use crate::{ any_props::AnyProps, arena::ElementId, Element, Event, LazyNodes, ScopeId, ScopeState, }; use bumpalo::boxed::Box as BumpBox; use bumpalo::Bump; use std::{ any::{Any, TypeId}, cell::{Cell, RefCell}, fmt::Arguments, future::Future, }; pub type TemplateId = &'static str; /// The actual state of the component's most recent computation /// /// Because Dioxus accepts components in the form of `async fn(Scope) -> Result`, we need to support both /// sync and async versions. /// /// Dioxus will do its best to immediately resolve any async components into a regular Element, but as an implementor /// you might need to handle the case where there's no node immediately ready. pub enum RenderReturn<'a> { /// A currently-available element Sync(Element<'a>), /// An ongoing future that will resolve to a [`Element`] Async(BumpBox<'a, dyn Future> + 'a>), } /// A reference to a template along with any context needed to hydrate it /// /// The dynamic parts of the template are stored separately from the static parts. This allows faster diffing by skipping /// static parts of the template. #[derive(Debug, Clone)] pub struct VNode<'a> { /// The key given to the root of this template. /// /// In fragments, this is the key of the first child. In other cases, it is the key of the root. pub key: Option<&'a str>, /// When rendered, this template will be linked to its parent manually pub parent: Option, /// The static nodes and static descriptor of the template pub template: Template<'static>, /// The IDs for the roots of this template - to be used when moving the template around and removing it from /// the actual Dom pub root_ids: &'a [Cell>], /// The dynamic parts of the template pub dynamic_nodes: &'a [DynamicNode<'a>], /// The dynamic parts of the template pub dynamic_attrs: &'a [Attribute<'a>], } impl<'a> VNode<'a> { /// Create a template with no nodes that will be skipped over during diffing pub fn empty() -> Element<'a> { Ok(VNode { key: None, parent: None, root_ids: &[], dynamic_nodes: &[], dynamic_attrs: &[], template: Template { name: "dioxus-empty", roots: &[], node_paths: &[], attr_paths: &[], }, }) } /// Load a dynamic root at the given index /// /// Returns [`None`] if the root is actually a static node (Element/Text) pub fn dynamic_root(&self, idx: usize) -> Option<&'a DynamicNode<'a>> { match &self.template.roots[idx] { TemplateNode::Element { .. } | TemplateNode::Text { text: _ } => None, TemplateNode::Dynamic { id } | TemplateNode::DynamicText { id } => { Some(&self.dynamic_nodes[*id]) } } } pub(crate) fn clear_listeners(&self) { for attr in self.dynamic_attrs { if let AttributeValue::Listener(l) = &attr.value { l.borrow_mut().take(); } } } } /// A static layout of a UI tree that describes a set of dynamic and static nodes. /// /// This is the core innovation in Dioxus. Most UIs are made of static nodes, yet participate in diffing like any /// dynamic node. This struct can be created at compile time. It promises that its name is unique, allow Dioxus to use /// its static description of the UI to skip immediately to the dynamic nodes during diffing. /// /// For this to work properly, the [`Template::name`] *must* be unique across your entire project. This can be done via variety of /// ways, with the suggested approach being the unique code location (file, line, col, etc). #[cfg_attr(feature = "serialize", derive(serde::Serialize))] #[derive(Debug, Clone, Copy, PartialEq, Hash, Eq, PartialOrd, Ord)] pub struct Template<'a> { /// The name of the template. This must be unique across your entire program for template diffing to work properly /// /// If two templates have the same name, it's likely that Dioxus will panic when diffing. pub name: &'a str, /// The list of template nodes that make up the template /// /// Unlike react, calls to `rsx!` can have multiple roots. This list supports that paradigm. pub roots: &'a [TemplateNode<'a>], /// The paths of each node relative to the root of the template. /// /// These will be one segment shorter than the path sent to the renderer since those paths are relative to the /// topmost element, not the `roots` field. pub node_paths: &'a [&'a [u8]], /// The paths of each dynamic attribute relative to the root of the template /// /// These will be one segment shorter than the path sent to the renderer since those paths are relative to the /// topmost element, not the `roots` field. pub attr_paths: &'a [&'a [u8]], } impl<'a> Template<'a> { /// Is this template worth caching at all, since it's completely runtime? /// /// There's no point in saving templates that are completely dynamic, since they'll be recreated every time anyway. pub fn is_completely_dynamic(&self) -> bool { use TemplateNode::*; self.roots .iter() .all(|root| matches!(root, Dynamic { .. } | DynamicText { .. })) } } /// A statically known node in a layout. /// /// This can be created at compile time, saving the VirtualDom time when diffing the tree #[derive(Debug, Clone, Copy, PartialEq, Hash, Eq, PartialOrd, Ord)] #[cfg_attr(feature = "serialize", derive(serde::Serialize), serde(tag = "type"))] pub enum TemplateNode<'a> { /// An statically known element in the dom. /// /// In HTML this would be something like `
` Element { /// The name of the element /// /// IE for a div, it would be the string "div" tag: &'a str, /// The namespace of the element /// /// In HTML, this would be a valid URI that defines a namespace for all elements below it /// SVG is an example of this namespace namespace: Option<&'a str>, /// A list of possibly dynamic attribues for this element /// /// An attribute on a DOM node, such as `id="my-thing"` or `href="https://example.com"`. attrs: &'a [TemplateAttribute<'a>], /// A list of template nodes that define another set of template nodes children: &'a [TemplateNode<'a>], }, /// This template node is just a piece of static text Text { /// The actual text text: &'a str, }, /// This template node is unknown, and needs to be created at runtime. Dynamic { /// The index of the dynamic node in the VNode's dynamic_nodes list id: usize, }, /// This template node is known to be some text, but needs to be created at runtime /// /// This is separate from the pure Dynamic variant for various optimizations DynamicText { /// The index of the dynamic node in the VNode's dynamic_nodes list id: usize, }, } /// A node created at runtime /// /// This node's index in the DynamicNode list on VNode should match its repsective `Dynamic` index #[derive(Debug)] pub enum DynamicNode<'a> { /// A component node /// /// Most of the time, Dioxus will actually know which component this is as compile time, but the props and /// assigned scope are dynamic. /// /// The actual VComponent can be dynamic between two VNodes, though, allowing implementations to swap /// the render function at runtime Component(VComponent<'a>), /// A text node Text(VText<'a>), /// A placeholder /// /// Used by suspense when a node isn't ready and by fragments that don't render anything /// /// In code, this is just an ElementId whose initial value is set to 0 upon creation Placeholder(VPlaceholder), /// A list of VNodes. /// /// Note that this is not a list of dynamic nodes. These must be VNodes and created through conditional rendering /// or iterators. Fragment(&'a [VNode<'a>]), } impl Default for DynamicNode<'_> { fn default() -> Self { Self::Placeholder(Default::default()) } } /// An instance of a child component pub struct VComponent<'a> { /// The name of this component pub name: &'static str, /// Are the props valid for the 'static lifetime? /// /// Internally, this is used as a guarantee. Externally, this might be incorrect, so don't count on it. /// /// This flag is assumed by the [`crate::Properties`] trait which is unsafe to implement pub static_props: bool, /// The assigned Scope for this component pub scope: Cell>, /// The function pointer of the component, known at compile time /// /// It is possible that components get folded at comppile time, so these shouldn't be really used as a key pub render_fn: *const (), pub(crate) props: RefCell + 'a>>>, } impl<'a> std::fmt::Debug for VComponent<'a> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.debug_struct("VComponent") .field("name", &self.name) .field("static_props", &self.static_props) .field("scope", &self.scope) .finish() } } /// An instance of some text, mounted to the DOM #[derive(Debug)] pub struct VText<'a> { /// The actual text itself pub value: &'a str, /// The ID of this node in the real DOM pub id: Cell>, } /// A placeholder node, used by suspense and fragments #[derive(Debug, Default)] pub struct VPlaceholder { /// The ID of this node in the real DOM pub id: Cell>, } /// An attribute of the TemplateNode, created at compile time #[derive(Debug, PartialEq, Hash, Eq, PartialOrd, Ord)] #[cfg_attr( feature = "serialize", derive(serde::Serialize, serde::Deserialize), serde(tag = "type") )] pub enum TemplateAttribute<'a> { /// This attribute is entirely known at compile time, enabling Static { /// The name of this attribute. /// /// For example, the `href` attribute in `href="https://example.com"`, would have the name "href" name: &'a str, /// The value of this attribute, known at compile time /// /// Currently this only accepts &str, so values, even if they're known at compile time, are not known value: &'a str, /// The namespace of this attribute. Does not exist in the HTML spec namespace: Option<&'a str>, }, /// The attribute in this position is actually determined dynamically at runtime /// /// This is the index into the dynamic_attributes field on the container VNode Dynamic { /// The index id: usize, }, } /// An attribute on a DOM node, such as `id="my-thing"` or `href="https://example.com"` #[derive(Debug)] pub struct Attribute<'a> { /// The name of the attribute. pub name: &'a str, /// The value of the attribute pub value: AttributeValue<'a>, /// The namespace of the attribute. /// /// Doesn’t exist in the html spec. Used in Dioxus to denote “style” tags and other attribute groups. pub namespace: Option<&'static str>, /// The element in the DOM that this attribute belongs to pub mounted_element: Cell, /// An indication of we should always try and set the attribute. Used in controlled components to ensure changes are propagated pub volatile: bool, } /// Any of the built-in values that the Dioxus VirtualDom supports as dynamic attributes on elements /// /// These are built-in to be faster during the diffing process. To use a custom value, use the [`AttributeValue::Any`] /// variant. pub enum AttributeValue<'a> { /// Text attribute Text(&'a str), /// A float Float(f64), /// Signed integer Int(i64), /// Boolean Bool(bool), /// A listener, like "onclick" Listener(RefCell>>), /// An arbitrary value that implements PartialEq and is static Any(BumpBox<'a, dyn AnyValue>), /// A "none" value, resulting in the removal of an attribute from the dom None, } type ListenerCb<'a> = BumpBox<'a, dyn FnMut(Event) + 'a>; impl<'a> std::fmt::Debug for AttributeValue<'a> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Self::Text(arg0) => f.debug_tuple("Text").field(arg0).finish(), Self::Float(arg0) => f.debug_tuple("Float").field(arg0).finish(), Self::Int(arg0) => f.debug_tuple("Int").field(arg0).finish(), Self::Bool(arg0) => f.debug_tuple("Bool").field(arg0).finish(), Self::Listener(_) => f.debug_tuple("Listener").finish(), Self::Any(_) => f.debug_tuple("Any").finish(), Self::None => write!(f, "None"), } } } impl<'a> PartialEq for AttributeValue<'a> { fn eq(&self, other: &Self) -> bool { match (self, other) { (Self::Text(l0), Self::Text(r0)) => l0 == r0, (Self::Float(l0), Self::Float(r0)) => l0 == r0, (Self::Int(l0), Self::Int(r0)) => l0 == r0, (Self::Bool(l0), Self::Bool(r0)) => l0 == r0, (Self::Listener(_), Self::Listener(_)) => true, (Self::Any(l0), Self::Any(r0)) => l0.any_cmp(r0.as_ref()), _ => core::mem::discriminant(self) == core::mem::discriminant(other), } } } #[doc(hidden)] pub trait AnyValue { fn any_cmp(&self, other: &dyn AnyValue) -> bool; fn our_typeid(&self) -> TypeId; } impl AnyValue for T { fn any_cmp(&self, other: &dyn AnyValue) -> bool { if self.type_id() != other.our_typeid() { return false; } self == unsafe { &*(other as *const _ as *const T) } } fn our_typeid(&self) -> TypeId { self.type_id() } } #[doc(hidden)] pub trait ComponentReturn<'a, A = ()> { fn into_return(self, cx: &'a ScopeState) -> RenderReturn<'a>; } impl<'a> ComponentReturn<'a> for Element<'a> { fn into_return(self, _cx: &ScopeState) -> RenderReturn<'a> { RenderReturn::Sync(self) } } #[doc(hidden)] pub struct AsyncMarker; impl<'a, F> ComponentReturn<'a, AsyncMarker> for F where F: Future> + 'a, { fn into_return(self, cx: &'a ScopeState) -> RenderReturn<'a> { let f: &mut dyn Future> = cx.bump().alloc(self); RenderReturn::Async(unsafe { BumpBox::from_raw(f) }) } } impl<'a> RenderReturn<'a> { pub(crate) unsafe fn extend_lifetime_ref<'c>(&self) -> &'c RenderReturn<'c> { unsafe { std::mem::transmute(self) } } pub(crate) unsafe fn extend_lifetime<'c>(self) -> RenderReturn<'c> { unsafe { std::mem::transmute(self) } } } /// A trait that allows various items to be converted into a dynamic node for the rsx macro pub trait IntoDynNode<'a, A = ()> { /// Consume this item along with a scopestate and produce a DynamicNode /// /// You can use the bump alloactor of the scopestate to creat the dynamic node fn into_vnode(self, cx: &'a ScopeState) -> DynamicNode<'a>; } impl<'a> IntoDynNode<'a> for () { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { DynamicNode::default() } } impl<'a> IntoDynNode<'a> for VNode<'a> { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { DynamicNode::Fragment(_cx.bump().alloc([self])) } } impl<'a> IntoDynNode<'a> for DynamicNode<'a> { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { self } } // An element that's an error is currently lost into the ether impl<'a> IntoDynNode<'a> for Element<'a> { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { match self { Ok(val) => val.into_vnode(_cx), _ => DynamicNode::default(), } } } impl<'a, T: IntoDynNode<'a>> IntoDynNode<'a> for Option { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { match self { Some(val) => val.into_vnode(_cx), None => DynamicNode::default(), } } } impl<'a> IntoDynNode<'a> for &Element<'a> { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { match self.as_ref() { Ok(val) => val.clone().into_vnode(_cx), _ => DynamicNode::default(), } } } impl<'a, 'b> IntoDynNode<'a> for LazyNodes<'a, 'b> { fn into_vnode(self, cx: &'a ScopeState) -> DynamicNode<'a> { DynamicNode::Fragment(cx.bump().alloc([self.call(cx)])) } } impl<'a> IntoDynNode<'_> for &'a str { fn into_vnode(self, cx: &ScopeState) -> DynamicNode { cx.text_node(format_args!("{}", self)) } } impl IntoDynNode<'_> for String { fn into_vnode(self, cx: &ScopeState) -> DynamicNode { cx.text_node(format_args!("{}", self)) } } impl<'b> IntoDynNode<'b> for Arguments<'_> { fn into_vnode(self, cx: &'b ScopeState) -> DynamicNode<'b> { cx.text_node(self) } } impl<'a> IntoDynNode<'a> for &'a VNode<'a> { fn into_vnode(self, _cx: &'a ScopeState) -> DynamicNode<'a> { DynamicNode::Fragment(_cx.bump().alloc([VNode { parent: self.parent, template: self.template, root_ids: self.root_ids, key: self.key, dynamic_nodes: self.dynamic_nodes, dynamic_attrs: self.dynamic_attrs, }])) } } pub trait IntoTemplate<'a> { fn into_template(self, _cx: &'a ScopeState) -> VNode<'a>; } impl<'a> IntoTemplate<'a> for VNode<'a> { fn into_template(self, _cx: &'a ScopeState) -> VNode<'a> { self } } impl<'a> IntoTemplate<'a> for Element<'a> { fn into_template(self, _cx: &'a ScopeState) -> VNode<'a> { match self { Ok(val) => val.into_template(_cx), _ => VNode::empty().unwrap(), } } } impl<'a, 'b> IntoTemplate<'a> for LazyNodes<'a, 'b> { fn into_template(self, cx: &'a ScopeState) -> VNode<'a> { self.call(cx) } } // Note that we're using the E as a generic but this is never crafted anyways. #[doc(hidden)] pub struct FromNodeIterator; impl<'a, T, I> IntoDynNode<'a, FromNodeIterator> for T where T: Iterator, I: IntoTemplate<'a>, { fn into_vnode(self, cx: &'a ScopeState) -> DynamicNode<'a> { let mut nodes = bumpalo::collections::Vec::new_in(cx.bump()); nodes.extend(self.into_iter().map(|node| node.into_template(cx))); match nodes.into_bump_slice() { children if children.is_empty() => DynamicNode::default(), children => DynamicNode::Fragment(children), } } } /// A value that can be converted into an attribute value pub trait IntoAttributeValue<'a> { /// Convert into an attribute value fn into_value(self, bump: &'a Bump) -> AttributeValue<'a>; } impl<'a> IntoAttributeValue<'a> for &'a str { fn into_value(self, _: &'a Bump) -> AttributeValue<'a> { AttributeValue::Text(self) } } impl<'a> IntoAttributeValue<'a> for f64 { fn into_value(self, _: &'a Bump) -> AttributeValue<'a> { AttributeValue::Float(self) } } impl<'a> IntoAttributeValue<'a> for i64 { fn into_value(self, _: &'a Bump) -> AttributeValue<'a> { AttributeValue::Int(self) } } impl<'a> IntoAttributeValue<'a> for bool { fn into_value(self, _: &'a Bump) -> AttributeValue<'a> { AttributeValue::Bool(self) } } impl<'a> IntoAttributeValue<'a> for Arguments<'_> { fn into_value(self, bump: &'a Bump) -> AttributeValue<'a> { use bumpalo::core_alloc::fmt::Write; let mut str_buf = bumpalo::collections::String::new_in(bump); str_buf.write_fmt(self).unwrap(); AttributeValue::Text(str_buf.into_bump_str()) } }