dioxus/packages/core/src/diff.rs
2021-08-21 23:04:34 -04:00

1789 lines
68 KiB
Rust

//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
//!
//! The [`DiffMachine`] calculates the diffs between the old and new frames, updates the new nodes, and generates a set
//! of mutations for the RealDom to apply.
//!
//! ## Notice:
//!
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
//! Components, Fragments, Suspense, SubTree memoization, incremental diffing, cancelation, NodeRefs, and additional
//! batching operations.
//!
//! ## Implementation Details:
//!
//! ### IDs for elements
//! --------------------
//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
//! We don't necessarily require that DOM changes happen instantly during the diffing process, so the implementor may choose
//! to batch nodes if it is more performant for their application. The element IDs are indicies into the internal element
//! array. The expectation is that implemenetors will use the ID as an index into a Vec of real nodes, allowing for passive
//! garbage collection as the VirtualDOM replaces old nodes.
//!
//! When new vnodes are created through `cx.render`, they won't know which real node they correspond to. During diffing,
//! we always make sure to copy over the ID. If we don't do this properly, the ElementId will be populated incorrectly
//! and brick the user's page.
//!
//! ### Fragment Support
//! --------------------
//! Fragments (nodes without a parent) are supported through a combination of "replace with" and anchor vnodes. Fragments
//! can be particularly challenging when they are empty, so the anchor node lets us "reserve" a spot for the empty
//! fragment to be replaced with when it is no longer empty. This is guaranteed by logic in the NodeFactory - it is
//! impossible to craft a fragment with 0 elements - they must always have at least a single placeholder element. Adding
//! "dummy" nodes _is_ inefficient, but it makes our diffing algorithm faster and the implementation is completely up to
//! the platform.
//!
//! Other implementations either don't support fragments or use a "child + sibling" pattern to represent them. Our code is
//! vastly simpler and more performant when we can just create a placeholder element while the fragment has no children.
//!
//! ### Suspense
//! ------------
//! Dioxus implements suspense slightly differently than React. In React, each fiber is manually progressed until it runs
//! into a promise-like value. React will then work on the next "ready" fiber, checking back on the previous fiber once
//! it has finished its new work. In Dioxus, we use a similar approach, but try to completely render the tree before
//! switching sub-fibers. Instead, each future is submitted into a futures-queue and the node is manually loaded later on.
//!
//! We're able to use this approach because we use placeholder nodes - futures that aren't ready still get submitted to
//! DOM, but as a placeholder.
//!
//! Right now, the "suspense" queue is intertwined the hooks. In the future, we should allow any future to drive attributes
//! and contents, without the need for the "use_suspense" hook. For now, this is the quickest way to get suspense working.
//!
//! ## Subtree Memoization
//! -----------------------
//! We also employ "subtree memoization" which saves us from having to check trees which take no dynamic content. We can
//! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the
//! calls to "create" propogate this information upwards. Structures like the one below are entirely static:
//! ```rust
//! rsx!( div { class: "hello world", "this node is entirely static" } )
//! ```
//! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so its up to the reconciler to
//! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP and depends on comp-time
//! hashing of the subtree from the rsx! macro. We do a very limited form of static analysis via static string pointers as
//! a way of short-circuiting the most expensive checks.
//!
//! ## Bloom Filter and Heuristics
//! ------------------------------
//! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are
//! currently very rough, but will get better as time goes on. The information currently tracked includes the size of a
//! bump arena after first render, the number of hooks, and the number of nodes in the tree.
//!
//! ## Garbage Collection
//! ---------------------
//! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garabge
//! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then
//! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient.
//!
//! The IDs used by the key/map are just an index into a vec. This means that Dioxus will drive the key allocation strategy
//! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes
//! for the client. As new nodes are created, old nodes will be over-written.
//!
//! ## Further Reading and Thoughts
//! ----------------------------
//! There are more ways of increasing diff performance here that are currently not implemented.
//! More info on how to improve this diffing algorithm:
//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
use crate::{arena::SharedResources, innerlude::*};
use futures_util::Future;
use fxhash::{FxBuildHasher, FxHashMap, FxHashSet};
use indexmap::IndexSet;
use smallvec::{smallvec, SmallVec};
use std::{
any::Any, cell::Cell, cmp::Ordering, collections::HashSet, marker::PhantomData, pin::Pin,
};
use DomEdit::*;
/// Our DiffMachine is an iterative tree differ.
///
/// It uses techniques of a stack machine to allow pausing and restarting of the diff algorithm. This
/// was origially implemented using recursive techniques, but Rust lacks the abilty to call async functions recursively,
/// meaning we could not "pause" the original diffing algorithm.
///
/// Instead, we use a traditional stack machine approach to diff and create new nodes. The diff algorithm periodically
/// calls "yield_now" which allows the machine to pause and return control to the caller. The caller can then wait for
/// the next period of idle time, preventing our diff algorithm from blocking the main thread.
///
/// Funnily enough, this stack machine's entire job is to create instructions for another stack machine to execute. It's
/// stack machines all the way down!
pub struct DiffMachine<'bump> {
vdom: &'bump SharedResources,
pub mutations: Mutations<'bump>,
pub nodes_created_stack: SmallVec<[usize; 10]>,
pub instructions: SmallVec<[DiffInstruction<'bump>; 10]>,
pub scope_stack: SmallVec<[ScopeId; 5]>,
pub diffed: FxHashSet<ScopeId>,
pub seen_scopes: FxHashSet<ScopeId>,
}
/// The stack instructions we use to diff and create new nodes.
///
/// Right now, we insert an instruction for every child node we want to create and diff. This can be less efficient than
/// a custom iterator type - but this is current easier to implement. In the future, let's try interact with the stack less.
#[derive(Debug)]
pub enum DiffInstruction<'a> {
DiffNode {
old: &'a VNode<'a>,
new: &'a VNode<'a>,
},
DiffChildren {
old: &'a [VNode<'a>],
new: &'a [VNode<'a>],
},
// diff two lists of equally sized children
DiffEqual {
progress: usize,
old: &'a [VNode<'a>],
new: &'a [VNode<'a>],
},
Create {
node: &'a VNode<'a>,
and: MountType<'a>,
},
CreateChildren {
progress: usize,
children: &'a [VNode<'a>],
and: MountType<'a>,
},
Mount {
and: MountType<'a>,
},
PopScope,
}
#[derive(Debug, Clone, Copy)]
pub enum MountType<'a> {
Absorb,
Append,
Replace { old: &'a VNode<'a> },
InsertAfter { other_node: &'a VNode<'a> },
InsertBefore { other_node: &'a VNode<'a> },
}
impl<'bump> DiffMachine<'bump> {
pub(crate) fn new(
edits: Mutations<'bump>,
cur_scope: ScopeId,
shared: &'bump SharedResources,
) -> Self {
Self {
instructions: smallvec![],
nodes_created_stack: smallvec![],
mutations: edits,
scope_stack: smallvec![cur_scope],
vdom: shared,
diffed: FxHashSet::default(),
seen_scopes: FxHashSet::default(),
}
}
pub fn new_headless(shared: &'bump SharedResources) -> Self {
let edits = Mutations::new();
let cur_scope = ScopeId(0);
Self::new(edits, cur_scope, shared)
}
//
pub async fn diff_scope(&mut self, id: ScopeId) -> Result<()> {
let component = self.get_scope_mut(&id).ok_or_else(|| Error::NotMounted)?;
let (old, new) = (component.frames.wip_head(), component.frames.fin_head());
self.diff_node(old, new);
Ok(())
}
/// Progress the diffing for this "fiber"
///
/// This method implements a depth-first iterative tree traversal.
///
/// We do depth-first to maintain high cache locality (nodes were originally generated recursively).
pub async fn work(&mut self) -> Result<()> {
// todo: don't move the reused instructions around
// defer to individual functions so the compiler produces better code
// large functions tend to be difficult for the compiler to work with
while let Some(instruction) = self.instructions.last_mut() {
log::debug!("Handling diff instruction: {:?}", instruction);
// todo: call this less frequently, there is a bit of overhead involved
yield_now().await;
match instruction {
DiffInstruction::PopScope => {
self.instructions.pop();
self.scope_stack.pop();
}
DiffInstruction::DiffNode { old, new, .. } => {
let (old, new) = (*old, *new);
self.instructions.pop();
self.diff_node(old, new);
}
DiffInstruction::DiffEqual { progress, old, new } => {
debug_assert_eq!(old.len(), new.len());
if let (Some(old_child), Some(new_child)) =
(old.get(*progress), new.get(*progress))
{
*progress += 1;
self.diff_node(old_child, new_child);
} else {
self.instructions.pop();
}
}
// this is slightly more complicated, we need to find a way to pause our LIS code
DiffInstruction::DiffChildren { old, new } => {
let (old, new) = (*old, *new);
self.instructions.pop();
self.diff_children(old, new);
}
DiffInstruction::Create { node, and } => {
let (node, and) = (*node, *and);
self.instructions.pop();
self.nodes_created_stack.push(0);
self.instructions.push(DiffInstruction::Mount { and });
self.create_node(node);
}
DiffInstruction::CreateChildren {
progress,
children,
and,
} => {
let and = *and;
if *progress == 0 {
self.nodes_created_stack.push(0);
}
if let Some(child) = children.get(*progress) {
*progress += 1;
if *progress == children.len() {
self.instructions.pop();
self.instructions.push(DiffInstruction::Mount { and });
}
self.create_node(child);
} else if children.len() == 0 {
self.instructions.pop();
}
}
DiffInstruction::Mount { and } => {
let nodes_created = self.nodes_created_stack.pop().unwrap();
match and {
// add the nodes from this virtual list to the parent
// used by fragments and components
MountType::Absorb => {
*self.nodes_created_stack.last_mut().unwrap() += nodes_created;
}
MountType::Append => {
self.edit_append_children(nodes_created as u32);
}
MountType::Replace { old } => {
todo!()
// self.edit_replace_with(with as u32, many as u32);
}
MountType::InsertAfter { other_node } => {
self.edit_insert_after(nodes_created as u32);
}
MountType::InsertBefore { other_node } => {
self.edit_insert_before(nodes_created as u32);
}
}
self.instructions.pop();
}
};
}
Ok(())
}
// =================================
// Tools for creating new nodes
// =================================
fn create_node(&mut self, node: &'bump VNode<'bump>) {
match node {
VNode::Text(vtext) => self.create_text_node(vtext),
VNode::Suspended(suspended) => self.create_suspended_node(suspended),
VNode::Anchor(anchor) => self.create_anchor_node(anchor),
VNode::Element(element) => self.create_element_node(element),
VNode::Fragment(frag) => self.create_fragment_node(frag),
VNode::Component(component) => self.create_component_node(component),
}
}
fn create_text_node(&mut self, vtext: &'bump VText<'bump>) {
let real_id = self.vdom.reserve_node();
self.edit_create_text_node(vtext.text, real_id);
vtext.dom_id.set(Some(real_id));
*self.nodes_created_stack.last_mut().unwrap() += 1;
}
fn create_suspended_node(&mut self, suspended: &'bump VSuspended) {
let real_id = self.vdom.reserve_node();
self.edit_create_placeholder(real_id);
suspended.node.set(Some(real_id));
*self.nodes_created_stack.last_mut().unwrap() += 1;
}
fn create_anchor_node(&mut self, anchor: &'bump VAnchor) {
let real_id = self.vdom.reserve_node();
self.edit_create_placeholder(real_id);
anchor.dom_id.set(Some(real_id));
*self.nodes_created_stack.last_mut().unwrap() += 1;
}
fn create_element_node(&mut self, element: &'bump VElement<'bump>) {
let VElement {
tag_name,
listeners,
attributes,
children,
namespace,
dom_id,
..
} = element;
let real_id = self.vdom.reserve_node();
self.edit_create_element(tag_name, *namespace, real_id);
*self.nodes_created_stack.last_mut().unwrap() += 1;
dom_id.set(Some(real_id));
let cur_scope = self.current_scope().unwrap();
listeners.iter().for_each(|listener| {
self.fix_listener(listener);
listener.mounted_node.set(Some(real_id));
self.edit_new_event_listener(listener, cur_scope.clone());
});
for attr in *attributes {
self.edit_set_attribute(attr);
}
if children.len() > 0 {
self.instructions.push(DiffInstruction::CreateChildren {
children,
progress: 0,
and: MountType::Append,
});
}
}
fn create_fragment_node(&mut self, frag: &'bump VFragment<'bump>) {
self.instructions.push(DiffInstruction::CreateChildren {
children: frag.children,
progress: 0,
and: MountType::Absorb,
});
}
fn create_component_node(&mut self, vcomponent: &'bump VComponent<'bump>) {
let caller = vcomponent.caller.clone();
let parent_idx = self.scope_stack.last().unwrap().clone();
// Insert a new scope into our component list
let new_idx = self.vdom.insert_scope_with_key(|new_idx| {
let parent_scope = self.get_scope(&parent_idx).unwrap();
let height = parent_scope.height + 1;
Scope::new(
caller,
new_idx,
Some(parent_idx),
height,
ScopeChildren(vcomponent.children),
self.vdom.clone(),
)
});
// Actually initialize the caller's slot with the right address
vcomponent.ass_scope.set(Some(new_idx));
if !vcomponent.can_memoize {
let cur_scope = self.get_scope_mut(&parent_idx).unwrap();
let extended = vcomponent as *const VComponent;
let extended: *const VComponent<'static> = unsafe { std::mem::transmute(extended) };
cur_scope.borrowed_props.borrow_mut().push(extended);
}
// TODO:
// add noderefs to current noderef list Noderefs
// add effects to current effect list Effects
let new_component = self.get_scope_mut(&new_idx).unwrap();
// Run the scope for one iteration to initialize it
match new_component.run_scope() {
Ok(_g) => {
// all good, new nodes exist
}
Err(err) => {
// failed to run. this is the first time the component ran, and it failed
// we manually set its head node to an empty fragment
panic!("failing components not yet implemented");
}
}
// Take the node that was just generated from running the component
let nextnode = new_component.frames.fin_head();
// Push the new scope onto the stack
self.scope_stack.push(new_idx);
self.instructions.push(DiffInstruction::PopScope);
// Run the creation algorithm with this scope on the stack
// ?? I think we treat components as framgnets??
self.instructions.push(DiffInstruction::Create {
node: nextnode,
and: MountType::Absorb,
});
// Finally, insert this scope as a seen node.
self.seen_scopes.insert(new_idx);
}
// =================================
// Tools for diffing nodes
// =================================
pub fn diff_node(&mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>) {
use VNode::*;
match (old_node, new_node) {
// Check the most common cases first
(Text(old), Text(new)) => self.diff_text_nodes(old, new),
(Element(old), Element(new)) => self.diff_element_nodes(old, new),
(Component(old), Component(new)) => self.diff_component_nodes(old, new),
(Fragment(old), Fragment(new)) => self.diff_fragment_nodes(old, new),
(Anchor(old), Anchor(new)) => new.dom_id.set(old.dom_id.get()),
(
Component(_) | Fragment(_) | Text(_) | Element(_) | Anchor(_),
Component(_) | Fragment(_) | Text(_) | Element(_) | Anchor(_),
) => {
self.replace_and_create_many_with_many([old_node], [new_node]);
}
// TODO: these don't properly clean up any data
(Suspended(old), new) => {
self.replace_and_create_many_with_many([old_node], [new_node]);
}
// a node that was once real is now suspended
(old, Suspended(_)) => {
self.replace_and_create_many_with_many([old_node], [new_node]);
}
}
}
fn diff_text_nodes(&mut self, old: &'bump VText<'bump>, new: &'bump VText<'bump>) {
let root = old.dom_id.get().unwrap();
if old.text != new.text {
self.edit_push_root(root);
self.edit_set_text(new.text);
self.edit_pop();
}
new.dom_id.set(Some(root));
}
fn diff_element_nodes(&mut self, old: &'bump VElement<'bump>, new: &'bump VElement<'bump>) {
let root = old.dom_id.get().unwrap();
// If the element type is completely different, the element needs to be re-rendered completely
// This is an optimization React makes due to how users structure their code
//
// This case is rather rare (typically only in non-keyed lists)
if new.tag_name != old.tag_name || new.namespace != old.namespace {
todo!();
// self.replace_node_with_node(root, old_node, new_node);
return;
}
new.dom_id.set(Some(root));
// Don't push the root if we don't have to
let mut has_comitted = false;
let mut please_commit = |edits: &mut Vec<DomEdit>| {
if !has_comitted {
has_comitted = true;
edits.push(PushRoot { id: root.as_u64() });
}
};
// Diff Attributes
//
// It's extraordinarily rare to have the number/order of attributes change
// In these cases, we just completely erase the old set and make a new set
//
// TODO: take a more efficient path than this
if old.attributes.len() == new.attributes.len() {
for (old_attr, new_attr) in old.attributes.iter().zip(new.attributes.iter()) {
if old_attr.value != new_attr.value {
please_commit(&mut self.mutations.edits);
self.edit_set_attribute(new_attr);
}
}
} else {
// TODO: provide some sort of report on how "good" the diffing was
please_commit(&mut self.mutations.edits);
for attribute in old.attributes {
self.edit_remove_attribute(attribute);
}
for attribute in new.attributes {
self.edit_set_attribute(attribute)
}
}
// Diff listeners
//
// It's extraordinarily rare to have the number/order of listeners change
// In the cases where the listeners change, we completely wipe the data attributes and add new ones
//
// We also need to make sure that all listeners are properly attached to the parent scope (fix_listener)
//
// TODO: take a more efficient path than this
let cur_scope: ScopeId = self.scope_stack.last().unwrap().clone();
if old.listeners.len() == new.listeners.len() {
for (old_l, new_l) in old.listeners.iter().zip(new.listeners.iter()) {
if old_l.event != new_l.event {
please_commit(&mut self.mutations.edits);
self.edit_remove_event_listener(old_l.event);
self.edit_new_event_listener(new_l, cur_scope);
}
new_l.mounted_node.set(old_l.mounted_node.get());
self.fix_listener(new_l);
}
} else {
please_commit(&mut self.mutations.edits);
for listener in old.listeners {
self.edit_remove_event_listener(listener.event);
}
for listener in new.listeners {
listener.mounted_node.set(Some(root));
self.edit_new_event_listener(listener, cur_scope);
// Make sure the listener gets attached to the scope list
self.fix_listener(listener);
}
}
if has_comitted {
self.edit_pop();
}
self.diff_children(old.children, new.children);
}
fn diff_component_nodes(
&mut self,
old: &'bump VComponent<'bump>,
new: &'bump VComponent<'bump>,
) {
let scope_addr = old.ass_scope.get().unwrap();
// Make sure we're dealing with the same component (by function pointer)
if old.user_fc == new.user_fc {
//
self.scope_stack.push(scope_addr);
// Make sure the new component vnode is referencing the right scope id
new.ass_scope.set(Some(scope_addr));
// make sure the component's caller function is up to date
let scope = self.get_scope_mut(&scope_addr).unwrap();
scope.update_scope_dependencies(new.caller.clone(), ScopeChildren(new.children));
// React doesn't automatically memoize, but we do.
let compare = old.comparator.unwrap();
match compare(new) {
true => {
// the props are the same...
}
false => {
// the props are different...
scope.run_scope().unwrap();
self.diff_node(scope.frames.wip_head(), scope.frames.fin_head());
}
}
self.scope_stack.pop();
self.seen_scopes.insert(scope_addr);
} else {
todo!();
// let mut old_iter = RealChildIterator::new(old_node, &self.vdom);
// let first = old_iter
// .next()
// .expect("Components should generate a placeholder root");
// // remove any leftovers
// for to_remove in old_iter {
// self.edit_push_root(to_remove.direct_id());
// self.edit_remove();
// }
// // seems like we could combine this into a single instruction....
// self.replace_node_with_node(first.direct_id(), old_node, new_node);
// // Wipe the old one and plant the new one
// let old_scope = old.ass_scope.get().unwrap();
// self.destroy_scopes(old_scope);
}
}
fn diff_fragment_nodes(&mut self, old: &'bump VFragment<'bump>, new: &'bump VFragment<'bump>) {
// This is the case where options or direct vnodes might be used.
// In this case, it's faster to just skip ahead to their diff
if old.children.len() == 1 && new.children.len() == 1 {
self.diff_node(&old.children[0], &new.children[0]);
return;
}
self.diff_children(old.children, new.children);
}
/// Destroy a scope and all of its descendents.
///
/// Calling this will run the destuctors on all hooks in the tree.
/// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
fn destroy_scopes(&mut self, old_scope: ScopeId) {
let mut nodes_to_delete = vec![old_scope];
let mut scopes_to_explore = vec![old_scope];
// explore the scope tree breadth first
while let Some(scope_id) = scopes_to_explore.pop() {
// If we're planning on deleting this node, then we don't need to both rendering it
self.seen_scopes.insert(scope_id);
let scope = self.get_scope(&scope_id).unwrap();
for child in scope.descendents.borrow().iter() {
// Add this node to be explored
scopes_to_explore.push(child.clone());
// Also add it for deletion
nodes_to_delete.push(child.clone());
}
}
// Delete all scopes that we found as part of this subtree
for node in nodes_to_delete {
log::debug!("Removing scope {:#?}", node);
let _scope = self.vdom.try_remove(node).unwrap();
// do anything we need to do to delete the scope
// I think we need to run the destructors on the hooks
// TODO
}
}
// Diff the given set of old and new children.
//
// The parent must be on top of the change list stack when this function is
// entered:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
//
// If old no anchors are provided, then it's assumed that we can freely append to the parent.
//
// Remember, non-empty lists does not mean that there are real elements, just that there are virtual elements.
//
// Frament nodes cannot generate empty children lists, so we can assume that when a list is empty, it belongs only
// to an element, and appending makes sense.
fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
const IS_EMPTY: bool = true;
const IS_NOT_EMPTY: bool = false;
// Remember, fragments can never be empty (they always have a single child)
match (old.is_empty(), new.is_empty()) {
(IS_EMPTY, IS_EMPTY) => {}
// Completely adding new nodes, removing any placeholder if it exists
(IS_EMPTY, IS_NOT_EMPTY) => {
self.instructions.push(DiffInstruction::CreateChildren {
children: new,
progress: 0,
and: MountType::Append,
});
}
// Completely removing old nodes and putting an anchor in its place
// no anchor (old has nodes) and the new is empty
// remove all the old nodes
(IS_NOT_EMPTY, IS_EMPTY) => {
for node in old {
self.remove_vnode(node);
}
}
(IS_NOT_EMPTY, IS_NOT_EMPTY) => {
let first_old = &old[0];
let first_new = &new[0];
match (&first_old, &first_new) {
// Anchors can only appear in empty fragments
(VNode::Anchor(old_anchor), VNode::Anchor(new_anchor)) => {
old_anchor.dom_id.set(new_anchor.dom_id.get());
}
// Replace the anchor with whatever new nodes are coming down the pipe
(VNode::Anchor(anchor), _) => {
self.instructions.push(DiffInstruction::CreateChildren {
children: new,
progress: 0,
and: MountType::Replace { old: first_old },
});
}
// Replace whatever nodes are sitting there with the anchor
(_, VNode::Anchor(anchor)) => {
self.replace_and_create_many_with_many(old, [first_new]);
}
// Use the complex diff algorithm to diff the nodes
_ => {
let new_is_keyed = new[0].key().is_some();
let old_is_keyed = old[0].key().is_some();
debug_assert!(
new.iter().all(|n| n.key().is_some() == new_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
debug_assert!(
old.iter().all(|o| o.key().is_some() == old_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
if new_is_keyed && old_is_keyed {
self.diff_keyed_children(old, new);
} else {
self.diff_non_keyed_children(old, new);
}
}
}
}
}
}
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// The stack is empty upon entry.
fn diff_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
if cfg!(debug_assertions) {
let mut keys = fxhash::FxHashSet::default();
let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| {
keys.clear();
for child in children {
let key = child.key();
debug_assert!(
key.is_some(),
"if any sibling is keyed, all siblings must be keyed"
);
keys.insert(key);
}
debug_assert_eq!(
children.len(),
keys.len(),
"keyed siblings must each have a unique key"
);
};
assert_unique_keys(old);
assert_unique_keys(new);
}
// First up, we diff all the nodes with the same key at the beginning of the
// children.
//
// `shared_prefix_count` is the count of how many nodes at the start of
// `new` and `old` share the same keys.
//
// TODO: just inline this
let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
// Next, we find out how many of the nodes at the end of the children have
// the same key. We do _not_ diff them yet, since we want to emit the change
// list instructions such that they can be applied in a single pass over the
// DOM. Instead, we just save this information for later.
//
// `shared_suffix_count` is the count of how many nodes at the end of `new`
// and `old` share the same keys.
let shared_suffix_count = old[shared_prefix_count..]
.iter()
.rev()
.zip(new[shared_prefix_count..].iter().rev())
.take_while(|&(old, new)| old.key() == new.key())
.count();
let old_shared_suffix_start = old.len() - shared_suffix_count;
let new_shared_suffix_start = new.len() - shared_suffix_count;
// Ok, we now hopefully have a smaller range of children in the middle
// within which to re-order nodes with the same keys, remove old nodes with
// now-unused keys, and create new nodes with fresh keys.
self.diff_keyed_middle(
&old[shared_prefix_count..old_shared_suffix_start],
&new[shared_prefix_count..new_shared_suffix_start],
shared_prefix_count,
shared_suffix_count,
old_shared_suffix_start,
);
// Finally, diff the nodes at the end of `old` and `new` that share keys.
let old_suffix = &old[old_shared_suffix_start..];
let new_suffix = &new[new_shared_suffix_start..];
debug_assert_eq!(old_suffix.len(), new_suffix.len());
if !old_suffix.is_empty() {
self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
}
}
// Diff the prefix of children in `new` and `old` that share the same keys in
// the same order.
//
// The stack is empty upon entry.
fn diff_keyed_prefix(
&mut self,
old: &'bump [VNode<'bump>],
new: &'bump [VNode<'bump>],
) -> KeyedPrefixResult {
let mut shared_prefix_count = 0;
for (old, new) in old.iter().zip(new.iter()) {
// abort early if we finally run into nodes with different keys
if old.key() != new.key() {
break;
}
self.diff_node(old, new);
shared_prefix_count += 1;
}
// If that was all of the old children, then create and append the remaining
// new children and we're finished.
if shared_prefix_count == old.len() {
// Load the last element
let last_node = self.find_last_element(new.last().unwrap()).direct_id();
self.edit_push_root(last_node);
// Create the new children and insert them after
//
todo!();
// let meta = self.create_children(&new[shared_prefix_count..]);
// self.edit_insert_after(meta.added_to_stack);
return KeyedPrefixResult::Finished;
}
// And if that was all of the new children, then remove all of the remaining
// old children and we're finished.
if shared_prefix_count == new.len() {
self.remove_children(&old[shared_prefix_count..]);
return KeyedPrefixResult::Finished;
}
KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
}
// Create the given children and append them to the parent node.
//
// The parent node must currently be on top of the change list stack:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) {
for child in new {
todo!();
// let meta = self.create_vnode(child);
// self.edit_append_children(meta.added_to_stack);
}
}
// The most-general, expensive code path for keyed children diffing.
//
// We find the longest subsequence within `old` of children that are relatively
// ordered the same way in `new` (via finding a longest-increasing-subsequence
// of the old child's index within `new`). The children that are elements of
// this subsequence will remain in place, minimizing the number of DOM moves we
// will have to do.
//
// Upon entry to this function, the change list stack must be empty.
//
// This function will load the appropriate nodes onto the stack and do diffing in place.
//
// Upon exit from this function, it will be restored to that same state.
fn diff_keyed_middle(
&mut self,
old: &'bump [VNode<'bump>],
mut new: &'bump [VNode<'bump>],
shared_prefix_count: usize,
shared_suffix_count: usize,
old_shared_suffix_start: usize,
) {
/*
1. Map the old keys into a numerical ordering based on indicies.
2. Create a map of old key to its index
3. Map each new key to the old key, carrying over the old index.
- IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
- if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist
now, we should have a list of integers that indicates where in the old list the new items map to.
4. Compute the LIS of this list
- this indicates the longest list of new children that won't need to be moved.
5. Identify which nodes need to be removed
6. Identify which nodes will need to be diffed
7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
- if the item already existed, just move it to the right place.
8. Finally, generate instructions to remove any old children.
9. Generate instructions to finally diff children that are the same between both
*/
// 0. Debug sanity checks
// Should have already diffed the shared-key prefixes and suffixes.
debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
// 1. Map the old keys into a numerical ordering based on indicies.
// 2. Create a map of old key to its index
// IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
let old_key_to_old_index = old
.iter()
.enumerate()
.map(|(i, o)| (o.key().unwrap(), i))
.collect::<FxHashMap<_, _>>();
let mut shared_keys = FxHashSet::default();
let mut to_add = FxHashSet::default();
// 3. Map each new key to the old key, carrying over the old index.
let new_index_to_old_index = new
.iter()
.map(|n| {
let key = n.key().unwrap();
if let Some(&index) = old_key_to_old_index.get(&key) {
shared_keys.insert(key);
index
} else {
to_add.insert(key);
u32::MAX as usize
}
})
.collect::<Vec<_>>();
// If none of the old keys are reused by the new children, then we
// remove all the remaining old children and create the new children
// afresh.
if shared_suffix_count == 0 && shared_keys.is_empty() {
self.replace_and_create_many_with_many(old, new);
return;
}
// 4. Compute the LIS of this list
// The longest increasing subsequence within `new_index_to_old_index`. This
// is the longest sequence on DOM nodes in `old` that are relatively ordered
// correctly within `new`. We will leave these nodes in place in the DOM,
// and only move nodes that are not part of the LIS. This results in the
// maximum number of DOM nodes left in place, AKA the minimum number of DOM
// nodes moved.
let mut new_index_is_in_lis = FxHashSet::default();
new_index_is_in_lis.reserve(new_index_to_old_index.len());
let mut predecessors = vec![0; new_index_to_old_index.len()];
let mut starts = vec![0; new_index_to_old_index.len()];
longest_increasing_subsequence::lis_with(
&new_index_to_old_index,
&mut new_index_is_in_lis,
|a, b| a < b,
&mut predecessors,
&mut starts,
);
// use the old nodes to navigate the new nodes
let mut lis_in_order = new_index_is_in_lis.into_iter().collect::<Vec<_>>();
lis_in_order.sort_unstable();
// we walk front to back, creating the head node
// diff the shared, in-place nodes first
// this makes sure we can rely on their first/last nodes being correct later on
for id in &lis_in_order {
let new_node = &new[*id];
let key = new_node.key().unwrap();
let old_index = old_key_to_old_index.get(&key).unwrap();
let old_node = &old[*old_index];
self.diff_node(old_node, new_node);
}
// return the old node from the key
let load_old_node_from_lsi = |key| -> &VNode {
let old_index = old_key_to_old_index.get(key).unwrap();
let old_node = &old[*old_index];
old_node
};
let mut root = None;
let mut new_iter = new.iter().enumerate();
for lis_id in &lis_in_order {
eprintln!("tracking {:?}", lis_id);
// this is the next milestone node we are working up to
let new_anchor = &new[*lis_id];
root = Some(new_anchor);
// let anchor_el = self.find_first_element(new_anchor);
// self.edit_push_root(anchor_el.direct_id());
// // let mut pushed = false;
'inner: loop {
let (next_id, next_new) = new_iter.next().unwrap();
if next_id == *lis_id {
// we've reached the milestone, break this loop so we can step to the next milestone
// remember: we already diffed this node
eprintln!("breaking {:?}", next_id);
break 'inner;
} else {
let key = next_new.key().unwrap();
eprintln!("found key {:?}", key);
if shared_keys.contains(&key) {
eprintln!("key is contained {:?}", key);
shared_keys.remove(key);
// diff the two nodes
let old_node = load_old_node_from_lsi(key);
self.diff_node(old_node, next_new);
// now move all the nodes into the right spot
for child in RealChildIterator::new(next_new, self.vdom) {
let el = child.direct_id();
self.edit_push_root(el);
self.edit_insert_before(1);
}
} else {
self.instructions.push(DiffInstruction::Create {
node: next_new,
and: MountType::InsertBefore {
other_node: new_anchor,
},
});
}
}
}
self.edit_pop();
}
let final_lis_node = root.unwrap();
let final_el_node = self.find_last_element(final_lis_node);
let final_el = final_el_node.direct_id();
self.edit_push_root(final_el);
let mut last_iter = new.iter().rev().enumerate();
let last_key = final_lis_node.key().unwrap();
loop {
let (last_id, last_node) = last_iter.next().unwrap();
let key = last_node.key().unwrap();
eprintln!("checking final nodes {:?}", key);
if last_key == key {
eprintln!("breaking final nodes");
break;
}
if shared_keys.contains(&key) {
eprintln!("key is contained {:?}", key);
shared_keys.remove(key);
// diff the two nodes
let old_node = load_old_node_from_lsi(key);
self.diff_node(old_node, last_node);
// now move all the nodes into the right spot
for child in RealChildIterator::new(last_node, self.vdom) {
let el = child.direct_id();
self.edit_push_root(el);
self.edit_insert_after(1);
}
} else {
eprintln!("key is not contained {:?}", key);
// new node needs to be created
// insert it before the current milestone
todo!();
// let meta = self.create_vnode(last_node);
// self.edit_insert_after(meta.added_to_stack);
}
}
self.edit_pop();
}
// Diff the suffix of keyed children that share the same keys in the same order.
//
// The parent must be on the change list stack when we enter this function:
//
// [... parent]
//
// When this function exits, the change list stack remains the same.
fn diff_keyed_suffix(
&mut self,
old: &'bump [VNode<'bump>],
new: &'bump [VNode<'bump>],
new_shared_suffix_start: usize,
) {
debug_assert_eq!(old.len(), new.len());
debug_assert!(!old.is_empty());
for (old_child, new_child) in old.iter().zip(new.iter()) {
self.diff_node(old_child, new_child);
}
}
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_non_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
// Handled these cases in `diff_children` before calling this function.
//
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
match old.len().cmp(&new.len()) {
// old.len > new.len -> removing some nodes
Ordering::Greater => {
// diff them together
for (new_child, old_child) in new.iter().zip(old.iter()) {
self.diff_node(old_child, new_child);
}
// todo: we would emit fewer instructions if we just did a replace many
// remove whatever is still dangling
for item in &old[new.len()..] {
for i in RealChildIterator::new(item, self.vdom) {
self.edit_push_root(i.direct_id());
self.edit_remove();
}
}
}
// old.len < new.len -> adding some nodes
// this is wrong in the case where we're diffing fragments
//
// we need to save the last old element and then replace it with all the new ones
Ordering::Less => {
// Add the new elements to the last old element while it still exists
let last = self.find_last_element(old.last().unwrap());
self.edit_push_root(last.direct_id());
// create the rest and insert them
todo!();
// let meta = self.create_children(&new[old.len()..]);
// self.edit_insert_after(meta.added_to_stack);
self.edit_pop();
// diff the rest
for (new_child, old_child) in new.iter().zip(old.iter()) {
self.diff_node(old_child, new_child)
}
}
// old.len == new.len -> no nodes added/removed, but perhaps changed
Ordering::Equal => {
for (new_child, old_child) in new.iter().zip(old.iter()) {
self.diff_node(old_child, new_child);
}
}
}
}
// ======================
// Support methods
// ======================
// Remove all of a node's children.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) {
// debug_assert!(self.traversal_is_committed());
log::debug!("REMOVING CHILDREN");
for _child in old {
// registry.remove_subtree(child);
}
// Fast way to remove all children: set the node's textContent to an empty
// string.
todo!()
// self.set_inner_text("");
}
// Remove the current child and all of its following siblings.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent child]
//
// After the function returns, the child is no longer on the change list stack:
//
// [... parent]
fn remove_children(&mut self, old: &'bump [VNode<'bump>]) {
self.replace_and_create_many_with_many(old, None)
}
fn find_last_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
let mut search_node = Some(vnode);
loop {
let node = search_node.take().unwrap();
match &node {
// the ones that have a direct id
VNode::Text(_) | VNode::Element(_) | VNode::Anchor(_) | VNode::Suspended(_) => {
break node
}
VNode::Fragment(frag) => {
search_node = frag.children.last();
}
VNode::Component(el) => {
let scope_id = el.ass_scope.get().unwrap();
let scope = self.get_scope(&scope_id).unwrap();
search_node = Some(scope.root());
}
}
}
}
fn find_first_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> {
let mut search_node = Some(vnode);
loop {
let node = search_node.take().unwrap();
match &node {
// the ones that have a direct id
VNode::Text(_) | VNode::Element(_) | VNode::Anchor(_) | VNode::Suspended(_) => {
break node
}
VNode::Fragment(frag) => {
search_node = Some(&frag.children[0]);
}
VNode::Component(el) => {
let scope_id = el.ass_scope.get().unwrap();
let scope = self.get_scope(&scope_id).unwrap();
search_node = Some(scope.root());
}
}
}
}
fn remove_child(&mut self, node: &'bump VNode<'bump>) {
self.replace_and_create_many_with_many(Some(node), None);
}
/// Remove all the old nodes and replace them with newly created new nodes.
///
/// The new nodes *will* be created - don't create them yourself!
fn replace_and_create_many_with_many(
&mut self,
old_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
new_nodes: impl IntoIterator<Item = &'bump VNode<'bump>>,
) {
let mut nodes_to_replace = Vec::new();
let mut nodes_to_search = old_nodes.into_iter().collect::<Vec<_>>();
let mut scopes_obliterated = Vec::new();
while let Some(node) = nodes_to_search.pop() {
match &node {
// the ones that have a direct id return immediately
VNode::Text(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
VNode::Element(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
VNode::Anchor(el) => nodes_to_replace.push(el.dom_id.get().unwrap()),
VNode::Suspended(el) => nodes_to_replace.push(el.node.get().unwrap()),
// Fragments will either have a single anchor or a list of children
VNode::Fragment(frag) => {
for child in frag.children {
nodes_to_search.push(child);
}
}
// Components can be any of the nodes above
// However, we do need to track which components need to be removed
VNode::Component(el) => {
let scope_id = el.ass_scope.get().unwrap();
let scope = self.get_scope(&scope_id).unwrap();
let root = scope.root();
nodes_to_search.push(root);
scopes_obliterated.push(scope_id);
}
}
// TODO: enable internal garabge collection
// self.create_garbage(node);
}
let n = nodes_to_replace.len();
for node in nodes_to_replace {
self.edit_push_root(node);
}
let mut nodes_created = 0;
for node in new_nodes {
todo!();
// let meta = self.create_vnode(node);
// nodes_created += meta.added_to_stack;
}
// if 0 nodes are created, then it gets interperted as a deletion
self.edit_replace_with(n as u32, nodes_created);
// obliterate!
for scope in scopes_obliterated {
self.destroy_scopes(scope);
}
}
fn create_garbage(&mut self, node: &'bump VNode<'bump>) {
match self.current_scope().and_then(|id| self.get_scope(&id)) {
Some(scope) => {
let garbage: &'bump VNode<'static> = unsafe { std::mem::transmute(node) };
scope.pending_garbage.borrow_mut().push(garbage);
}
None => {
log::info!("No scope to collect garbage into")
}
}
}
fn immediately_dispose_garabage(&mut self, node: ElementId) {
self.vdom.collect_garbage(node)
}
fn replace_node_with_node(
&mut self,
anchor: ElementId,
old_node: &'bump VNode<'bump>,
new_node: &'bump VNode<'bump>,
) {
self.edit_push_root(anchor);
todo!();
// let meta = self.create_vnode(new_node);
// self.edit_replace_with(1, meta.added_to_stack);
// self.create_garbage(old_node);
self.edit_pop();
}
fn remove_vnode(&mut self, node: &'bump VNode<'bump>) {
match &node {
VNode::Text(el) => self.immediately_dispose_garabage(node.direct_id()),
VNode::Element(el) => {
self.immediately_dispose_garabage(node.direct_id());
for child in el.children {
self.remove_vnode(&child);
}
}
VNode::Anchor(a) => {
//
}
VNode::Fragment(frag) => {
for child in frag.children {
self.remove_vnode(&child);
}
}
VNode::Component(el) => {
//
// self.destroy_scopes(old_scope)
}
VNode::Suspended(_) => todo!(),
}
}
fn current_scope(&self) -> Option<ScopeId> {
self.scope_stack.last().map(|f| f.clone())
}
fn fix_listener<'a>(&mut self, listener: &'a Listener<'a>) {
let scope_id = self.current_scope();
if let Some(scope_id) = scope_id {
let scope = self.get_scope(&scope_id).unwrap();
let mut queue = scope.listeners.borrow_mut();
let long_listener: &'a Listener<'static> = unsafe { std::mem::transmute(listener) };
queue.push(long_listener as *const _)
}
}
pub fn get_scope_mut(&mut self, id: &ScopeId) -> Option<&'bump mut Scope> {
// ensure we haven't seen this scope before
// if we have, then we're trying to alias it, which is not allowed
debug_assert!(!self.seen_scopes.contains(id));
unsafe { self.vdom.get_scope_mut(*id) }
}
pub fn get_scope(&mut self, id: &ScopeId) -> Option<&'bump Scope> {
// ensure we haven't seen this scope before
// if we have, then we're trying to alias it, which is not allowed
unsafe { self.vdom.get_scope(*id) }
}
// Navigation
pub(crate) fn edit_push_root(&mut self, root: ElementId) {
let id = root.as_u64();
self.mutations.edits.push(PushRoot { id });
}
pub(crate) fn edit_pop(&mut self) {
self.mutations.edits.push(PopRoot {});
}
// Add Nodes to the dom
// add m nodes from the stack
pub(crate) fn edit_append_children(&mut self, many: u32) {
self.mutations.edits.push(AppendChildren { many });
}
// replace the n-m node on the stack with the m nodes
// ends with the last element of the chain on the top of the stack
pub(crate) fn edit_replace_with(&mut self, n: u32, m: u32) {
self.mutations.edits.push(ReplaceWith { n, m });
}
pub(crate) fn edit_insert_after(&mut self, n: u32) {
self.mutations.edits.push(InsertAfter { n });
}
pub(crate) fn edit_insert_before(&mut self, n: u32) {
self.mutations.edits.push(InsertBefore { n });
}
// Remove Nodesfrom the dom
pub(crate) fn edit_remove(&mut self) {
self.mutations.edits.push(Remove);
}
// Create
pub(crate) fn edit_create_text_node(&mut self, text: &'bump str, id: ElementId) {
let id = id.as_u64();
self.mutations.edits.push(CreateTextNode { text, id });
}
pub(crate) fn edit_create_element(
&mut self,
tag: &'static str,
ns: Option<&'static str>,
id: ElementId,
) {
let id = id.as_u64();
match ns {
Some(ns) => self.mutations.edits.push(CreateElementNs { id, ns, tag }),
None => self.mutations.edits.push(CreateElement { id, tag }),
}
}
// placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom
pub(crate) fn edit_create_placeholder(&mut self, id: ElementId) {
let id = id.as_u64();
self.mutations.edits.push(CreatePlaceholder { id });
}
// events
pub(crate) fn edit_new_event_listener(&mut self, listener: &Listener, scope: ScopeId) {
let Listener {
event,
mounted_node,
..
} = listener;
let element_id = mounted_node.get().unwrap().as_u64();
self.mutations.edits.push(NewEventListener {
scope,
event_name: event,
mounted_node_id: element_id,
});
}
pub(crate) fn edit_remove_event_listener(&mut self, event: &'static str) {
self.mutations.edits.push(RemoveEventListener { event });
}
// modify
pub(crate) fn edit_set_text(&mut self, text: &'bump str) {
self.mutations.edits.push(SetText { text });
}
pub(crate) fn edit_set_attribute(&mut self, attribute: &'bump Attribute) {
let Attribute {
name,
value,
is_static,
is_volatile,
namespace,
} = attribute;
// field: &'static str,
// value: &'bump str,
// ns: Option<&'static str>,
self.mutations.edits.push(SetAttribute {
field: name,
value,
ns: *namespace,
});
}
pub(crate) fn edit_set_attribute_ns(
&mut self,
attribute: &'bump Attribute,
namespace: &'bump str,
) {
let Attribute {
name,
value,
is_static,
is_volatile,
// namespace,
..
} = attribute;
// field: &'static str,
// value: &'bump str,
// ns: Option<&'static str>,
self.mutations.edits.push(SetAttribute {
field: name,
value,
ns: Some(namespace),
});
}
pub(crate) fn edit_remove_attribute(&mut self, attribute: &Attribute) {
let name = attribute.name;
self.mutations.edits.push(RemoveAttribute { name });
}
}
// When we create new nodes, we need to propagate some information back up the call chain.
// This gives the caller some information on how to handle things like insertins, appending, and subtree discarding.
#[derive(Debug)]
pub struct CreateMeta {
pub is_static: bool,
pub added_to_stack: u32,
}
impl CreateMeta {
fn new(is_static: bool, added_to_tack: u32) -> Self {
Self {
is_static,
added_to_stack: added_to_tack,
}
}
}
enum KeyedPrefixResult {
// Fast path: we finished diffing all the children just by looking at the
// prefix of shared keys!
Finished,
// There is more diffing work to do. Here is a count of how many children at
// the beginning of `new` and `old` we already processed.
MoreWorkToDo(usize),
}
fn find_first_real_node<'a>(
nodes: impl IntoIterator<Item = &'a VNode<'a>>,
scopes: &'a SharedResources,
) -> Option<&'a VNode<'a>> {
for node in nodes {
let mut iter = RealChildIterator::new(node, scopes);
if let Some(node) = iter.next() {
return Some(node);
}
}
None
}
/// This iterator iterates through a list of virtual children and only returns real children (Elements, Text, Anchors).
///
/// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like
/// "InsertBefore".
pub struct RealChildIterator<'a> {
scopes: &'a SharedResources,
// Heuristcally we should never bleed into 4 completely nested fragments/components
// Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
// TODO: use const generics instead of the 4 estimation
stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 4]>,
}
impl<'a> RealChildIterator<'a> {
pub fn new(starter: &'a VNode<'a>, scopes: &'a SharedResources) -> Self {
Self {
scopes,
stack: smallvec::smallvec![(0, starter)],
}
}
// keep the memory around
pub fn reset_with(&mut self, node: &'a VNode<'a>) {
self.stack.clear();
self.stack.push((0, node));
}
}
impl<'a> Iterator for RealChildIterator<'a> {
type Item = &'a VNode<'a>;
fn next(&mut self) -> Option<&'a VNode<'a>> {
let mut should_pop = false;
let mut returned_node: Option<&'a VNode<'a>> = None;
let mut should_push = None;
while returned_node.is_none() {
if let Some((count, node)) = self.stack.last_mut() {
match &node {
// We can only exit our looping when we get "real" nodes
// This includes fragments and components when they're empty (have a single root)
VNode::Element(_) | VNode::Text(_) => {
// We've recursed INTO an element/text
// We need to recurse *out* of it and move forward to the next
should_pop = true;
returned_node = Some(&*node);
}
// If we get a fragment we push the next child
VNode::Fragment(frag) => {
let subcount = *count as usize;
if frag.children.len() == 0 {
should_pop = true;
returned_node = Some(&*node);
}
if subcount >= frag.children.len() {
should_pop = true;
} else {
should_push = Some(&frag.children[subcount]);
}
}
// // If we get a fragment we push the next child
// VNodeKind::Fragment(frag) => {
// let subcount = *count as usize;
// if frag.children.len() == 0 {
// should_pop = true;
// returned_node = Some(&*node);
// }
// if subcount >= frag.children.len() {
// should_pop = true;
// } else {
// should_push = Some(&frag.children[subcount]);
// }
// }
// Immediately abort suspended nodes - can't do anything with them yet
VNode::Suspended(node) => {
// VNodeKind::Suspended => should_pop = true,
todo!()
}
VNode::Anchor(a) => {
todo!()
}
// For components, we load their root and push them onto the stack
VNode::Component(sc) => {
let scope =
unsafe { self.scopes.get_scope(sc.ass_scope.get().unwrap()) }.unwrap();
// let scope = self.scopes.get(sc.ass_scope.get().unwrap()).unwrap();
// Simply swap the current node on the stack with the root of the component
*node = scope.frames.fin_head();
}
}
} else {
// If there's no more items on the stack, we're done!
return None;
}
if should_pop {
self.stack.pop();
if let Some((id, _)) = self.stack.last_mut() {
*id += 1;
}
should_pop = false;
}
if let Some(push) = should_push {
self.stack.push((0, push));
should_push = None;
}
}
returned_node
}
}
fn compare_strs(a: &str, b: &str) -> bool {
// Check by pointer, optimizing for static strs
if !std::ptr::eq(a, b) {
// If the pointers are different then check by value
a == b
} else {
true
}
}
struct DfsIterator<'a> {
idx: usize,
node: Option<(&'a VNode<'a>, &'a VNode<'a>)>,
nodes: Option<(&'a [VNode<'a>], &'a [VNode<'a>])>,
}
impl<'a> Iterator for DfsIterator<'a> {
type Item = (&'a VNode<'a>, &'a VNode<'a>);
fn next(&mut self) -> Option<Self::Item> {
todo!()
}
}