use crate::innerlude::*; use fxhash::FxHashMap; use std::{ any::{Any, TypeId}, cell::{Cell, RefCell}, collections::HashMap, future::Future, pin::Pin, rc::Rc, }; /// Every component in Dioxus is represented by a `Scope`. /// /// Scopes contain the state for hooks, the component's props, and other lifecycle information. /// /// Scopes are allocated in a generational arena. As components are mounted/unmounted, they will replace slots of dead components. /// The actual contents of the hooks, though, will be allocated with the standard allocator. These should not allocate as frequently. /// /// We expose the `Scope` type so downstream users can traverse the Dioxus VirtualDOM for whatever /// use case they might have. pub struct ScopeInner { // Book-keeping about our spot in the arena pub(crate) parent_idx: Option, pub(crate) our_arena_idx: ScopeId, pub(crate) height: u32, pub(crate) subtree: Cell, pub(crate) is_subtree_root: Cell, // Nodes pub(crate) frames: ActiveFrame, pub(crate) caller: *const dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>, /* we care about: - listeners (and how to call them when an event is triggered) - borrowed props (and how to drop them when the parent is dropped) - suspended nodes (and how to call their callback when their associated tasks are complete) */ pub(crate) listeners: RefCell>>, pub(crate) borrowed_props: RefCell>>, pub(crate) suspended_nodes: RefCell>>, // State pub(crate) hooks: HookList, // todo: move this into a centralized place - is more memory efficient pub(crate) shared_contexts: RefCell>>, // whenever set_state is called, we fire off a message to the scheduler // this closure _is_ the method called by schedule_update that marks this component as dirty pub(crate) memoized_updater: Rc, pub(crate) shared: EventChannel, } /// Public interface for Scopes. impl ScopeInner { /// Get the root VNode for this Scope. /// /// This VNode is the "entrypoint" VNode. If the component renders multiple nodes, then this VNode will be a fragment. /// /// # Example /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// if let VNode::VElement(node) = base.root_node() { /// assert_eq!(node.tag_name, "div"); /// } /// ``` pub fn root_node(&self) -> &VNode { self.frames.fin_head() } /// Get the subtree ID that this scope belongs to. /// /// Each component has its own subtree ID - the root subtree has an ID of 0. This ID is used by the renderer to route /// the mutations to the correct window/portal/subtree. /// /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// assert_eq!(base.subtree(), 0); /// ``` pub fn subtree(&self) -> u32 { self.subtree.get() } pub(crate) fn new_subtree(&self) -> Option { if self.is_subtree_root.get() { None } else { let cur = self.shared.cur_subtree.get(); self.shared.cur_subtree.set(cur + 1); Some(cur) } } /// Get the height of this Scope - IE the number of scopes above it. /// /// A Scope with a height of `0` is the root scope - there are no other scopes above it. /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// assert_eq!(base.height(), 0); /// ``` pub fn height(&self) -> u32 { self.height } /// Get the Parent of this Scope within this Dioxus VirtualDOM. /// /// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted. /// /// The base component will not have a parent, and will return `None`. /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// /// let base = dom.base_scope(); /// /// assert_eq!(base.parent(), None); /// ``` pub fn parent(&self) -> Option { self.parent_idx } /// Get the ID of this Scope within this Dioxus VirtualDOM. /// /// This ID is not unique across Dioxus VirtualDOMs or across time. IDs will be reused when components are unmounted. /// /// # Example /// /// ```rust /// let mut dom = VirtualDom::new(|(cx, props)|cx.render(rsx!{ div {} })); /// dom.rebuild(); /// let base = dom.base_scope(); /// /// assert_eq!(base.scope_id(), 0); /// ``` pub fn scope_id(&self) -> ScopeId { self.our_arena_idx } } // The type of closure that wraps calling components /// The type of task that gets sent to the task scheduler /// Submitting a fiber task returns a handle to that task, which can be used to wake up suspended nodes pub type FiberTask = Pin>>; /// Private interface for Scopes. impl ScopeInner { // we are being created in the scope of an existing component (where the creator_node lifetime comes into play) // we are going to break this lifetime by force in order to save it on ourselves. // To make sure that the lifetime isn't truly broken, we receive a Weak RC so we can't keep it around after the parent dies. // This should never happen, but is a good check to keep around // // Scopes cannot be made anywhere else except for this file // Therefore, their lifetimes are connected exclusively to the virtual dom pub(crate) fn new( caller: &dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>, our_arena_idx: ScopeId, parent_idx: Option, height: u32, subtree: u32, shared: EventChannel, ) -> Self { let schedule_any_update = shared.schedule_any_immediate.clone(); let memoized_updater = Rc::new(move || schedule_any_update(our_arena_idx)); let caller = caller as *const _; // wipe away the associated lifetime - we are going to manually manage the one-way lifetime graph let caller = unsafe { std::mem::transmute(caller) }; Self { memoized_updater, shared, caller, parent_idx, our_arena_idx, height, subtree: Cell::new(subtree), is_subtree_root: Cell::new(false), frames: ActiveFrame::new(), hooks: Default::default(), suspended_nodes: Default::default(), shared_contexts: Default::default(), listeners: Default::default(), borrowed_props: Default::default(), } } pub(crate) fn update_scope_dependencies<'creator_node>( &mut self, caller: &'creator_node dyn for<'b> Fn(&'b ScopeInner) -> Element<'b>, ) { log::debug!("Updating scope dependencies {:?}", self.our_arena_idx); let caller = caller as *const _; self.caller = unsafe { std::mem::transmute(caller) }; } /// This method cleans up any references to data held within our hook list. This prevents mutable aliasing from /// causing UB in our tree. /// /// This works by cleaning up our references from the bottom of the tree to the top. The directed graph of components /// essentially forms a dependency tree that we can traverse from the bottom to the top. As we traverse, we remove /// any possible references to the data in the hook list. /// /// References to hook data can only be stored in listeners and component props. During diffing, we make sure to log /// all listeners and borrowed props so we can clear them here. /// /// This also makes sure that drop order is consistent and predictable. All resources that rely on being dropped will /// be dropped. pub(crate) fn ensure_drop_safety(&mut self, pool: &ResourcePool) { // make sure we drop all borrowed props manually to guarantee that their drop implementation is called before we // run the hooks (which hold an &mut Reference) // right now, we don't drop self.borrowed_props .get_mut() .drain(..) .map(|li| unsafe { &*li }) .for_each(|comp| { // First drop the component's undropped references let scope_id = comp .associated_scope .get() .expect("VComponents should be associated with a valid Scope"); if let Some(scope) = pool.get_scope_mut(scope_id) { scope.ensure_drop_safety(pool); let mut drop_props = comp.drop_props.borrow_mut().take().unwrap(); drop_props(); } }); // Now that all the references are gone, we can safely drop our own references in our listeners. self.listeners .get_mut() .drain(..) .map(|li| unsafe { &*li }) .for_each(|listener| drop(listener.callback.borrow_mut().take())); } /// A safe wrapper around calling listeners pub(crate) fn call_listener(&mut self, event: UserEvent, element: ElementId) { let listners = self.listeners.borrow_mut(); let raw_listener = listners.iter().find(|lis| { let search = unsafe { &***lis }; if search.event == event.name { let search_id = search.mounted_node.get(); search_id.map(|f| f == element).unwrap_or(false) } else { false } }); if let Some(raw_listener) = raw_listener { let listener = unsafe { &**raw_listener }; let mut cb = listener.callback.borrow_mut(); if let Some(cb) = cb.as_mut() { (cb)(event.event); } } else { log::warn!("An event was triggered but there was no listener to handle it"); } } /* General strategy here is to load up the appropriate suspended task and then run it. Suspended nodes cannot be called repeatedly. */ pub(crate) fn call_suspended_node<'a>(&'a mut self, task_id: u64) { let mut nodes = self.suspended_nodes.borrow_mut(); if let Some(suspended) = nodes.remove(&task_id) { let sus: &'a VSuspended<'static> = unsafe { &*suspended }; let sus: &'a VSuspended<'a> = unsafe { std::mem::transmute(sus) }; let cx: SuspendedContext<'a> = SuspendedContext { inner: Context { scope: self }, }; let mut cb = sus.callback.borrow_mut().take().unwrap(); let new_node: Element<'a> = (cb)(cx); } } /// Render this component. /// /// Returns true if the scope completed successfully and false if running failed (IE a None error was propagated). pub(crate) fn run_scope<'sel>(&'sel mut self, pool: &ResourcePool) -> bool { // Cycle to the next frame and then reset it // This breaks any latent references, invalidating every pointer referencing into it. // Remove all the outdated listeners self.ensure_drop_safety(pool); // Safety: // - We dropped the listeners, so no more &mut T can be used while these are held // - All children nodes that rely on &mut T are replaced with a new reference unsafe { self.hooks.reset() }; // Safety: // - We've dropped all references to the wip bump frame unsafe { self.frames.reset_wip_frame() }; // just forget about our suspended nodes while we're at it self.suspended_nodes.get_mut().clear(); // guarantee that we haven't screwed up - there should be no latent references anywhere debug_assert!(self.listeners.borrow().is_empty()); debug_assert!(self.suspended_nodes.borrow().is_empty()); debug_assert!(self.borrowed_props.borrow().is_empty()); log::debug!("Borrowed stuff is successfully cleared"); // Cast the caller ptr from static to one with our own reference let render: &dyn for<'b> Fn(&'b ScopeInner) -> Element<'b> = unsafe { &*self.caller }; // Todo: see if we can add stronger guarantees around internal bookkeeping and failed component renders. // todo!() // if let Some(builder) = render(self) { // let new_head = builder.into_vnode(NodeFactory { // bump: &self.frames.wip_frame().bump, // }); // log::debug!("Render is successful"); // // the user's component succeeded. We can safely cycle to the next frame // self.frames.wip_frame_mut().head_node = unsafe { std::mem::transmute(new_head) }; // self.frames.cycle_frame(); // true // } else { // false // } } } /// render the scope to a string using the rsx! syntax pub(crate) struct ScopeRenderer<'a> { pub skip_components: bool, pub show_fragments: bool, pub _scope: &'a ScopeInner, pub _pre_render: bool, pub _newline: bool, pub _indent: bool, pub _max_depth: usize, } // this is more or less a debug tool, but it'll render the entire tree to the terminal impl<'a> ScopeRenderer<'a> { pub fn render( &self, vdom: &VirtualDom, node: &VNode, f: &mut std::fmt::Formatter, il: u16, ) -> std::fmt::Result { const INDENT: &str = " "; let write_indent = |_f: &mut std::fmt::Formatter, le| { for _ in 0..le { write!(_f, "{}", INDENT).unwrap(); } }; match &node { VNode::Text(text) => { write_indent(f, il); writeln!(f, "\"{}\"", text.text)? } VNode::Anchor(_anchor) => { write_indent(f, il); writeln!(f, "Anchor {{}}")?; } VNode::Element(el) => { write_indent(f, il); writeln!(f, "{} {{", el.tag_name)?; // write!(f, "element: {}", el.tag_name)?; let mut attr_iter = el.attributes.iter().peekable(); while let Some(attr) = attr_iter.next() { match attr.namespace { None => { // write_indent(f, il + 1); writeln!(f, "{}: \"{}\"", attr.name, attr.value)? } Some(ns) => { // write the opening tag write_indent(f, il + 1); write!(f, " {}:\"", ns)?; let mut cur_ns_el = attr; 'ns_parse: loop { write!(f, "{}:{};", cur_ns_el.name, cur_ns_el.value)?; match attr_iter.peek() { Some(next_attr) if next_attr.namespace == Some(ns) => { cur_ns_el = attr_iter.next().unwrap(); } _ => break 'ns_parse, } } // write the closing tag write!(f, "\"")?; } } } for child in el.children { self.render(vdom, child, f, il + 1)?; } write_indent(f, il); writeln!(f, "}}")?; } VNode::Fragment(frag) => { if self.show_fragments { write_indent(f, il); writeln!(f, "Fragment {{")?; for child in frag.children { self.render(vdom, child, f, il + 1)?; } write_indent(f, il); writeln!(f, "}}")?; } else { for child in frag.children { self.render(vdom, child, f, il)?; } } } VNode::Component(vcomp) => { let idx = vcomp.associated_scope.get().unwrap(); if !self.skip_components { let new_node = vdom.get_scope(idx).unwrap().root_node(); self.render(vdom, new_node, f, il)?; } } VNode::Suspended { .. } => { // we can't do anything with suspended nodes } } Ok(()) } }