//! Example: Calculator //! ------------------- //! //! Some components benefit through the use of "Models". Models are a single block of encapsulated state that allow mutative //! methods to be performed on them. Dioxus exposes the ability to use the model pattern through the "use_model" hook. //! //! `use_model` is basically just a fancy wrapper around set_state, but saves a "working copy" of the new state behind a //! RefCell. To modify the working copy, you need to call "modify" which returns the RefMut. This makes it easy to write //! fully encapsulated apps that retain a certain feel of native Rusty-ness. A calculator app is a good example of when this //! is useful. use dioxus::events::on::*; use dioxus::prelude::*; use std::{ cell::RefCell, ops::{Deref, DerefMut}, }; fn main() { dioxus::webview::launch(App) } static App: FC<()> = |cx| { let state = use_model(&cx, || CalculatorState::new()); let clear_display = state.display_value.eq("0"); let clear_text = if clear_display { "C" } else { "AC" }; let formatted = state.formatted(); cx.render(rsx! { div { class: "calculator", onkeydown: move |evt| state.modify().handle_keydown(evt), div { class: "calculator-display", "{formatted}"} div { class: "input-keys" div { class: "function-keys" CalculatorKey { name: "key-clear", onclick: move |_| state.modify().clear_display() "{clear_text}" } CalculatorKey { name: "key-sign", onclick: move |_| state.modify().toggle_sign(), "±"} CalculatorKey { name: "key-percent", onclick: move |_| state.modify().toggle_percent() "%"} } div { class: "digit-keys" CalculatorKey { name: "key-0", onclick: move |_| state.modify().input_digit(0), "0" } CalculatorKey { name: "key-dot", onclick: move |_| state.modify().input_dot(), "●" } {(1..9).map(|k| rsx!{ CalculatorKey { key: "{k}", name: "key-{k}", onclick: move |_| state.modify().input_digit(k), "{k}" } })} } div { class: "operator-keys" CalculatorKey { name:"key-divide", onclick: move |_| state.modify().set_operator(Operator::Div) "÷" } CalculatorKey { name:"key-multiply", onclick: move |_| state.modify().set_operator(Operator::Mul) "×" } CalculatorKey { name:"key-subtract", onclick: move |_| state.modify().set_operator(Operator::Sub) "−" } CalculatorKey { name:"key-add", onclick: move |_| state.modify().set_operator(Operator::Add) "+" } CalculatorKey { name:"key-equals", onclick: move |_| state.modify().perform_operation() "=" } } } } }) }; #[derive(Clone)] struct CalculatorState { display_value: String, operator: Option, cur_val: f64, } #[derive(Clone)] enum Operator { Add, Sub, Mul, Div, } impl CalculatorState { fn new() -> Self { CalculatorState { display_value: "0".to_string(), operator: None, cur_val: 0.0, } } fn formatted(&self) -> String { use separator::Separatable; self.cur_val.separated_string() } fn clear_display(&mut self) { self.display_value = "0".to_string(); } fn input_digit(&mut self, digit: u8) { self.display_value.push_str(digit.to_string().as_str()) } fn input_dot(&mut self) { if self.display_value.find(".").is_none() { self.display_value.push_str("."); } } fn perform_operation(&mut self) { if let Some(op) = &self.operator { let rhs = self.display_value.parse::().unwrap(); let new_val = match op { Operator::Add => self.cur_val + rhs, Operator::Sub => self.cur_val - rhs, Operator::Mul => self.cur_val * rhs, Operator::Div => self.cur_val / rhs, }; self.cur_val = new_val; self.display_value = new_val.to_string(); self.operator = None; } } fn toggle_sign(&mut self) { if self.display_value.starts_with("-") { self.display_value = self.display_value.trim_start_matches("-").to_string(); } else { self.display_value = format!("-{}", self.display_value); } } fn toggle_percent(&mut self) {} fn backspace(&mut self) { if !self.display_value.as_str().eq("0") { self.display_value.pop(); } } fn set_operator(&mut self, operator: Operator) {} fn handle_keydown(&mut self, evt: KeyboardEvent) { match evt.key_code() { KeyCode::Backspace => self.backspace(), KeyCode::_0 => self.input_digit(0), KeyCode::_1 => self.input_digit(1), KeyCode::_2 => self.input_digit(2), KeyCode::_3 => self.input_digit(3), KeyCode::_4 => self.input_digit(4), KeyCode::_5 => self.input_digit(5), KeyCode::_6 => self.input_digit(6), KeyCode::_7 => self.input_digit(7), KeyCode::_8 => self.input_digit(8), KeyCode::_9 => self.input_digit(9), KeyCode::Add => self.operator = Some(Operator::Add), KeyCode::Subtract => self.operator = Some(Operator::Sub), KeyCode::Divide => self.operator = Some(Operator::Div), KeyCode::Multiply => self.operator = Some(Operator::Mul), _ => {} } } } #[derive(Props)] struct CalculatorKeyProps<'a> { name: &'static str, onclick: &'a dyn Fn(MouseEvent), } fn CalculatorKey<'a, 'r>(cx: Context<'a, CalculatorKeyProps<'r>>) -> VNode<'a> { cx.render(rsx! { button { class: "calculator-key {cx.name}" onclick: {cx.onclick} {cx.children()} } }) } use odl::use_model; mod odl { use super::*; /// Use model makes it easy to use "models" as state for components. To modify the model, call "modify" and a clone of the /// current model will be made, with a RefMut lock on it. Dioxus will never run your components multithreaded, so you can /// be relatively sure that this won't fail in practice pub fn use_model<'a, T: Clone>(cx: &impl Scoped<'a>, f: impl FnOnce() -> T) -> &'a UseModel { todo!() } trait ModelAble { type Out; } fn make_model(f: F) -> F::Out { todo!() } // fn use_model(w: &mut ModelWrapper) { // let mut g1 = move || { // // // w.eat(); // }; // let mut g2 = move || { // // // w.eat(); // }; // g1(); // g2(); // } pub struct UseModel { real: T, wip: RefCell, } use std::cell::{Ref, RefMut}; impl Deref for UseModel { type Target = T; fn deref(&self) -> &Self::Target { &self.real } } impl UseModel { pub fn new(t: T) -> Self { Self { real: t.clone(), wip: RefCell::new(t), } } pub fn modify(&self) -> RefMut<'_, T> { self.wip.borrow_mut() } } #[derive(Clone, Copy)] struct MyModel { hunger: u32, } impl MyModel { fn eat(&mut self) { self.hunger -= 1; } } }