//! This module contains the stateful PriorityFiber and all methods to diff VNodes, their properties, and their children. //! //! The [`PriorityFiber`] calculates the diffs between the old and new frames, updates the new nodes, and generates a set //! of mutations for the RealDom to apply. //! //! ## Notice: //! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support //! Components, Fragments, Suspense, SubTree memoization, incremental diffing, cancelation, NodeRefs, and additional //! batching operations. //! //! ## Implementation Details: //! //! ### IDs for elements //! -------------------- //! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes. //! We don't necessarily require that DOM changes happen instnatly during the diffing process, so the implementor may choose //! to batch nodes if it is more performant for their application. The element IDs are indicies into the internal element //! array. The expectation is that implemenetors will use the ID as an index into a Vec of real nodes, allowing for passive //! garbage collection as the VirtualDOM replaces old nodes. //! //! When new vnodes are created through `cx.render`, they won't know which real node they correspond to. During diffing, //! we always make sure to copy over the ID. If we don't do this properly, the ElementId will be populated incorrectly //! and brick the user's page. //! //! ### Fragment Support //! //! Fragments (nodes without a parent) are supported through a combination of "replace with" and anchor vnodes. Fragments //! can be particularly challenging when they are empty, so the placeholder node lets us "reserve" a spot for the empty //! fragment to be replaced with when it is no longer empty. This is guaranteed by logic in the NodeFactory - it is //! impossible to craft a fragment with 0 elements - they must always have at least a single placeholder element. This is //! slightly inefficient, but represents a such an uncommon use case that it is not worth optimizing. //! //! Other implementations either don't support fragments or use a "child + sibling" pattern to represent them. Our code is //! vastly simpler and more performant when we can just create a placeholder element while the fragment has no children. //! //! ## Subtree Memoization //! ----------------------- //! We also employ "subtree memoization" which saves us from having to check trees which take no dynamic content. We can //! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the //! calls to "create" propogate this information upwards. Structures like the one below are entirely static: //! ```rust //! rsx!( div { class: "hello world", "this node is entirely static" } ) //! ``` //! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so its up to the reconciler to //! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP and depends on comp-time //! hashing of the subtree from the rsx! macro. We do a very limited form of static analysis via static string pointers as //! a way of short-circuiting the most expensive checks. //! //! ## Bloom Filter and Heuristics //! ------------------------------ //! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are //! currently very rough, but will get better as time goes on. The information currently tracked includes the size of a //! bump arena after first render, the number of hooks, and the number of nodes in the tree. //! //! ## Garbage Collection //! --------------------- //! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garabge //! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then //! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient. //! //! The IDs used by the key/map are just an index into a vec. This means that Dioxus will drive the key allocation strategy //! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes //! for the client. As new nodes are created, old nodes will be over-written. //! //! Further Reading and Thoughts //! ---------------------------- //! There are more ways of increasing diff performance here that are currently not implemented. //! More info on how to improve this diffing algorithm: //! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/ use crate::{arena::SharedResources, innerlude::*}; use futures_util::Future; use fxhash::{FxBuildHasher, FxHashMap, FxHashSet}; use indexmap::IndexSet; use smallvec::{smallvec, SmallVec}; use std::{ any::Any, cell::Cell, cmp::Ordering, collections::HashSet, marker::PhantomData, pin::Pin, }; use DomEdit::*; pub struct DiffMachine<'bump> { vdom: &'bump SharedResources, pub mutations: Mutations<'bump>, pub scope_stack: SmallVec<[ScopeId; 5]>, pub diffed: FxHashSet, pub seen_scopes: FxHashSet, } impl<'bump> DiffMachine<'bump> { pub(crate) fn new( edits: Mutations<'bump>, cur_scope: ScopeId, shared: &'bump SharedResources, ) -> Self { Self { mutations: edits, scope_stack: smallvec![cur_scope], vdom: shared, diffed: FxHashSet::default(), seen_scopes: FxHashSet::default(), } } /// Allows the creation of a diff machine without the concept of scopes or a virtualdom /// this is mostly useful for testing /// /// This will PANIC if any component elements are passed in. pub fn new_headless(shared: &'bump SharedResources) -> Self { Self { mutations: Mutations::new(), scope_stack: smallvec![ScopeId(0)], vdom: shared, diffed: FxHashSet::default(), seen_scopes: FxHashSet::default(), } } // make incremental progress on the current task pub fn work(&mut self, is_ready: impl FnMut() -> bool) -> Result { todo!() // Ok(FiberResult::D) } // pub async fn diff_scope(&mut self, id: ScopeId) -> Result<()> { let component = self.get_scope_mut(&id).ok_or_else(|| Error::NotMounted)?; let (old, new) = (component.frames.wip_head(), component.frames.fin_head()); self.diff_node(old, new); Ok(()) } // Diff the `old` node with the `new` node. Emits instructions to modify a // physical DOM node that reflects `old` into something that reflects `new`. // // the real stack should be what it is coming in and out of this function (ideally empty) // // each function call assumes the stack is fresh (empty). pub async fn diff_node( &mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>, ) { match (&old_node.kind, &new_node.kind) { // Handle the "sane" cases first. // The rsx and html macros strongly discourage dynamic lists not encapsulated by a "Fragment". // So the sane (and fast!) cases are where the virtual structure stays the same and is easily diffable. (VNodeKind::Text(old), VNodeKind::Text(new)) => { let root = old_node.direct_id(); if old.text != new.text { self.edit_push_root(root); self.edit_set_text(new.text); self.edit_pop(); } new.dom_id.set(Some(root)); } (VNodeKind::Element(old), VNodeKind::Element(new)) => { let root = old_node.direct_id(); // If the element type is completely different, the element needs to be re-rendered completely // This is an optimization React makes due to how users structure their code // // This case is rather rare (typically only in non-keyed lists) if new.tag_name != old.tag_name || new.namespace != old.namespace { self.replace_node_with_node(root, old_node, new_node); return; } new.dom_id.set(Some(root)); // Don't push the root if we don't have to let mut has_comitted = false; let mut please_commit = |edits: &mut Vec| { if !has_comitted { has_comitted = true; edits.push(PushRoot { id: root.as_u64() }); } }; // Diff Attributes // // It's extraordinarily rare to have the number/order of attributes change // In these cases, we just completely erase the old set and make a new set // // TODO: take a more efficient path than this if old.attributes.len() == new.attributes.len() { for (old_attr, new_attr) in old.attributes.iter().zip(new.attributes.iter()) { if old_attr.value != new_attr.value { please_commit(&mut self.mutations.edits); self.edit_set_attribute(new_attr); } } } else { // TODO: provide some sort of report on how "good" the diffing was please_commit(&mut self.mutations.edits); for attribute in old.attributes { self.edit_remove_attribute(attribute); } for attribute in new.attributes { self.edit_set_attribute(attribute) } } // Diff listeners // // It's extraordinarily rare to have the number/order of listeners change // In the cases where the listeners change, we completely wipe the data attributes and add new ones // // We also need to make sure that all listeners are properly attached to the parent scope (fix_listener) // // TODO: take a more efficient path than this let cur_scope: ScopeId = self.scope_stack.last().unwrap().clone(); if old.listeners.len() == new.listeners.len() { for (old_l, new_l) in old.listeners.iter().zip(new.listeners.iter()) { if old_l.event != new_l.event { please_commit(&mut self.mutations.edits); self.edit_remove_event_listener(old_l.event); self.edit_new_event_listener(new_l, cur_scope); } new_l.mounted_node.set(old_l.mounted_node.get()); self.fix_listener(new_l); } } else { please_commit(&mut self.mutations.edits); for listener in old.listeners { self.edit_remove_event_listener(listener.event); } for listener in new.listeners { listener.mounted_node.set(Some(root)); self.edit_new_event_listener(listener, cur_scope); // Make sure the listener gets attached to the scope list self.fix_listener(listener); } } if has_comitted { self.edit_pop(); } self.diff_children(old.children, new.children); } (VNodeKind::Component(old), VNodeKind::Component(new)) => { let scope_addr = old.ass_scope.get().unwrap(); // Make sure we're dealing with the same component (by function pointer) if old.user_fc == new.user_fc { // self.scope_stack.push(scope_addr); // Make sure the new component vnode is referencing the right scope id new.ass_scope.set(Some(scope_addr)); // make sure the component's caller function is up to date let scope = self.get_scope_mut(&scope_addr).unwrap(); scope .update_scope_dependencies(new.caller.clone(), ScopeChildren(new.children)); // React doesn't automatically memoize, but we do. let compare = old.comparator.unwrap(); match compare(new) { true => { // the props are the same... } false => { // the props are different... scope.run_scope().unwrap(); self.diff_node(scope.frames.wip_head(), scope.frames.fin_head()) .await; } } self.scope_stack.pop(); self.seen_scopes.insert(scope_addr); } else { let mut old_iter = RealChildIterator::new(old_node, &self.vdom); let first = old_iter .next() .expect("Components should generate a placeholder root"); // remove any leftovers for to_remove in old_iter { self.edit_push_root(to_remove.direct_id()); self.edit_remove(); } // seems like we could combine this into a single instruction.... self.replace_node_with_node(first.direct_id(), old_node, new_node); // Wipe the old one and plant the new one let old_scope = old.ass_scope.get().unwrap(); self.destroy_scopes(old_scope); } } (VNodeKind::Fragment(old), VNodeKind::Fragment(new)) => { // This is the case where options or direct vnodes might be used. // In this case, it's faster to just skip ahead to their diff if old.children.len() == 1 && new.children.len() == 1 { self.diff_node(&old.children[0], &new.children[0]).await; return; } self.diff_children(old.children, new.children); } (VNodeKind::Anchor(old), VNodeKind::Anchor(new)) => { new.dom_id.set(old.dom_id.get()); } // The strategy here is to pick the first possible node from the previous set and use that as our replace with root // // We also walk the "real node" list to make sure all latent roots are claened up // This covers the case any time a fragment or component shows up with pretty much anything else // // This likely isn't the fastest way to go about replacing one node with a virtual node, but the "insane" cases // are pretty rare. IE replacing a list (component or fragment) with a single node. ( VNodeKind::Component(_) | VNodeKind::Fragment(_) | VNodeKind::Text(_) | VNodeKind::Element(_) | VNodeKind::Anchor(_), VNodeKind::Component(_) | VNodeKind::Fragment(_) | VNodeKind::Text(_) | VNodeKind::Element(_) | VNodeKind::Anchor(_), ) => { self.replace_and_create_many_with_many([old_node], [new_node]); } // TODO (VNodeKind::Suspended(old), new) => { // self.replace_and_create_many_with_many([old_node], [new_node]); } // a node that was once real is now suspended (old, VNodeKind::Suspended(_)) => { // self.replace_and_create_many_with_many([old_node], [new_node]); } } } // Emit instructions to create the given virtual node. // // The change list stack may have any shape upon entering this function: // // [...] // // When this function returns, the new node is on top of the change list stack: // // [... node] pub fn create_vnode(&mut self, node: &'bump VNode<'bump>) -> CreateMeta { match &node.kind { VNodeKind::Text(text) => { let real_id = self.vdom.reserve_node(); self.edit_create_text_node(text.text, real_id); text.dom_id.set(Some(real_id)); CreateMeta::new(text.is_static, 1) } VNodeKind::Anchor(anchor) => { let real_id = self.vdom.reserve_node(); self.edit_create_placeholder(real_id); anchor.dom_id.set(Some(real_id)); CreateMeta::new(false, 1) } VNodeKind::Element(el) => { // we have the potential to completely eliminate working on this node in the future(!) // // This can only be done if all of the elements properties (attrs, children, listeners, etc) are static // While creating these things, keep track if we can memoize this element. // At the end, we'll set this flag on the element to skip it let mut is_static: bool = true; let VElement { tag_name, listeners, attributes, children, namespace, static_attrs: _, static_children: _, static_listeners: _, dom_id, } = el; let real_id = self.vdom.reserve_node(); self.edit_create_element(tag_name, *namespace, real_id); dom_id.set(Some(real_id)); let cur_scope = self.current_scope().unwrap(); listeners.iter().for_each(|listener| { self.fix_listener(listener); listener.mounted_node.set(Some(real_id)); self.edit_new_event_listener(listener, cur_scope.clone()); // if the node has an event listener, then it must be visited ? is_static = false; }); for attr in *attributes { is_static = is_static && attr.is_static; self.edit_set_attribute(attr); } // Fast path: if there is a single text child, it is faster to // create-and-append the text node all at once via setting the // parent's `textContent` in a single change list instruction than // to emit three instructions to (1) create a text node, (2) set its // text content, and finally (3) append the text node to this // parent. // // Notice: this is a web-specific optimization and may be changed in the future // // TODO move over // if children.len() == 1 { // if let VNodeKind::Text(text) = &children[0].kind { // self.set_text(text.text); // return CreateMeta::new(is_static, 1); // } // } for child in *children { let child_meta = self.create_vnode(child); is_static = is_static && child_meta.is_static; // append whatever children were generated by this call self.edit_append_children(child_meta.added_to_stack); } CreateMeta::new(is_static, 1) } VNodeKind::Component(vcomponent) => { let caller = vcomponent.caller.clone(); let parent_idx = self.scope_stack.last().unwrap().clone(); // Insert a new scope into our component list let new_idx = self.vdom.insert_scope_with_key(|new_idx| { let parent_scope = self.get_scope(&parent_idx).unwrap(); let height = parent_scope.height + 1; Scope::new( caller, new_idx, Some(parent_idx), height, ScopeChildren(vcomponent.children), self.vdom.clone(), ) }); // Actually initialize the caller's slot with the right address vcomponent.ass_scope.set(Some(new_idx)); if !vcomponent.can_memoize { let cur_scope = self.get_scope_mut(&parent_idx).unwrap(); let extended = *vcomponent as *const VComponent; let extended: *const VComponent<'static> = unsafe { std::mem::transmute(extended) }; cur_scope.borrowed_props.borrow_mut().push(extended); } // TODO: // add noderefs to current noderef list Noderefs // add effects to current effect list Effects let new_component = self.get_scope_mut(&new_idx).unwrap(); // Run the scope for one iteration to initialize it match new_component.run_scope() { Ok(_) => { // all good, new nodes exist } Err(err) => { // failed to run. this is the first time the component ran, and it failed // we manually set its head node to an empty fragment panic!("failing components not yet implemented"); } } // Take the node that was just generated from running the component let nextnode = new_component.frames.fin_head(); // Push the new scope onto the stack self.scope_stack.push(new_idx); // Run the creation algorithm with this scope on the stack let meta = self.create_vnode(nextnode); // pop the scope off the stack self.scope_stack.pop(); if meta.added_to_stack == 0 { panic!("Components should *always* generate nodes - even if they fail"); } // Finally, insert this scope as a seen node. self.seen_scopes.insert(new_idx); CreateMeta::new(vcomponent.is_static, meta.added_to_stack) } // Fragments are the only nodes that can contain dynamic content (IE through curlies or iterators). // We can never ignore their contents, so the prescence of a fragment indicates that we need always diff them. // Fragments will just put all their nodes onto the stack after creation VNodeKind::Fragment(frag) => self.create_children(frag.children), VNodeKind::Suspended(VSuspended { node: real_node }) => { let id = self.vdom.reserve_node(); self.edit_create_placeholder(id); real_node.set(Some(id)); CreateMeta::new(false, 1) } } } fn create_children(&mut self, children: &'bump [VNode<'bump>]) -> CreateMeta { let mut is_static = true; let mut added_to_stack = 0; // add them backwards for child in children.iter().rev() { let child_meta = self.create_vnode(child); is_static = is_static && child_meta.is_static; added_to_stack += child_meta.added_to_stack; } CreateMeta { is_static, added_to_stack, } } /// Destroy a scope and all of its descendents. /// /// Calling this will run the destuctors on all hooks in the tree. /// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered. fn destroy_scopes(&mut self, old_scope: ScopeId) { let mut nodes_to_delete = vec![old_scope]; let mut scopes_to_explore = vec![old_scope]; // explore the scope tree breadth first while let Some(scope_id) = scopes_to_explore.pop() { // If we're planning on deleting this node, then we don't need to both rendering it self.seen_scopes.insert(scope_id); let scope = self.get_scope(&scope_id).unwrap(); for child in scope.descendents.borrow().iter() { // Add this node to be explored scopes_to_explore.push(child.clone()); // Also add it for deletion nodes_to_delete.push(child.clone()); } } // Delete all scopes that we found as part of this subtree for node in nodes_to_delete { log::debug!("Removing scope {:#?}", node); let _scope = self.vdom.try_remove(node).unwrap(); // do anything we need to do to delete the scope // I think we need to run the destructors on the hooks // TODO } } // Diff the given set of old and new children. // // The parent must be on top of the change list stack when this function is // entered: // // [... parent] // // the change list stack is in the same state when this function returns. // // If old no anchors are provided, then it's assumed that we can freely append to the parent. // // Remember, non-empty lists does not mean that there are real elements, just that there are virtual elements. fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) { const IS_EMPTY: bool = true; const IS_NOT_EMPTY: bool = false; match (old.is_empty(), new.is_empty()) { (IS_EMPTY, IS_EMPTY) => {} // Completely adding new nodes, removing any placeholder if it exists (IS_EMPTY, IS_NOT_EMPTY) => { let meta = self.create_children(new); self.edit_append_children(meta.added_to_stack); } // Completely removing old nodes and putting an anchor in its place // no anchor (old has nodes) and the new is empty // remove all the old nodes (IS_NOT_EMPTY, IS_EMPTY) => { for node in old { self.remove_vnode(node); } } (IS_NOT_EMPTY, IS_NOT_EMPTY) => { let first_old = &old[0]; let first_new = &new[0]; match (&first_old.kind, &first_new.kind) { // Anchors can only appear in empty fragments (VNodeKind::Anchor(old_anchor), VNodeKind::Anchor(new_anchor)) => { old_anchor.dom_id.set(new_anchor.dom_id.get()); } // Replace the anchor with whatever new nodes are coming down the pipe (VNodeKind::Anchor(anchor), _) => { self.edit_push_root(anchor.dom_id.get().unwrap()); let mut added = 0; for el in new { let meta = self.create_vnode(el); added += meta.added_to_stack; } self.edit_replace_with(1, added); } // Replace whatever nodes are sitting there with the anchor (_, VNodeKind::Anchor(anchor)) => { self.replace_and_create_many_with_many(old, [first_new]); } // Use the complex diff algorithm to diff the nodes _ => { let new_is_keyed = new[0].key.is_some(); let old_is_keyed = old[0].key.is_some(); debug_assert!( new.iter().all(|n| n.key.is_some() == new_is_keyed), "all siblings must be keyed or all siblings must be non-keyed" ); debug_assert!( old.iter().all(|o| o.key.is_some() == old_is_keyed), "all siblings must be keyed or all siblings must be non-keyed" ); if new_is_keyed && old_is_keyed { self.diff_keyed_children(old, new); } else { self.diff_non_keyed_children(old, new); } } } } } } // Diffing "keyed" children. // // With keyed children, we care about whether we delete, move, or create nodes // versus mutate existing nodes in place. Presumably there is some sort of CSS // transition animation that makes the virtual DOM diffing algorithm // observable. By specifying keys for nodes, we know which virtual DOM nodes // must reuse (or not reuse) the same physical DOM nodes. // // This is loosely based on Inferno's keyed patching implementation. However, we // have to modify the algorithm since we are compiling the diff down into change // list instructions that will be executed later, rather than applying the // changes to the DOM directly as we compare virtual DOMs. // // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739 // // The stack is empty upon entry. fn diff_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) { if cfg!(debug_assertions) { let mut keys = fxhash::FxHashSet::default(); let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| { keys.clear(); for child in children { let key = child.key; debug_assert!( key.is_some(), "if any sibling is keyed, all siblings must be keyed" ); keys.insert(key); } debug_assert_eq!( children.len(), keys.len(), "keyed siblings must each have a unique key" ); }; assert_unique_keys(old); assert_unique_keys(new); } // First up, we diff all the nodes with the same key at the beginning of the // children. // // `shared_prefix_count` is the count of how many nodes at the start of // `new` and `old` share the same keys. // // TODO: just inline this let shared_prefix_count = match self.diff_keyed_prefix(old, new) { KeyedPrefixResult::Finished => return, KeyedPrefixResult::MoreWorkToDo(count) => count, }; // Next, we find out how many of the nodes at the end of the children have // the same key. We do _not_ diff them yet, since we want to emit the change // list instructions such that they can be applied in a single pass over the // DOM. Instead, we just save this information for later. // // `shared_suffix_count` is the count of how many nodes at the end of `new` // and `old` share the same keys. let shared_suffix_count = old[shared_prefix_count..] .iter() .rev() .zip(new[shared_prefix_count..].iter().rev()) .take_while(|&(old, new)| old.key == new.key) .count(); let old_shared_suffix_start = old.len() - shared_suffix_count; let new_shared_suffix_start = new.len() - shared_suffix_count; // Ok, we now hopefully have a smaller range of children in the middle // within which to re-order nodes with the same keys, remove old nodes with // now-unused keys, and create new nodes with fresh keys. self.diff_keyed_middle( &old[shared_prefix_count..old_shared_suffix_start], &new[shared_prefix_count..new_shared_suffix_start], shared_prefix_count, shared_suffix_count, old_shared_suffix_start, ); // Finally, diff the nodes at the end of `old` and `new` that share keys. let old_suffix = &old[old_shared_suffix_start..]; let new_suffix = &new[new_shared_suffix_start..]; debug_assert_eq!(old_suffix.len(), new_suffix.len()); if !old_suffix.is_empty() { self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start) } } // Diff the prefix of children in `new` and `old` that share the same keys in // the same order. // // The stack is empty upon entry. fn diff_keyed_prefix( &mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>], ) -> KeyedPrefixResult { let mut shared_prefix_count = 0; for (old, new) in old.iter().zip(new.iter()) { // abort early if we finally run into nodes with different keys if old.key() != new.key() { break; } self.diff_node(old, new); shared_prefix_count += 1; } // If that was all of the old children, then create and append the remaining // new children and we're finished. if shared_prefix_count == old.len() { // Load the last element let last_node = self.find_last_element(new.last().unwrap()).direct_id(); self.edit_push_root(last_node); // Create the new children and insert them after let meta = self.create_children(&new[shared_prefix_count..]); self.edit_insert_after(meta.added_to_stack); return KeyedPrefixResult::Finished; } // And if that was all of the new children, then remove all of the remaining // old children and we're finished. if shared_prefix_count == new.len() { self.remove_children(&old[shared_prefix_count..]); return KeyedPrefixResult::Finished; } KeyedPrefixResult::MoreWorkToDo(shared_prefix_count) } // Create the given children and append them to the parent node. // // The parent node must currently be on top of the change list stack: // // [... parent] // // When this function returns, the change list stack is in the same state. pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) { for child in new { let meta = self.create_vnode(child); self.edit_append_children(meta.added_to_stack); } } // The most-general, expensive code path for keyed children diffing. // // We find the longest subsequence within `old` of children that are relatively // ordered the same way in `new` (via finding a longest-increasing-subsequence // of the old child's index within `new`). The children that are elements of // this subsequence will remain in place, minimizing the number of DOM moves we // will have to do. // // Upon entry to this function, the change list stack must be empty. // // This function will load the appropriate nodes onto the stack and do diffing in place. // // Upon exit from this function, it will be restored to that same state. fn diff_keyed_middle( &mut self, old: &'bump [VNode<'bump>], mut new: &'bump [VNode<'bump>], shared_prefix_count: usize, shared_suffix_count: usize, old_shared_suffix_start: usize, ) { // Should have already diffed the shared-key prefixes and suffixes. debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key())); debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key())); // // The algorithm below relies upon using `u32::MAX` as a sentinel // // value, so if we have that many new nodes, it won't work. This // // check is a bit academic (hence only enabled in debug), since // // wasm32 doesn't have enough address space to hold that many nodes // // in memory. // debug_assert!(new.len() < u32::MAX as usize); // Map from each `old` node's key to its index within `old`. // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3). let mut old_key_to_old_index = old .iter() .enumerate() .map(|(i, o)| (o.key().unwrap(), i)) .collect::>(); // The set of shared keys between `new` and `old`. let mut shared_keys = FxHashSet::default(); // let mut to_remove = FxHashSet::default(); let mut to_add = FxHashSet::default(); // Map from each index in `new` to the index of the node in `old` that // has the same key. let mut new_index_to_old_index = new .iter() .map(|n| { let key = n.key().unwrap(); match old_key_to_old_index.get(&key) { Some(&index) => { shared_keys.insert(key); index } None => { // to_add.insert(key); u32::MAX as usize } } }) .collect::>(); dbg!(&shared_keys); dbg!(&to_add); // If none of the old keys are reused by the new children, then we // remove all the remaining old children and create the new children // afresh. if shared_suffix_count == 0 && shared_keys.is_empty() { self.replace_and_create_many_with_many(old, new); return; } // // Remove any old children whose keys were not reused in the new // // children. Remove from the end first so that we don't mess up indices. // for old_child in old.iter().rev() { // if !shared_keys.contains(&old_child.key()) { // self.remove_child(old_child); // } // } // let old_keyds = old.iter().map(|f| f.key()).collect::>(); // let new_keyds = new.iter().map(|f| f.key()).collect::>(); // dbg!(old_keyds); // dbg!(new_keyds); // // If there aren't any more new children, then we are done! // if new.is_empty() { // return; // } // The longest increasing subsequence within `new_index_to_old_index`. This // is the longest sequence on DOM nodes in `old` that are relatively ordered // correctly within `new`. We will leave these nodes in place in the DOM, // and only move nodes that are not part of the LIS. This results in the // maximum number of DOM nodes left in place, AKA the minimum number of DOM // nodes moved. let mut new_index_is_in_lis = FxHashSet::default(); new_index_is_in_lis.reserve(new_index_to_old_index.len()); let mut predecessors = vec![0; new_index_to_old_index.len()]; let mut starts = vec![0; new_index_to_old_index.len()]; longest_increasing_subsequence::lis_with( &new_index_to_old_index, &mut new_index_is_in_lis, |a, b| a < b, &mut predecessors, &mut starts, ); dbg!(&new_index_is_in_lis); // use the old nodes to navigate the new nodes let mut lis_in_order = new_index_is_in_lis.into_iter().collect::>(); lis_in_order.sort_unstable(); dbg!(&lis_in_order); // we walk front to back, creating the head node // diff the shared, in-place nodes first // this makes sure we can rely on their first/last nodes being correct later on for id in &lis_in_order { let new_node = &new[*id]; let key = new_node.key().unwrap(); let old_index = old_key_to_old_index.get(&key).unwrap(); let old_node = &old[*old_index]; self.diff_node(old_node, new_node); } // return the old node from the key let load_old_node_from_lsi = |key| -> &VNode { let old_index = old_key_to_old_index.get(key).unwrap(); let old_node = &old[*old_index]; old_node }; let mut root = None; let mut new_iter = new.iter().enumerate(); for lis_id in &lis_in_order { eprintln!("tracking {:?}", lis_id); // this is the next milestone node we are working up to let new_anchor = &new[*lis_id]; root = Some(new_anchor); let anchor_el = self.find_first_element(new_anchor); self.edit_push_root(anchor_el.direct_id()); // let mut pushed = false; 'inner: loop { let (next_id, next_new) = new_iter.next().unwrap(); if next_id == *lis_id { // we've reached the milestone, break this loop so we can step to the next milestone // remember: we already diffed this node eprintln!("breaking {:?}", next_id); break 'inner; } else { let key = next_new.key().unwrap(); eprintln!("found key {:?}", key); if shared_keys.contains(&key) { eprintln!("key is contained {:?}", key); shared_keys.remove(key); // diff the two nodes let old_node = load_old_node_from_lsi(key); self.diff_node(old_node, next_new); // now move all the nodes into the right spot for child in RealChildIterator::new(next_new, self.vdom) { let el = child.direct_id(); self.edit_push_root(el); self.edit_insert_before(1); } } else { eprintln!("key is not contained {:?}", key); // new node needs to be created // insert it before the current milestone let meta = self.create_vnode(next_new); self.edit_insert_before(meta.added_to_stack); } } } self.edit_pop(); } let final_lis_node = root.unwrap(); let final_el_node = self.find_last_element(final_lis_node); let final_el = final_el_node.direct_id(); self.edit_push_root(final_el); let mut last_iter = new.iter().rev().enumerate(); let last_key = final_lis_node.key().unwrap(); loop { let (last_id, last_node) = last_iter.next().unwrap(); let key = last_node.key().unwrap(); eprintln!("checking final nodes {:?}", key); if last_key == key { eprintln!("breaking final nodes"); break; } if shared_keys.contains(&key) { eprintln!("key is contained {:?}", key); shared_keys.remove(key); // diff the two nodes let old_node = load_old_node_from_lsi(key); self.diff_node(old_node, last_node); // now move all the nodes into the right spot for child in RealChildIterator::new(last_node, self.vdom) { let el = child.direct_id(); self.edit_push_root(el); self.edit_insert_after(1); } } else { eprintln!("key is not contained {:?}", key); // new node needs to be created // insert it before the current milestone let meta = self.create_vnode(last_node); self.edit_insert_after(meta.added_to_stack); } } self.edit_pop(); } // Diff the suffix of keyed children that share the same keys in the same order. // // The parent must be on the change list stack when we enter this function: // // [... parent] // // When this function exits, the change list stack remains the same. fn diff_keyed_suffix( &mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>], new_shared_suffix_start: usize, ) { debug_assert_eq!(old.len(), new.len()); debug_assert!(!old.is_empty()); for (old_child, new_child) in old.iter().zip(new.iter()) { self.diff_node(old_child, new_child); } } // Diff children that are not keyed. // // The parent must be on the top of the change list stack when entering this // function: // // [... parent] // // the change list stack is in the same state when this function returns. async fn diff_non_keyed_children( &mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>], ) { // Handled these cases in `diff_children` before calling this function. // debug_assert!(!new.is_empty()); debug_assert!(!old.is_empty()); match old.len().cmp(&new.len()) { // old.len > new.len -> removing some nodes Ordering::Greater => { // diff them together for (new_child, old_child) in new.iter().zip(old.iter()) { self.diff_node(old_child, new_child); } // todo: we would emit fewer instructions if we just did a replace many // remove whatever is still dangling for item in &old[new.len()..] { for i in RealChildIterator::new(item, self.vdom) { self.edit_push_root(i.direct_id()); self.edit_remove(); } } } // old.len < new.len -> adding some nodes // this is wrong in the case where we're diffing fragments // // we need to save the last old element and then replace it with all the new ones Ordering::Less => { // Add the new elements to the last old element while it still exists let last = self.find_last_element(old.last().unwrap()); self.edit_push_root(last.direct_id()); // create the rest and insert them let meta = self.create_children(&new[old.len()..]); self.edit_insert_after(meta.added_to_stack); self.edit_pop(); // diff the rest for (new_child, old_child) in new.iter().zip(old.iter()) { self.diff_node(old_child, new_child).await } } // old.len == new.len -> no nodes added/removed, but perhaps changed Ordering::Equal => { for (new_child, old_child) in new.iter().zip(old.iter()) { self.diff_node(old_child, new_child).await; } } } } // ====================== // Support methods // ====================== // Remove all of a node's children. // // The change list stack must have this shape upon entry to this function: // // [... parent] // // When this function returns, the change list stack is in the same state. fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) { // debug_assert!(self.traversal_is_committed()); log::debug!("REMOVING CHILDREN"); for _child in old { // registry.remove_subtree(child); } // Fast way to remove all children: set the node's textContent to an empty // string. todo!() // self.set_inner_text(""); } // Remove the current child and all of its following siblings. // // The change list stack must have this shape upon entry to this function: // // [... parent child] // // After the function returns, the child is no longer on the change list stack: // // [... parent] fn remove_children(&mut self, old: &'bump [VNode<'bump>]) { self.replace_and_create_many_with_many(old, None) } fn find_last_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> { let mut search_node = Some(vnode); loop { let node = search_node.take().unwrap(); match &node.kind { // the ones that have a direct id VNodeKind::Text(_) | VNodeKind::Element(_) | VNodeKind::Anchor(_) | VNodeKind::Suspended(_) => break node, VNodeKind::Fragment(frag) => { search_node = frag.children.last(); } VNodeKind::Component(el) => { let scope_id = el.ass_scope.get().unwrap(); let scope = self.get_scope(&scope_id).unwrap(); search_node = Some(scope.root()); } } } } fn find_first_element(&mut self, vnode: &'bump VNode<'bump>) -> &'bump VNode<'bump> { let mut search_node = Some(vnode); loop { let node = search_node.take().unwrap(); match &node.kind { // the ones that have a direct id VNodeKind::Text(_) | VNodeKind::Element(_) | VNodeKind::Anchor(_) | VNodeKind::Suspended(_) => break node, VNodeKind::Fragment(frag) => { search_node = Some(&frag.children[0]); } VNodeKind::Component(el) => { let scope_id = el.ass_scope.get().unwrap(); let scope = self.get_scope(&scope_id).unwrap(); search_node = Some(scope.root()); } } } } fn remove_child(&mut self, node: &'bump VNode<'bump>) { self.replace_and_create_many_with_many(Some(node), None); } /// Remove all the old nodes and replace them with newly created new nodes. /// /// The new nodes *will* be created - don't create them yourself! fn replace_and_create_many_with_many( &mut self, old_nodes: impl IntoIterator>, new_nodes: impl IntoIterator>, ) { let mut nodes_to_replace = Vec::new(); let mut nodes_to_search = old_nodes.into_iter().collect::>(); let mut scopes_obliterated = Vec::new(); while let Some(node) = nodes_to_search.pop() { match &node.kind { // the ones that have a direct id return immediately VNodeKind::Text(el) => nodes_to_replace.push(el.dom_id.get().unwrap()), VNodeKind::Element(el) => nodes_to_replace.push(el.dom_id.get().unwrap()), VNodeKind::Anchor(el) => nodes_to_replace.push(el.dom_id.get().unwrap()), VNodeKind::Suspended(el) => nodes_to_replace.push(el.node.get().unwrap()), // Fragments will either have a single anchor or a list of children VNodeKind::Fragment(frag) => { for child in frag.children { nodes_to_search.push(child); } } // Components can be any of the nodes above // However, we do need to track which components need to be removed VNodeKind::Component(el) => { let scope_id = el.ass_scope.get().unwrap(); let scope = self.get_scope(&scope_id).unwrap(); let root = scope.root(); nodes_to_search.push(root); scopes_obliterated.push(scope_id); } } // TODO: enable internal garabge collection // self.create_garbage(node); } let n = nodes_to_replace.len(); for node in nodes_to_replace { self.edit_push_root(node); } let mut nodes_created = 0; for node in new_nodes { let meta = self.create_vnode(node); nodes_created += meta.added_to_stack; } // if 0 nodes are created, then it gets interperted as a deletion self.edit_replace_with(n as u32, nodes_created); // obliterate! for scope in scopes_obliterated { self.destroy_scopes(scope); } } fn create_garbage(&mut self, node: &'bump VNode<'bump>) { match self.current_scope().and_then(|id| self.get_scope(&id)) { Some(scope) => { let garbage: &'bump VNode<'static> = unsafe { std::mem::transmute(node) }; scope.pending_garbage.borrow_mut().push(garbage); } None => { log::info!("No scope to collect garbage into") } } } fn immediately_dispose_garabage(&mut self, node: ElementId) { self.vdom.collect_garbage(node) } fn replace_node_with_node( &mut self, anchor: ElementId, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>, ) { self.edit_push_root(anchor); let meta = self.create_vnode(new_node); self.edit_replace_with(1, meta.added_to_stack); self.create_garbage(old_node); self.edit_pop(); } fn remove_vnode(&mut self, node: &'bump VNode<'bump>) { match &node.kind { VNodeKind::Text(el) => self.immediately_dispose_garabage(node.direct_id()), VNodeKind::Element(el) => { self.immediately_dispose_garabage(node.direct_id()); for child in el.children { self.remove_vnode(&child); } } VNodeKind::Anchor(a) => { // } VNodeKind::Fragment(frag) => { for child in frag.children { self.remove_vnode(&child); } } VNodeKind::Component(el) => { // // self.destroy_scopes(old_scope) } VNodeKind::Suspended(_) => todo!(), } } fn current_scope(&self) -> Option { self.scope_stack.last().map(|f| f.clone()) } fn fix_listener<'a>(&mut self, listener: &'a Listener<'a>) { let scope_id = self.current_scope(); if let Some(scope_id) = scope_id { let scope = self.get_scope(&scope_id).unwrap(); let mut queue = scope.listeners.borrow_mut(); let long_listener: &'a Listener<'static> = unsafe { std::mem::transmute(listener) }; queue.push(long_listener as *const _) } } pub fn get_scope_mut(&mut self, id: &ScopeId) -> Option<&'bump mut Scope> { // ensure we haven't seen this scope before // if we have, then we're trying to alias it, which is not allowed debug_assert!(!self.seen_scopes.contains(id)); unsafe { self.vdom.get_scope_mut(*id) } } pub fn get_scope(&mut self, id: &ScopeId) -> Option<&'bump Scope> { // ensure we haven't seen this scope before // if we have, then we're trying to alias it, which is not allowed unsafe { self.vdom.get_scope(*id) } } // Navigation pub(crate) fn edit_push_root(&mut self, root: ElementId) { let id = root.as_u64(); self.mutations.edits.push(PushRoot { id }); } pub(crate) fn edit_pop(&mut self) { self.mutations.edits.push(PopRoot {}); } // Add Nodes to the dom // add m nodes from the stack pub(crate) fn edit_append_children(&mut self, many: u32) { self.mutations.edits.push(AppendChildren { many }); } // replace the n-m node on the stack with the m nodes // ends with the last element of the chain on the top of the stack pub(crate) fn edit_replace_with(&mut self, n: u32, m: u32) { self.mutations.edits.push(ReplaceWith { n, m }); } pub(crate) fn edit_insert_after(&mut self, n: u32) { self.mutations.edits.push(InsertAfter { n }); } pub(crate) fn edit_insert_before(&mut self, n: u32) { self.mutations.edits.push(InsertBefore { n }); } // Remove Nodesfrom the dom pub(crate) fn edit_remove(&mut self) { self.mutations.edits.push(Remove); } // Create pub(crate) fn edit_create_text_node(&mut self, text: &'bump str, id: ElementId) { let id = id.as_u64(); self.mutations.edits.push(CreateTextNode { text, id }); } pub(crate) fn edit_create_element( &mut self, tag: &'static str, ns: Option<&'static str>, id: ElementId, ) { let id = id.as_u64(); match ns { Some(ns) => self.mutations.edits.push(CreateElementNs { id, ns, tag }), None => self.mutations.edits.push(CreateElement { id, tag }), } } // placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom pub(crate) fn edit_create_placeholder(&mut self, id: ElementId) { let id = id.as_u64(); self.mutations.edits.push(CreatePlaceholder { id }); } // events pub(crate) fn edit_new_event_listener(&mut self, listener: &Listener, scope: ScopeId) { let Listener { event, mounted_node, .. } = listener; let element_id = mounted_node.get().unwrap().as_u64(); self.mutations.edits.push(NewEventListener { scope, event_name: event, mounted_node_id: element_id, }); } pub(crate) fn edit_remove_event_listener(&mut self, event: &'static str) { self.mutations.edits.push(RemoveEventListener { event }); } // modify pub(crate) fn edit_set_text(&mut self, text: &'bump str) { self.mutations.edits.push(SetText { text }); } pub(crate) fn edit_set_attribute(&mut self, attribute: &'bump Attribute) { let Attribute { name, value, is_static, is_volatile, namespace, } = attribute; // field: &'static str, // value: &'bump str, // ns: Option<&'static str>, self.mutations.edits.push(SetAttribute { field: name, value, ns: *namespace, }); } pub(crate) fn edit_set_attribute_ns( &mut self, attribute: &'bump Attribute, namespace: &'bump str, ) { let Attribute { name, value, is_static, is_volatile, // namespace, .. } = attribute; // field: &'static str, // value: &'bump str, // ns: Option<&'static str>, self.mutations.edits.push(SetAttribute { field: name, value, ns: Some(namespace), }); } pub(crate) fn edit_remove_attribute(&mut self, attribute: &Attribute) { let name = attribute.name; self.mutations.edits.push(RemoveAttribute { name }); } } // When we create new nodes, we need to propagate some information back up the call chain. // This gives the caller some information on how to handle things like insertins, appending, and subtree discarding. #[derive(Debug)] pub struct CreateMeta { pub is_static: bool, pub added_to_stack: u32, } impl CreateMeta { fn new(is_static: bool, added_to_tack: u32) -> Self { Self { is_static, added_to_stack: added_to_tack, } } } enum KeyedPrefixResult { // Fast path: we finished diffing all the children just by looking at the // prefix of shared keys! Finished, // There is more diffing work to do. Here is a count of how many children at // the beginning of `new` and `old` we already processed. MoreWorkToDo(usize), } fn find_first_real_node<'a>( nodes: impl IntoIterator>, scopes: &'a SharedResources, ) -> Option<&'a VNode<'a>> { for node in nodes { let mut iter = RealChildIterator::new(node, scopes); if let Some(node) = iter.next() { return Some(node); } } None } /// This iterator iterates through a list of virtual children and only returns real children (Elements, Text, Anchors). /// /// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like /// "InsertBefore". pub struct RealChildIterator<'a> { scopes: &'a SharedResources, // Heuristcally we should never bleed into 4 completely nested fragments/components // Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane // TODO: use const generics instead of the 4 estimation stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 4]>, } impl<'a> RealChildIterator<'a> { pub fn new(starter: &'a VNode<'a>, scopes: &'a SharedResources) -> Self { Self { scopes, stack: smallvec::smallvec![(0, starter)], } } // keep the memory around pub fn reset_with(&mut self, node: &'a VNode<'a>) { self.stack.clear(); self.stack.push((0, node)); } } impl<'a> Iterator for RealChildIterator<'a> { type Item = &'a VNode<'a>; fn next(&mut self) -> Option<&'a VNode<'a>> { let mut should_pop = false; let mut returned_node: Option<&'a VNode<'a>> = None; let mut should_push = None; while returned_node.is_none() { if let Some((count, node)) = self.stack.last_mut() { match &node.kind { // We can only exit our looping when we get "real" nodes // This includes fragments and components when they're empty (have a single root) VNodeKind::Element(_) | VNodeKind::Text(_) => { // We've recursed INTO an element/text // We need to recurse *out* of it and move forward to the next should_pop = true; returned_node = Some(&*node); } // If we get a fragment we push the next child VNodeKind::Fragment(frag) => { let subcount = *count as usize; if frag.children.len() == 0 { should_pop = true; returned_node = Some(&*node); } if subcount >= frag.children.len() { should_pop = true; } else { should_push = Some(&frag.children[subcount]); } } // // If we get a fragment we push the next child // VNodeKind::Fragment(frag) => { // let subcount = *count as usize; // if frag.children.len() == 0 { // should_pop = true; // returned_node = Some(&*node); // } // if subcount >= frag.children.len() { // should_pop = true; // } else { // should_push = Some(&frag.children[subcount]); // } // } // Immediately abort suspended nodes - can't do anything with them yet VNodeKind::Suspended(node) => { // VNodeKind::Suspended => should_pop = true, todo!() } VNodeKind::Anchor(a) => { todo!() } // For components, we load their root and push them onto the stack VNodeKind::Component(sc) => { let scope = unsafe { self.scopes.get_scope(sc.ass_scope.get().unwrap()) }.unwrap(); // let scope = self.scopes.get(sc.ass_scope.get().unwrap()).unwrap(); // Simply swap the current node on the stack with the root of the component *node = scope.frames.fin_head(); } } } else { // If there's no more items on the stack, we're done! return None; } if should_pop { self.stack.pop(); if let Some((id, _)) = self.stack.last_mut() { *id += 1; } should_pop = false; } if let Some(push) = should_push { self.stack.push((0, push)); should_push = None; } } returned_node } } fn compare_strs(a: &str, b: &str) -> bool { // Check by pointer, optimizing for static strs if !std::ptr::eq(a, b) { // If the pointers are different then check by value a == b } else { true } }