//! Support for storing lazy-nodes on the stack //! //! This module provides support for a type called `LazyNodes` which is a micro-heap located on the stack to make calls //! to `rsx!` more efficient. //! //! To support returning rsx! from branches in match statements, we need to use dynamic dispatch on [`ScopeState`] closures. //! //! This can be done either through boxing directly, or by using dynamic-sized-types and a custom allocator. In our case, //! we build a tiny alloactor in the stack and allocate the closure into that. //! //! The logic for this was borrowed from . Unfortunately, this crate does not //! support non-static closures, so we've implemented the core logic of `ValueA` in this module. use crate::{innerlude::VNode, ScopeState}; use std::mem; /// A concrete type provider for closures that build [`VNode`] structures. /// /// This struct wraps lazy structs that build [`VNode`] trees Normally, we cannot perform a blanket implementation over /// closures, but if we wrap the closure in a concrete type, we can use it for different branches in matching. /// /// /// ```rust, ignore /// LazyNodes::new(|f| f.element("div", [], [], [] None)) /// ``` pub struct LazyNodes<'a, 'b> { inner: StackNodeStorage<'a, 'b>, } type StackHeapSize = [usize; 16]; enum StackNodeStorage<'a, 'b> { Stack(LazyStack), Heap(Box) -> Option> + 'b>), } impl<'a, 'b> LazyNodes<'a, 'b> { /// Create a new [`LazyNodes`] closure, optimistically placing it onto the stack. /// /// If the closure cannot fit into the stack allocation (16 bytes), then it /// is placed on the heap. Most closures will fit into the stack, and is /// the most optimal way to use the creation function. pub fn new(val: impl FnOnce(&'a ScopeState) -> VNode<'a> + 'b) -> Self { // there's no way to call FnOnce without a box, so we need to store it in a slot and use static dispatch let mut slot = Some(val); let val = move |fac: Option<&'a ScopeState>| { fac.map( slot.take() .expect("LazyNodes closure to be called only once"), ) }; // miri does not know how to work with mucking directly into bytes // just use a heap allocated type when miri is running if cfg!(miri) { Self { inner: StackNodeStorage::Heap(Box::new(val)), } } else { unsafe { LazyNodes::new_inner(val) } } } /// Create a new [`LazyNodes`] closure, but force it onto the heap. pub fn new_boxed(inner: F) -> Self where F: FnOnce(&'a ScopeState) -> VNode<'a> + 'b, { // there's no way to call FnOnce without a box, so we need to store it in a slot and use static dispatch let mut slot = Some(inner); Self { inner: StackNodeStorage::Heap(Box::new(move |fac: Option<&'a ScopeState>| { fac.map( slot.take() .expect("LazyNodes closure to be called only once"), ) })), } } unsafe fn new_inner(val: F) -> Self where F: FnMut(Option<&'a ScopeState>) -> Option> + 'b, { let mut ptr: *const _ = &val as &dyn FnMut(Option<&'a ScopeState>) -> Option>; assert_eq!( ptr as *const u8, &val as *const _ as *const u8, "MISUSE: Closure returned different pointer" ); assert_eq!( std::mem::size_of_val(&*ptr), std::mem::size_of::(), "MISUSE: Closure returned a subset pointer" ); let words = ptr_as_slice(&mut ptr); assert!( words[0] == &val as *const _ as usize, "BUG: Pointer layout is not (data_ptr, info...)" ); // - Ensure that Self is aligned same as data requires assert!( std::mem::align_of::() <= std::mem::align_of::(), "TODO: Enforce alignment >{} (requires {})", std::mem::align_of::(), std::mem::align_of::() ); let info = &words[1..]; let data = words[0] as *mut (); let size = mem::size_of::(); let stored_size = info.len() * mem::size_of::() + size; let max_size = mem::size_of::(); if stored_size > max_size { Self { inner: StackNodeStorage::Heap(Box::new(val)), } } else { let mut buf: StackHeapSize = StackHeapSize::default(); assert!(info.len() + round_to_words(size) <= buf.as_ref().len()); // Place pointer information at the end of the region // - Allows the data to be at the start for alignment purposes { let info_ofs = buf.as_ref().len() - info.len(); let info_dst = &mut buf.as_mut()[info_ofs..]; for (d, v) in Iterator::zip(info_dst.iter_mut(), info.iter()) { *d = *v; } } let src_ptr = data as *const u8; let dataptr = buf.as_mut_ptr().cast::(); for i in 0..size { *dataptr.add(i) = *src_ptr.add(i); } std::mem::forget(val); Self { inner: StackNodeStorage::Stack(LazyStack { _align: [], buf, dropped: false, }), } } } /// Call the closure with the given factory to produce real [`VNode`]. /// /// ```rust, ignore /// let f = LazyNodes::new(move |f| f.element("div", [], [], [] None)); /// /// let node = f.call(cac); /// ``` #[must_use] pub fn call(self, f: &'a ScopeState) -> VNode<'a> { match self.inner { StackNodeStorage::Heap(mut lazy) => { lazy(Some(f)).expect("Closure should not be called twice") } StackNodeStorage::Stack(mut stack) => stack.call(f), } } } struct LazyStack { _align: [u64; 0], buf: StackHeapSize, dropped: bool, } impl LazyStack { fn call<'a>(&mut self, f: &'a ScopeState) -> VNode<'a> { let LazyStack { buf, .. } = self; let data = buf.as_ref(); let info_size = mem::size_of::<*mut dyn FnMut(Option<&'a ScopeState>) -> Option>>() / mem::size_of::() - 1; let info_ofs = data.len() - info_size; let g: *mut dyn FnMut(Option<&'a ScopeState>) -> Option> = unsafe { make_fat_ptr(data[..].as_ptr() as usize, &data[info_ofs..]) }; self.dropped = true; let clos = unsafe { &mut *g }; clos(Some(f)).unwrap() } } impl Drop for LazyStack { fn drop(&mut self) { if !self.dropped { let LazyStack { buf, .. } = self; let data = buf.as_ref(); let info_size = mem::size_of::<*mut dyn FnMut(Option<&ScopeState>) -> Option>>() / mem::size_of::() - 1; let info_ofs = data.len() - info_size; let g: *mut dyn FnMut(Option<&ScopeState>) -> Option> = unsafe { make_fat_ptr(data[..].as_ptr() as usize, &data[info_ofs..]) }; self.dropped = true; let clos = unsafe { &mut *g }; clos(None); } } } /// Obtain mutable access to a pointer's words fn ptr_as_slice(ptr: &mut T) -> &mut [usize] { assert!(mem::size_of::() % mem::size_of::() == 0); let words = mem::size_of::() / mem::size_of::(); // SAFE: Points to valid memory (a raw pointer) unsafe { core::slice::from_raw_parts_mut(ptr as *mut _ as *mut usize, words) } } /// Re-construct a fat pointer unsafe fn make_fat_ptr(data_ptr: usize, meta_vals: &[usize]) -> *mut T { let mut rv = mem::MaybeUninit::<*mut T>::uninit(); { let s = ptr_as_slice(&mut rv); s[0] = data_ptr; s[1..].copy_from_slice(meta_vals); } let rv = rv.assume_init(); assert_eq!(rv as *const (), data_ptr as *const ()); rv } fn round_to_words(len: usize) -> usize { (len + mem::size_of::() - 1) / mem::size_of::() }