//! Support for storing lazy-nodes on the stack //! //! This module provides support for a type called `LazyNodes` which is a micro-heap located on the stack to make calls //! to `rsx!` more efficient. //! //! To support returning rsx! from branches in match statements, we need to use dynamic dispatch on NodeFactory closures. //! //! This can be done either through boxing directly, or by using dynamic-sized-types and a custom allocator. In our case, //! we build a tiny alloactor in the stack and allocate the closure into that. //! //! The logic for this was borrowed from https://docs.rs/stack_dst/0.6.1/stack_dst/. Unfortunately, this crate does not //! support non-static closures, so we've implemented the core logic of `ValueA` in this module. use crate::prelude::{NodeFactory, VNode}; use std::mem; /// A concrete type provider for closures that build VNode structures. /// /// This struct wraps lazy structs that build VNode trees Normally, we cannot perform a blanket implementation over /// closures, but if we wrap the closure in a concrete type, we can maintain separate implementations of IntoVNode. /// /// /// ```rust /// LazyNodes::new(|f| f.element("div", [], [], [] None)) /// ``` pub struct LazyNodes<'a, 'b> { inner: StackNodeStorage<'a, 'b>, } type StackHeapSize = [usize; 0]; enum StackNodeStorage<'a, 'b> { Stack(LazyStack), Heap(Box) -> VNode<'a> + 'b>), } impl<'a, 'b> LazyNodes<'a, 'b> { pub fn new(val: F) -> Self where F: FnOnce(NodeFactory<'a>) -> VNode<'a> + 'b, { unsafe { let mut ptr: *const _ = &val as &dyn FnOnce(NodeFactory<'a>) -> VNode<'a>; assert_eq!( ptr as *const u8, &val as *const _ as *const u8, "MISUSE: Closure returned different pointer" ); assert_eq!( std::mem::size_of_val(&*ptr), std::mem::size_of::(), "MISUSE: Closure returned a subset pointer" ); let words = ptr_as_slice(&mut ptr); assert!( words[0] == &val as *const _ as usize, "BUG: Pointer layout is not (data_ptr, info...)" ); // - Ensure that Self is aligned same as data requires assert!( std::mem::align_of::() <= std::mem::align_of::(), "TODO: Enforce alignment >{} (requires {})", std::mem::align_of::(), std::mem::align_of::() ); let info = &words[1..]; let data = words[0] as *mut (); let size = mem::size_of::(); if info.len() * mem::size_of::() + size > mem::size_of::() { log::debug!("lazy nodes was too large to fit into stack. falling back to heap"); Self { inner: StackNodeStorage::Heap(Box::new(val)), } } else { log::debug!("lazy nodes fits on stack!"); let mut buf: StackHeapSize = StackHeapSize::default(); assert!(info.len() + round_to_words(size) <= buf.as_ref().len()); // Place pointer information at the end of the region // - Allows the data to be at the start for alignment purposes { let info_ofs = buf.as_ref().len() - info.len(); let info_dst = &mut buf.as_mut()[info_ofs..]; for (d, v) in Iterator::zip(info_dst.iter_mut(), info.iter()) { *d = *v; } } let src_ptr = data as *const u8; let dataptr = buf.as_mut()[..].as_mut_ptr() as *mut u8; for i in 0..size { *dataptr.add(i) = *src_ptr.add(i); } std::mem::forget(val); Self { inner: StackNodeStorage::Stack(LazyStack { _align: [], buf }), } } } } pub fn call(self, f: NodeFactory<'a>) -> VNode<'a> { match self.inner { StackNodeStorage::Heap(lazy) => lazy(f), StackNodeStorage::Stack(stack) => stack.call(f), } } } struct LazyStack { _align: [u64; 0], buf: StackHeapSize, } impl LazyStack { unsafe fn create_boxed<'a>(&mut self) -> Box) -> VNode<'a>> { let LazyStack { buf, .. } = self; let data = buf.as_ref(); let info_size = mem::size_of::<*mut dyn FnOnce(NodeFactory<'a>) -> VNode<'a>>() / mem::size_of::() - 1; let info_ofs = data.len() - info_size; let g: *mut dyn FnOnce(NodeFactory<'a>) -> VNode<'a> = make_fat_ptr(data[..].as_ptr() as usize, &data[info_ofs..]); Box::from_raw(g) } fn call(mut self, f: NodeFactory) -> VNode { let boxed = unsafe { self.create_boxed() }; boxed(f) } } impl Drop for LazyStack { fn drop(&mut self) { let boxed = unsafe { self.create_boxed() }; mem::drop(boxed); } } /// Obtain mutable access to a pointer's words fn ptr_as_slice(ptr: &mut T) -> &mut [usize] { assert!(mem::size_of::() % mem::size_of::() == 0); let words = mem::size_of::() / mem::size_of::(); // SAFE: Points to valid memory (a raw pointer) unsafe { core::slice::from_raw_parts_mut(ptr as *mut _ as *mut usize, words) } } /// Re-construct a fat pointer unsafe fn make_fat_ptr(data_ptr: usize, meta_vals: &[usize]) -> *mut T { let mut rv = mem::MaybeUninit::<*mut T>::uninit(); { let s = ptr_as_slice(&mut rv); s[0] = data_ptr; s[1..].copy_from_slice(meta_vals); } let rv = rv.assume_init(); assert_eq!(rv as *const (), data_ptr as *const ()); rv } fn round_to_words(len: usize) -> usize { (len + mem::size_of::() - 1) / mem::size_of::() } #[test] fn it_works() { let bump = bumpalo::Bump::new(); simple_logger::init(); let factory = NodeFactory { bump: &bump }; let caller = NodeFactory::annotate_lazy(|f| { // f.text(format_args!("hello world!")) }) .unwrap(); let g = caller.call(factory); dbg!(g); }