MAX as usize);
|
|
|
|
// Map from each `old` node's key to its index within `old`.
|
|
// IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
|
|
let mut old_key_to_old_index = old
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, o)| (o.key().unwrap(), i))
|
|
.collect::<FxHashMap<_, _>>();
|
|
|
|
// The set of shared keys between `new` and `old`.
|
|
let mut shared_keys = FxHashSet::default();
|
|
// let mut to_remove = FxHashSet::default();
|
|
let mut to_add = FxHashSet::default();
|
|
|
|
// Map from each index in `new` to the index of the node in `old` that
|
|
// has the same key.
|
|
let mut new_index_to_old_index = new
|
|
.iter()
|
|
.map(|n| {
|
|
let key = n.key().unwrap();
|
|
match old_key_to_old_index.get(&key) {
|
|
Some(&index) => {
|
|
shared_keys.insert(key);
|
|
index
|
|
}
|
|
None => {
|
|
//
|
|
to_add.insert(key);
|
|
u32::MAX as usize
|
|
}
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
dbg!(&shared_keys);
|
|
dbg!(&to_add);
|
|
|
|
// If none of the old keys are reused by the new children, then we
|
|
// remove all the remaining old children and create the new children
|
|
// afresh.
|
|
if shared_suffix_count == 0 && shared_keys.is_empty() {
|
|
self.replace_and_create_many_with_many(old, new);
|
|
return;
|
|
}
|
|
|
|
// // Remove any old children whose keys were not reused in the new
|
|
// // children. Remove from the end first so that we don't mess up indices.
|
|
// for old_child in old.iter().rev() {
|
|
// if !shared_keys.contains(&old_child.key()) {
|
|
// self.remove_child(old_child);
|
|
// }
|
|
// }
|
|
|
|
// let old_keyds = old.iter().map(|f| f.key()).collect::<Vec<_>>();
|
|
// let new_keyds = new.iter().map(|f| f.key()).collect::<Vec<_>>();
|
|
// dbg!(old_keyds);
|
|
// dbg!(new_keyds);
|
|
|
|
// // If there aren't any more new children, then we are done!
|
|
// if new.is_empty() {
|
|
// return;
|
|
// }
|
|
|
|
// The longest increasing subsequence within `new_index_to_old_index`. This
|
|
// is the longest sequence on DOM nodes in `old` that are relatively ordered
|
|
// correctly within `new`. We will leave these nodes in place in the DOM,
|
|
// and only move nodes that are not part of the LIS. This results in the
|
|
// maximum number of DOM nodes left in place, AKA the minimum number of DOM
|
|
// nodes moved.
|
|
let mut new_index_is_in_lis = FxHashSet::default();
|
|
new_index_is_in_lis.reserve(new_index_to_old_index.len());
|
|
|
|
let mut predecessors = vec![0; new_index_to_old_index.len()];
|
|
let mut starts = vec![0; new_index_to_old_index.len()];
|
|
|
|
longest_increasing_subsequence::lis_with(
|
|
&new_index_to_old_index,
|
|
&mut new_index_is_in_lis,
|
|
|a, b| a < b,
|
|
&mut predecessors,
|
|
&mut starts,
|
|
);
|
|
|
|
dbg!(&new_index_is_in_lis);
|
|
// use the old nodes to navigate the new nodes
|
|
|
|
let mut lis_in_order = new_index_is_in_lis.into_iter().collect::<Vec<_>>();
|
|
lis_in_order.sort_unstable();
|
|
|
|
dbg!(&lis_in_order);
|
|
|
|
// we walk front to back, creating the head node
|
|
|
|
// diff the shared, in-place nodes first
|
|
// this makes sure we can rely on their first/last nodes being correct later on
|
|
for id in &lis_in_order {
|
|
let new_node = &new[*id];
|
|
let key = new_node.key().unwrap();
|
|
let old_index = old_key_to_old_index.get(&key).unwrap();
|
|
let old_node = &old[*old_index];
|
|
self.diff_node(old_node, new_node);
|
|
}
|
|
|
|
// return the old node from the key
|
|
let load_old_node_from_lsi = |key| -> &VNode {
|
|
let old_index = old_key_to_old_index.get(key).unwrap();
|
|
let old_node = &old[*old_index];
|
|
old_node
|
|
};
|
|
|
|
let mut root = None;
|
|
let mut new_iter = new.iter().enumerate();
|
|
for lis_id in &lis_in_order {
|
|
eprintln!("tracking {:?}", lis_id);
|
|
// this is the next milestone node we are working up to
|
|
let new_anchor = &new[*lis_id];
|
|
root = Some(new_anchor);
|
|
|
|
let anchor_el = self.find_first_element(new_anchor);
|
|
self.edit_push_root(anchor_el.direct_id());
|
|
// let mut pushed = false;
|
|
|
|
'inner: loop {
|
|
let (next_id, next_new) = new_iter.next().unwrap();
|
|
if next_id == *lis_id {
|
|
// we've reached the milestone, break this loop so we can step to the next milestone
|
|
// remember: we already diffed this node
|
|
eprintln!("breaking {:?}", next_id);
|
|
break 'inner;
|
|
} else {
|
|
let key = next_new.key().unwrap();
|
|
eprintln!("found key {:?}", key);
|
|
if shared_keys.contains(&key) {
|
|
eprintln!("key is contained {:?}", key);
|
|
shared_keys.remove(key);
|
|
// diff the two nodes
|
|
let old_node = load_old_node_from_lsi(key);
|
|
self.diff_node(old_node, next_new);
|
|
|
|
// now move all the nodes into the right spot
|
|
for child in RealChildIterator::new(next_new, self.vdom) {
|
|
let el = child.direct_id();
|
|
self.edit_push_root(el);
|
|
self.edit_insert_before(1);
|
|
}
|
|
} else {
|
|
eprintln!("key is not contained {:?}", key);
|
|
// new node needs to be created
|
|
// insert it before the current milestone
|
|
todo!();
|
|
// let meta = self.create_vnode(next_new);
|
|
// self.edit_insert_before(meta.added_to_stack);
|
|
}
|
|
}
|
|
}
|
|
|
|
self.edit_pop();
|
|
}
|
|
|
|
let final_lis_node = root.unwrap();
|
|
let final_el_node = self.find_last_element(final_lis_node);
|
|
let final_el = final_el_node.direct_id();
|
|
self.edit_push_root(final_el);
|
|
|
|
let mut last_iter = new.iter().rev().enumerate();
|
|
let last_key = final_lis_node.key().unwrap();
|
|
loop {
|
|
let (last_id, last_node) = last_iter.next().unwrap();
|
|
let key = last_node.key().unwrap();
|
|
|
|
eprintln!("checking final nodes {:?}", key);
|
|
|
|
if last_key == key {
|
|
eprintln!("breaking final nodes");
|
|
break;
|
|
}
|
|
|
|
if shared_keys.contains(&key) {
|
|
eprintln!("key is contained {:?}", key);
|
|
shared_keys.remove(key);
|
|
// diff the two nodes
|
|
let old_node = load_old_node_from_lsi(key);
|
|
self.diff_node(old_node, last_node);
|
|
|
|
// now move all the nodes into the right spot
|
|
for child in RealChildIterator::new(last_node, self.vdom) {
|
|
let el = child.direct_id();
|
|
self.edit_push_root(el);
|
|
self.edit_insert_after(1);
|
|
}
|
|
} else {
|
|
eprintln!("key is not contained {:?}", key);
|
|
// new node needs to be created
|
|
// insert it before the current milestone
|
|
todo!();
|
|
// let meta = self.create_vnode(last_node);
|
|
// self.edit_insert_after(meta.added_to_stack);
|
|
}
|
|
}
|
|
self.edit_pop();
|
|
}
|
|
|
|
// Diff the suffix of keyed children that share the same keys in the same order.
|
|
//
|
|
// The parent must be on the change list stack when we enter this function:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// When this function exits, the change list stack remains the same.
|
|
fn diff_keyed_suffix(
|
|
&mut self,
|
|
old: &'bump [VNode<'bump>],
|
|
new: &'bump [VNode<'bump>],
|
|
new_shared_suffix_start: usize,
|
|
) {
|
|
debug_assert_eq!(old.len(), new.len());
|
|
debug_assert!(!old.is_empty());
|
|
|
|
for (old_child, new_child) in old.iter().zip(new.iter()) {
|
|
self.diff_node(old_child, new_child);
|
|
}
|
|
}
|
|
|
|
// Diff children that are not keyed.
|
|
//
|
|
// The parent must be on the top of the change list stack when entering this
|
|
// function:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// the change list stack is in the same state when this function returns.
|
|
async fn diff_non_keyed_children(
|
|
&mut self,
|
|
old: &'bump [VNode<'bump>],
|
|
new: &'bump [VNode<'bump>],
|
|
) {
|
|
// Handled these cases in `diff_children` before calling this function.
|
|
//
|
|
debug_assert!(!new.is_empty());
|
|
debug_assert!(!old.is_empty());
|
|
|
|
match old.len().cmp(&new.len()) {
|
|
// old.len > new.len -> removing some nodes
|
|
Ordering::Greater => {
|
|
// diff them together
|
|
for (new_child, old_child) in new.iter().zip(old.iter()) {
|
|
self.diff_node(old_child, new_child);
|
|
}
|
|
|
|
// todo: we would emit fewer instructions if we just did a replace many
|
|
// remove whatever is still dangling
|
|
for item in &old[new.len()..] {
|
|
for i in RealChildIterator::new(item, self.vdom) {
|
|
self.edit_push_root(i.direct_id());
|
|
self.edit_remove();
|
|
}
|
|
}
|
|
}
|
|
|
|
// old.len < new.len -> adding some nodes
|
|
// this is wrong in the case where we're diffing fragments
|
|
//
|
|
// we need to save the last old element and then replace it with all the new ones
|
|
Ordering::Less => {
|
|
// Add the new elements to the last old element while it still exists
|
|
let last = self.find_last_element(old.last().unwrap());
|
|
self.edit_push_root(last.direct_id());
|
|
|
|
// create the rest and insert them
|
|
todo!();
|
|
// let meta = self.create_children(&new[old.len()..]);
|
|
// self.edit_insert_after(meta.added_to_stack);
|
|
|
|
self.edit_pop();
|
|
|
|
// diff the rest
|
|
for (new_child, old_child) in new.iter().zip(old.iter()) {
|
|
self.diff_node(old_child, new_child)
|
|
}
|
|
}
|
|
|
|
// old.len == new.len -> no nodes added/removed, but perhaps changed
|
|
Ordering::Equal => {
|
|
for (new_child, old_child) in new.iter().zip(old.iter()) {
|
|
self.diff_node(old_child, new_child);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ======================
|
|
// Support methods
|
|
// ======================
|
|
// Remove all of a node's children.
|
|
//
|
|
// The change list stack must have this shape upon entry to this function:
|
|
//
|
|
// [... parent]
|
|
//
|
|
// When this function returns, the change list stack is in the same state.
|
|
fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) {
|
|
// debug_assert!(self.traversal_is_committed());
|
|
log::debug!("REMOVING CHILDREN");
|
|
for _child in old {
|
|
// registry.remove_subtree(child);
|
|
}
|
|
// Fast way to remove all children: set the node's textContent to an empty
|
|
// string.
|
|
todo!()
|
|
// self.set_inner_text("");
|
|
}
|
|
// Remove the current child and all of its following siblings.
|
|
//
|
|
// The change list stack must have this shape upon entry to this function:
|
|
//
|
|
// [... parent child]
|
|
//
|
|
// After the function returns, the child is no longer on the change list stack:
|
|
//
|
|
// [... parent]
|
|
fn remove_children(&mut self, old: &'bump [VNode<'bump>]) {
|
|
self.replace_and_create_many_with_many(old, None)
|
|
}
|
|
|
|
fn find_last_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
|
|
let mut search_node = Some(vnode);
|
|
|
|
loop {
|
|
let node = search_node.take().unwrap();
|
|
match &node {
|
|
// the ones that have a direct id
|
|
VNode::Text(_) | VNode::Element(_) | VNode::Anchor(_) | VNode::Suspended(_) => {
|
|
break node
|
|
}
|
|
|
|
VNode::Fragment(frag) => {
|
|
search_node = frag.children.last();
|
|
}
|
|
VNode::Component(el) => {
|
|
let scope_id = el.ass_scope.get().unwrap();
|
|
let scope = self.get_scope(&scope_id).unwrap();
|
|
search_node = Some(scope.root());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn find_first_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
|
|
let mut search_node = Some(vnode);
|
|
|
|
loop {
|
|
let node = search_node.take().unwrap();
|
|
match &node {
|
|
// the ones that have a direct id
|
|
VNode::Text(_) | VNode::Element(_) | VNode::Anchor(_) | VNode::Suspended(_) => {
|
|
break node
|
|
}
|
|
|
|
VNode::Fragment(frag) => {
|
|
search_node = Some(&frag.children[0]);
|
|
}
|
|
VNode::Component(el) => {
|
|
let scope_id = el.ass_scope.get().unwrap();
|
|
let scope = self.get_scope(&scope_id).unwrap();
|
|
search_node = Some(scope.root());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn remove_child(&mut self, node: &'bump VNode<'bump>) {
|
|
self.replace_and_create_many_with_many(Some(node), None);
|
|
}
|
|
|
|
/// Remove all the old nodes and replace them with newly created new nodes.
|
|
///
|
|
/// The new nodes *will* be created - don't create them yourself!
|
|
fn replace_and_create_many_with_many(
|
|
&mut self,
|
|
old_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
|
|
new_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
|
|
) {
|
|
let mut nodes_to_replace = Vec::new();
|
|
let mut nodes_to_search = old_nodes.into_iter().collect::<Vec<_>>();
|
|
let mut scopes_obliterated = Vec::new();
|
|
while let Some(node) = nodes_to_search.pop() {
|
|
match &node {
|
|
// the ones that have a direct id return immediately
|
|
VNode::Text(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
|
|
VNode::Element(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
|
|
VNode::Anchor(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
|
|
VNode::Suspended(el) => nodes_to_replace.push(el.node.get().unwrap()),
|
|
|
|
// Fragments will either have a single anchor or a list of children
|
|
VNode::Fragment(frag) => {
|
|
for child in frag.children {
|
|
nodes_to_search.push(child);
|
|
}
|
|
}
|
|
|
|
// Components can be any of the nodes above
|
|
// However, we do need to track which components need to be removed
|
|
VNode::Component(el) => {
|
|
let scope_id = el.ass_scope.get().unwrap();
|
|
let scope = self.get_scope(&scope_id).unwrap();
|
|
let root = scope.root();
|
|
nodes_to_search.push(root);
|
|
scopes_obliterated.push(scope_id);
|
|
}
|
|
}
|
|
// TODO: enable internal garabge collection
|
|
// self.create_garbage(node);
|
|
}
|
|
|
|
let n = nodes_to_replace.len();
|
|
for node in nodes_to_replace {
|
|
self.edit_push_root(node);
|
|
}
|
|
|
|
let mut nodes_created = 0;
|
|
for node in new_nodes {
|
|
todo!();
|
|
// let meta = self.create_vnode(node);
|
|
// nodes_created += meta.added_to_stack;
|
|
}
|
|
|
|
// if 0 nodes are created, then it gets interperted as a deletion
|
|
self.edit_replace_with(n as u32, nodes_created);
|
|
|
|
// obliterate!
|
|
for scope in scopes_obliterated {
|
|
self.destroy_scopes(scope);
|
|
}
|
|
}
|
|
|
|
fn create_garbage(&mut self, node: &'bump VNode<'bump>) {
|
|
match self.current_scope().and_then(|id| self.get_scope(&id)) {
|
|
Some(scope) => {
|
|
let garbage: &'bump VNode<'static> = unsafe { std::mem::transmute(node) };
|
|
scope.pending_garbage.borrow_mut().push(garbage);
|
|
}
|
|
None => {
|
|
log::info!("No scope to collect garbage into")
|
|
}
|
|
}
|
|
}
|
|
|
|
fn immediately_dispose_garabage(&mut self, node: ElementId) {
|
|
self.vdom.collect_garbage(node)
|
|
}
|
|
|
|
fn replace_node_with_node(
|
|
&mut self,
|
|
anchor: ElementId,
|
|
old_node: &'bump VNode<'bump>,
|
|
new_node: &'bump VNode<'bump>,
|
|
) {
|
|
self.edit_push_root(anchor);
|
|
todo!();
|
|
// let meta = self.create_vnode(new_node);
|
|
// self.edit_replace_with(1, meta.added_to_stack);
|
|
// self.create_garbage(old_node);
|
|
self.edit_pop();
|
|
}
|
|
|
|
fn remove_vnode(&mut self, node: &'bump VNode<'bump>) {
|
|
match &node {
|
|
VNode::Text(el) => self.immediately_dispose_garabage(node.direct_id()),
|
|
VNode::Element(el) => {
|
|
self.immediately_dispose_garabage(node.direct_id());
|
|
for child in el.children {
|
|
self.remove_vnode(&child);
|
|
}
|
|
}
|
|
VNode::Anchor(a) => {
|
|
//
|
|
}
|
|
VNode::Fragment(frag) => {
|
|
for child in frag.children {
|
|
self.remove_vnode(&child);
|
|
}
|
|
}
|
|
VNode::Component(el) => {
|
|
//
|
|
// self.destroy_scopes(old_scope)
|
|
}
|
|
VNode::Suspended(_) => todo!(),
|
|
}
|
|
}
|
|
|
|
fn current_scope(&self) -> Option<ScopeId> {
|
|
self.scope_stack.last().map(|f| f.clone())
|
|
}
|
|
|
|
fn fix_listener<'a>(&mut self, listener: &'a Listener<'a>) {
|
|
let scope_id = self.current_scope();
|
|
if let Some(scope_id) = scope_id {
|
|
let scope = self.get_scope(&scope_id).unwrap();
|
|
let mut queue = scope.listeners.borrow_mut();
|
|
let long_listener: &'a Listener<'static> = unsafe { std::mem::transmute(listener) };
|
|
queue.push(long_listener as *const _)
|
|
}
|
|
}
|
|
|
|
pub fn get_scope_mut(&mut self, id: &ScopeId) -> Option<&'bump mut Scope> {
|
|
// ensure we haven't seen this scope before
|
|
// if we have, then we're trying to alias it, which is not allowed
|
|
debug_assert!(!self.seen_scopes.contains(id));
|
|
|
|
unsafe { self.vdom.get_scope_mut(*id) }
|
|
}
|
|
pub fn get_scope(&mut self, id: &ScopeId) -> Option<&'bump Scope> {
|
|
// ensure we haven't seen this scope before
|
|
// if we have, then we're trying to alias it, which is not allowed
|
|
unsafe { self.vdom.get_scope(*id) }
|
|
}
|
|
|
|
// Navigation
|
|
pub(crate) fn edit_push_root(&mut self, root: ElementId) {
|
|
let id = root.as_u64();
|
|
self.mutations.edits.push(PushRoot { id });
|
|
}
|
|
|
|
pub(crate) fn edit_pop(&mut self) {
|
|
self.mutations.edits.push(PopRoot {});
|
|
}
|
|
|
|
// Add Nodes to the dom
|
|
// add m nodes from the stack
|
|
pub(crate) fn edit_append_children(&mut self, many: u32) {
|
|
self.mutations.edits.push(AppendChildren { many });
|
|
}
|
|
|
|
// replace the n-m node on the stack with the m nodes
|
|
// ends with the last element of the chain on the top of the stack
|
|
pub(crate) fn edit_replace_with(&mut self, n: u32, m: u32) {
|
|
self.mutations.edits.push(ReplaceWith { n, m });
|
|
}
|
|
|
|
pub(crate) fn edit_insert_after(&mut self, n: u32) {
|
|
self.mutations.edits.push(InsertAfter { n });
|
|
}
|
|
|
|
pub(crate) fn edit_insert_before(&mut self, n: u32) {
|
|
self.mutations.edits.push(InsertBefore { n });
|
|
}
|
|
|
|
// Remove Nodesfrom the dom
|
|
pub(crate) fn edit_remove(&mut self) {
|
|
self.mutations.edits.push(Remove);
|
|
}
|
|
|
|
// Create
|
|
pub(crate) fn edit_create_text_node(&mut self, text: &'bump str, id: ElementId) {
|
|
let id = id.as_u64();
|
|
self.mutations.edits.push(CreateTextNode { text, id });
|
|
}
|
|
|
|
pub(crate) fn edit_create_element(
|
|
&mut self,
|
|
tag: &'static str,
|
|
ns: Option<&'static str>,
|
|
id: ElementId,
|
|
) {
|
|
let id = id.as_u64();
|
|
match ns {
|
|
Some(ns) => self.mutations.edits.push(CreateElementNs { id, ns, tag }),
|
|
None => self.mutations.edits.push(CreateElement { id, tag }),
|
|
}
|
|
}
|
|
|
|
// placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom
|
|
pub(crate) fn edit_create_placeholder(&mut self, id: ElementId) {
|
|
let id = id.as_u64();
|
|
self.mutations.edits.push(CreatePlaceholder { id });
|
|
}
|
|
|
|
// events
|
|
pub(crate) fn edit_new_event_listener(&mut self, listener: &Listener, scope: ScopeId) {
|
|
let Listener {
|
|
event,
|
|
mounted_node,
|
|
..
|
|
} = listener;
|
|
|
|
let element_id = mounted_node.get().unwrap().as_u64();
|
|
|
|
self.mutations.edits.push(NewEventListener {
|
|
scope,
|
|
event_name: event,
|
|
mounted_node_id: element_id,
|
|
});
|
|
}
|
|
|
|
pub(crate) fn edit_remove_event_listener(&mut self, event: &'static str) {
|
|
self.mutations.edits.push(RemoveEventListener { event });
|
|
}
|
|
|
|
// modify
|
|
pub(crate) fn edit_set_text(&mut self, text: &'bump str) {
|
|
self.mutations.edits.push(SetText { text });
|
|
}
|
|
|
|
pub(crate) fn edit_set_attribute(&mut self, attribute: &'bump Attribute) {
|
|
let Attribute {
|
|
name,
|
|
value,
|
|
is_static,
|
|
is_volatile,
|
|
namespace,
|
|
} = attribute;
|
|
// field: &'static str,
|
|
// value: &'bump str,
|
|
// ns: Option<&'static str>,
|
|
self.mutations.edits.push(SetAttribute {
|
|
field: name,
|
|
value,
|
|
ns: *namespace,
|
|
});
|
|
}
|
|
|
|
pub(crate) fn edit_set_attribute_ns(
|
|
&mut self,
|
|
attribute: &'bump Attribute,
|
|
namespace: &'bump str,
|
|
) {
|
|
let Attribute {
|
|
name,
|
|
value,
|
|
is_static,
|
|
is_volatile,
|
|
// namespace,
|
|
..
|
|
} = attribute;
|
|
// field: &'static str,
|
|
// value: &'bump str,
|
|
// ns: Option<&'static str>,
|
|
self.mutations.edits.push(SetAttribute {
|
|
field: name,
|
|
value,
|
|
ns: Some(namespace),
|
|
});
|
|
}
|
|
|
|
pub(crate) fn edit_remove_attribute(&mut self, attribute: &Attribute) {
|
|
let name = attribute.name;
|
|
self.mutations.edits.push(RemoveAttribute { name });
|
|
}
|
|
}
|
|
|
|
// When we create new nodes, we need to propagate some information back up the call chain.
|
|
// This gives the caller some information on how to handle things like insertins, appending, and subtree discarding.
|
|
#[derive(Debug)]
|
|
pub struct CreateMeta {
|
|
pub is_static: bool,
|
|
pub added_to_stack: u32,
|
|
}
|
|
|
|
impl CreateMeta {
|
|
fn new(is_static: bool, added_to_tack: u32) -> Self {
|
|
Self {
|
|
is_static,
|
|
added_to_stack: added_to_tack,
|
|
}
|
|
}
|
|
}
|
|
|
|
enum KeyedPrefixResult {
|
|
// Fast path: we finished diffing all the children just by looking at the
|
|
// prefix of shared keys!
|
|
Finished,
|
|
// There is more diffing work to do. Here is a count of how many children at
|
|
// the beginning of `new` and `old` we already processed.
|
|
MoreWorkToDo(usize),
|
|
}
|
|
|
|
fn find_first_real_node<'a>(
|
|
nodes: impl IntoIterator<Item = &'a VNode<'a>>,
|
|
scopes: &'a SharedResources,
|
|
) -> Option<&'a VNode<'a>> {
|
|
for node in nodes {
|
|
let mut iter = RealChildIterator::new(node, scopes);
|
|
if let Some(node) = iter.next() {
|
|
return Some(node);
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// This iterator iterates through a list of virtual children and only returns real children (Elements, Text, Anchors).
|
|
///
|
|
/// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like
|
|
/// "InsertBefore".
|
|
pub struct RealChildIterator<'a> {
|
|
scopes: &'a SharedResources,
|
|
|
|
// Heuristcally we should never bleed into 4 completely nested fragments/components
|
|
// Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
|
|
// TODO: use const generics instead of the 4 estimation
|
|
stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 4]>,
|
|
}
|
|
|
|
impl<'a> RealChildIterator<'a> {
|
|
pub fn new(starter: &'a VNode<'a>, scopes: &'a SharedResources) -> Self {
|
|
Self {
|
|
scopes,
|
|
stack: smallvec::smallvec![(0, starter)],
|
|
}
|
|
}
|
|
// keep the memory around
|
|
pub fn reset_with(&mut self, node: &'a VNode<'a>) {
|
|
self.stack.clear();
|
|
self.stack.push((0, node));
|
|
}
|
|
}
|
|
|
|
impl<'a> Iterator for RealChildIterator<'a> {
|
|
type Item = &'a VNode<'a>;
|
|
|
|
fn next(&mut self) -> Option<&'a VNode<'a>> {
|
|
let mut should_pop = false;
|
|
let mut returned_node: Option<&'a VNode<'a>> = None;
|
|
let mut should_push = None;
|
|
|
|
while returned_node.is_none() {
|
|
if let Some((count, node)) = self.stack.last_mut() {
|
|
match &node {
|
|
// We can only exit our looping when we get "real" nodes
|
|
// This includes fragments and components when they're empty (have a single root)
|
|
VNode::Element(_) | VNode::Text(_) => {
|
|
// We've recursed INTO an element/text
|
|
// We need to recurse *out* of it and move forward to the next
|
|
should_pop = true;
|
|
returned_node = Some(&*node);
|
|
}
|
|
|
|
// If we get a fragment we push the next child
|
|
VNode::Fragment(frag) => {
|
|
let subcount = *count as usize;
|
|
|
|
if frag.children.len() == 0 {
|
|
should_pop = true;
|
|
returned_node = Some(&*node);
|
|
}
|
|
|
|
if subcount >= frag.children.len() {
|
|
should_pop = true;
|
|
} else {
|
|
should_push = Some(&frag.children[subcount]);
|
|
}
|
|
}
|
|
// // If we get a fragment we push the next child
|
|
// VNodeKind::Fragment(frag) => {
|
|
// let subcount = *count as usize;
|
|
|
|
// if frag.children.len() == 0 {
|
|
// should_pop = true;
|
|
// returned_node = Some(&*node);
|
|
// }
|
|
|
|
// if subcount >= frag.children.len() {
|
|
// should_pop = true;
|
|
// } else {
|
|
// should_push = Some(&frag.children[subcount]);
|
|
// }
|
|
// }
|
|
|
|
// Immediately abort suspended nodes - can't do anything with them yet
|
|
VNode::Suspended(node) => {
|
|
// VNodeKind::Suspended => should_pop = true,
|
|
todo!()
|
|
}
|
|
|
|
VNode::Anchor(a) => {
|
|
todo!()
|
|
}
|
|
|
|
// For components, we load their root and push them onto the stack
|
|
VNode::Component(sc) => {
|
|
let scope =
|
|
unsafe { self.scopes.get_scope(sc.ass_scope.get().unwrap()) }.unwrap();
|
|
// let scope = self.scopes.get(sc.ass_scope.get().unwrap()).unwrap();
|
|
|
|
// Simply swap the current node on the stack with the root of the component
|
|
*node = scope.frames.fin_head();
|
|
}
|
|
}
|
|
} else {
|
|
// If there's no more items on the stack, we're done!
|
|
return None;
|
|
}
|
|
|
|
if should_pop {
|
|
self.stack.pop();
|
|
if let Some((id, _)) = self.stack.last_mut() {
|
|
*id += 1;
|
|
}
|
|
should_pop = false;
|
|
}
|
|
|
|
if let Some(push) = should_push {
|
|
self.stack.push((0, push));
|
|
should_push = None;
|
|
}
|
|
}
|
|
|
|
returned_node
|
|
}
|
|
}
|
|
|
|
fn compare_strs(a: &str, b: &str) -> bool {
|
|
// Check by pointer, optimizing for static strs
|
|
if !std::ptr::eq(a, b) {
|
|
// If the pointers are different then check by value
|
|
a == b
|
|
} else {
|
|
true
|
|
}
|
|
}
|
|
|
|
struct DfsIterator<'a> {
|
|
idx: usize,
|
|
node: Option<(&'a VNode<'a>, &'a VNode<'a>)>,
|
|
nodes: Option<(&'a [VNode<'a>], &'a [VNode<'a>])>,
|
|
}
|
|
impl<'a> Iterator for DfsIterator<'a> {
|
|
type Item = (&'a VNode<'a>, &'a VNode<'a>);
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
todo!()
|
|
}
|
|
}
|