use crate::prelude::VNode; // use crate::{ // cached_set::{CacheId, CachedSet}, // change_list::ChangeListBuilder, // events::EventsRegistry, // node::{Attribute, ElementNode, Listener, Node, NodeKind, TextNode}, // }; // use fxhash::{FxHashMap, FxHashSet}; // use std::cmp::Ordering; // use std::u32; // use wasm_bindgen::UnwrapThrowExt; // Diff the `old` node with the `new` node. Emits instructions to modify a // physical DOM node that reflects `old` into something that reflects `new`. // // Upon entry to this function, the physical DOM node must be on the top of the // change list stack: // // [... node] // // The change list stack is in the same state when this function exits. pub(crate) fn diff( // cached_set: &CachedSet, // change_list: &mut ChangeListBuilder, // registry: &mut EventsRegistry, old: &VNode, new: &VNode, // cached_roots: &mut FxHashSet, ) { todo!() // match (&new.kind, &old.kind) { // ( // &NodeKind::Text(TextNode { text: new_text }), // &NodeKind::Text(TextNode { text: old_text }), // ) => { // if new_text != old_text { // change_list.commit_traversal(); // change_list.set_text(new_text); // } // } // (&NodeKind::Text(_), &NodeKind::Element(_)) => { // change_list.commit_traversal(); // create(cached_set, change_list, registry, new, cached_roots); // registry.remove_subtree(&old); // change_list.replace_with(); // } // (&NodeKind::Element(_), &NodeKind::Text(_)) => { // change_list.commit_traversal(); // create(cached_set, change_list, registry, new, cached_roots); // // Note: text nodes cannot have event listeners, so we don't need to // // remove the old node's listeners from our registry her. // change_list.replace_with(); // } // ( // &NodeKind::Element(ElementNode { // key: _, // tag_name: new_tag_name, // listeners: new_listeners, // attributes: new_attributes, // children: new_children, // namespace: new_namespace, // }), // &NodeKind::Element(ElementNode { // key: _, // tag_name: old_tag_name, // listeners: old_listeners, // attributes: old_attributes, // children: old_children, // namespace: old_namespace, // }), // ) => { // if new_tag_name != old_tag_name || new_namespace != old_namespace { // change_list.commit_traversal(); // create(cached_set, change_list, registry, new, cached_roots); // registry.remove_subtree(&old); // change_list.replace_with(); // return; // } // diff_listeners(change_list, registry, old_listeners, new_listeners); // diff_attributes( // change_list, // old_attributes, // new_attributes, // new_namespace.is_some(), // ); // diff_children( // cached_set, // change_list, // registry, // old_children, // new_children, // cached_roots, // ); // } // // Both the new and old nodes are cached. // (&NodeKind::Cached(ref new), &NodeKind::Cached(ref old)) => { // cached_roots.insert(new.id); // if new.id == old.id { // // This is the same cached node, so nothing has changed! // return; // } // let (new, new_template) = cached_set.get(new.id); // let (old, old_template) = cached_set.get(old.id); // if new_template == old_template { // // If they are both using the same template, then just diff the // // subtrees. // diff(cached_set, change_list, registry, old, new, cached_roots); // } else { // // Otherwise, they are probably different enough that // // re-constructing the subtree from scratch should be faster. // // This doubly holds true if we have a new template. // change_list.commit_traversal(); // create_and_replace( // cached_set, // change_list, // registry, // new_template, // old, // new, // cached_roots, // ); // } // } // // New cached node when the old node was not cached. In this scenario, // // we assume that they are pretty different, and it isn't worth diffing // // the subtrees, so we just create the new cached node afresh. // (&NodeKind::Cached(ref c), _) => { // change_list.commit_traversal(); // cached_roots.insert(c.id); // let (new, new_template) = cached_set.get(c.id); // create_and_replace( // cached_set, // change_list, // registry, // new_template, // old, // new, // cached_roots, // ); // } // // Old cached node and new non-cached node. Again, assume that they are // // probably pretty different and create the new non-cached node afresh. // (_, &NodeKind::Cached(_)) => { // change_list.commit_traversal(); // create(cached_set, change_list, registry, new, cached_roots); // registry.remove_subtree(&old); // change_list.replace_with(); // } // } } #[cfg(predicate)] mod todo_diff { // Diff event listeners between `old` and `new`. // // The listeners' node must be on top of the change list stack: // // [... node] // // The change list stack is left unchanged. fn diff_listeners( change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Listener], new: &[Listener], ) { if !old.is_empty() || !new.is_empty() { change_list.commit_traversal(); } 'outer1: for new_l in new { unsafe { // Safety relies on removing `new_l` from the registry manually at // the end of its lifetime. This happens below in the `'outer2` // loop, and elsewhere in diffing when removing old dom trees. registry.add(new_l); } for old_l in old { if new_l.event == old_l.event { change_list.update_event_listener(new_l); continue 'outer1; } } change_list.new_event_listener(new_l); } 'outer2: for old_l in old { registry.remove(old_l); for new_l in new { if new_l.event == old_l.event { continue 'outer2; } } change_list.remove_event_listener(old_l.event); } } // Diff a node's attributes. // // The attributes' node must be on top of the change list stack: // // [... node] // // The change list stack is left unchanged. fn diff_attributes( change_list: &mut ChangeListBuilder, old: &[Attribute], new: &[Attribute], is_namespaced: bool, ) { // Do O(n^2) passes to add/update and remove attributes, since // there are almost always very few attributes. 'outer: for new_attr in new { if new_attr.is_volatile() { change_list.commit_traversal(); change_list.set_attribute(new_attr.name, new_attr.value, is_namespaced); } else { for old_attr in old { if old_attr.name == new_attr.name { if old_attr.value != new_attr.value { change_list.commit_traversal(); change_list.set_attribute(new_attr.name, new_attr.value, is_namespaced); } continue 'outer; } } change_list.commit_traversal(); change_list.set_attribute(new_attr.name, new_attr.value, is_namespaced); } } 'outer2: for old_attr in old { for new_attr in new { if old_attr.name == new_attr.name { continue 'outer2; } } change_list.commit_traversal(); change_list.remove_attribute(old_attr.name); } } // Diff the given set of old and new children. // // The parent must be on top of the change list stack when this function is // entered: // // [... parent] // // the change list stack is in the same state when this function returns. fn diff_children( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], new: &[Node], cached_roots: &mut FxHashSet, ) { if new.is_empty() { if !old.is_empty() { change_list.commit_traversal(); remove_all_children(change_list, registry, old); } return; } if new.len() == 1 { match (old.first(), &new[0]) { ( Some(&Node { kind: NodeKind::Text(TextNode { text: old_text }), }), &Node { kind: NodeKind::Text(TextNode { text: new_text }), }, ) if old_text == new_text => { // Don't take this fast path... } ( _, &Node { kind: NodeKind::Text(TextNode { text }), }, ) => { change_list.commit_traversal(); change_list.set_text(text); for o in old { registry.remove_subtree(o); } return; } (_, _) => {} } } if old.is_empty() { if !new.is_empty() { change_list.commit_traversal(); create_and_append_children(cached_set, change_list, registry, new, cached_roots); } return; } let new_is_keyed = new[0].key().is_some(); let old_is_keyed = old[0].key().is_some(); debug_assert!( new.iter().all(|n| n.key().is_some() == new_is_keyed), "all siblings must be keyed or all siblings must be non-keyed" ); debug_assert!( old.iter().all(|o| o.key().is_some() == old_is_keyed), "all siblings must be keyed or all siblings must be non-keyed" ); if new_is_keyed && old_is_keyed { let t = change_list.next_temporary(); diff_keyed_children(cached_set, change_list, registry, old, new, cached_roots); change_list.set_next_temporary(t); } else { diff_non_keyed_children(cached_set, change_list, registry, old, new, cached_roots); } } // Diffing "keyed" children. // // With keyed children, we care about whether we delete, move, or create nodes // versus mutate existing nodes in place. Presumably there is some sort of CSS // transition animation that makes the virtual DOM diffing algorithm // observable. By specifying keys for nodes, we know which virtual DOM nodes // must reuse (or not reuse) the same physical DOM nodes. // // This is loosely based on Inferno's keyed patching implementation. However, we // have to modify the algorithm since we are compiling the diff down into change // list instructions that will be executed later, rather than applying the // changes to the DOM directly as we compare virtual DOMs. // // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739 // // When entering this function, the parent must be on top of the change list // stack: // // [... parent] // // Upon exiting, the change list stack is in the same state. fn diff_keyed_children( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], new: &[Node], cached_roots: &mut FxHashSet, ) { if cfg!(debug_assertions) { let mut keys = FxHashSet::default(); let mut assert_unique_keys = |children: &[Node]| { keys.clear(); for child in children { let key = child.key(); debug_assert!( key.is_some(), "if any sibling is keyed, all siblings must be keyed" ); keys.insert(key); } debug_assert_eq!( children.len(), keys.len(), "keyed siblings must each have a unique key" ); }; assert_unique_keys(old); assert_unique_keys(new); } // First up, we diff all the nodes with the same key at the beginning of the // children. // // `shared_prefix_count` is the count of how many nodes at the start of // `new` and `old` share the same keys. let shared_prefix_count = match diff_keyed_prefix(cached_set, change_list, registry, old, new, cached_roots) { KeyedPrefixResult::Finished => return, KeyedPrefixResult::MoreWorkToDo(count) => count, }; // Next, we find out how many of the nodes at the end of the children have // the same key. We do _not_ diff them yet, since we want to emit the change // list instructions such that they can be applied in a single pass over the // DOM. Instead, we just save this information for later. // // `shared_suffix_count` is the count of how many nodes at the end of `new` // and `old` share the same keys. let shared_suffix_count = old[shared_prefix_count..] .iter() .rev() .zip(new[shared_prefix_count..].iter().rev()) .take_while(|&(old, new)| old.key() == new.key()) .count(); let old_shared_suffix_start = old.len() - shared_suffix_count; let new_shared_suffix_start = new.len() - shared_suffix_count; // Ok, we now hopefully have a smaller range of children in the middle // within which to re-order nodes with the same keys, remove old nodes with // now-unused keys, and create new nodes with fresh keys. diff_keyed_middle( cached_set, change_list, registry, &old[shared_prefix_count..old_shared_suffix_start], &new[shared_prefix_count..new_shared_suffix_start], cached_roots, shared_prefix_count, shared_suffix_count, old_shared_suffix_start, ); // Finally, diff the nodes at the end of `old` and `new` that share keys. let old_suffix = &old[old_shared_suffix_start..]; let new_suffix = &new[new_shared_suffix_start..]; debug_assert_eq!(old_suffix.len(), new_suffix.len()); if !old_suffix.is_empty() { diff_keyed_suffix( cached_set, change_list, registry, old_suffix, new_suffix, cached_roots, new_shared_suffix_start, ); } } enum KeyedPrefixResult { // Fast path: we finished diffing all the children just by looking at the // prefix of shared keys! Finished, // There is more diffing work to do. Here is a count of how many children at // the beginning of `new` and `old` we already processed. MoreWorkToDo(usize), } // Diff the prefix of children in `new` and `old` that share the same keys in // the same order. // // Upon entry of this function, the change list stack must be: // // [... parent] // // Upon exit, the change list stack is the same. fn diff_keyed_prefix( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], new: &[Node], cached_roots: &mut FxHashSet, ) -> KeyedPrefixResult { change_list.go_down(); let mut shared_prefix_count = 0; for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() { if old.key() != new.key() { break; } change_list.go_to_sibling(i); diff(cached_set, change_list, registry, old, new, cached_roots); shared_prefix_count += 1; } // If that was all of the old children, then create and append the remaining // new children and we're finished. if shared_prefix_count == old.len() { change_list.go_up(); change_list.commit_traversal(); create_and_append_children( cached_set, change_list, registry, &new[shared_prefix_count..], cached_roots, ); return KeyedPrefixResult::Finished; } // And if that was all of the new children, then remove all of the remaining // old children and we're finished. if shared_prefix_count == new.len() { change_list.go_to_sibling(shared_prefix_count); change_list.commit_traversal(); remove_self_and_next_siblings(change_list, registry, &old[shared_prefix_count..]); return KeyedPrefixResult::Finished; } change_list.go_up(); KeyedPrefixResult::MoreWorkToDo(shared_prefix_count) } // The most-general, expensive code path for keyed children diffing. // // We find the longest subsequence within `old` of children that are relatively // ordered the same way in `new` (via finding a longest-increasing-subsequence // of the old child's index within `new`). The children that are elements of // this subsequence will remain in place, minimizing the number of DOM moves we // will have to do. // // Upon entry to this function, the change list stack must be: // // [... parent] // // Upon exit from this function, it will be restored to that same state. fn diff_keyed_middle( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], mut new: &[Node], cached_roots: &mut FxHashSet, shared_prefix_count: usize, shared_suffix_count: usize, old_shared_suffix_start: usize, ) { // Should have already diffed the shared-key prefixes and suffixes. debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key())); debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key())); // The algorithm below relies upon using `u32::MAX` as a sentinel // value, so if we have that many new nodes, it won't work. This // check is a bit academic (hence only enabled in debug), since // wasm32 doesn't have enough address space to hold that many nodes // in memory. debug_assert!(new.len() < u32::MAX as usize); // Map from each `old` node's key to its index within `old`. let mut old_key_to_old_index = FxHashMap::default(); old_key_to_old_index.reserve(old.len()); old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i))); // The set of shared keys between `new` and `old`. let mut shared_keys = FxHashSet::default(); // Map from each index in `new` to the index of the node in `old` that // has the same key. let mut new_index_to_old_index = Vec::with_capacity(new.len()); new_index_to_old_index.extend(new.iter().map(|n| { let key = n.key(); if let Some(&i) = old_key_to_old_index.get(&key) { shared_keys.insert(key); i } else { u32::MAX as usize } })); // If none of the old keys are reused by the new children, then we // remove all the remaining old children and create the new children // afresh. if shared_suffix_count == 0 && shared_keys.is_empty() { if shared_prefix_count == 0 { change_list.commit_traversal(); remove_all_children(change_list, registry, old); } else { change_list.go_down_to_child(shared_prefix_count); change_list.commit_traversal(); remove_self_and_next_siblings(change_list, registry, &old[shared_prefix_count..]); } create_and_append_children(cached_set, change_list, registry, new, cached_roots); return; } // Save each of the old children whose keys are reused in the new // children. let mut old_index_to_temp = vec![u32::MAX; old.len()]; let mut start = 0; loop { let end = (start..old.len()) .find(|&i| { let key = old[i].key(); !shared_keys.contains(&key) }) .unwrap_or(old.len()); if end - start > 0 { change_list.commit_traversal(); let mut t = change_list.save_children_to_temporaries( shared_prefix_count + start, shared_prefix_count + end, ); for i in start..end { old_index_to_temp[i] = t; t += 1; } } debug_assert!(end <= old.len()); if end == old.len() { break; } else { start = end + 1; } } // Remove any old children whose keys were not reused in the new // children. Remove from the end first so that we don't mess up indices. let mut removed_count = 0; for (i, old_child) in old.iter().enumerate().rev() { if !shared_keys.contains(&old_child.key()) { registry.remove_subtree(old_child); change_list.commit_traversal(); change_list.remove_child(i + shared_prefix_count); removed_count += 1; } } // If there aren't any more new children, then we are done! if new.is_empty() { return; } // The longest increasing subsequence within `new_index_to_old_index`. This // is the longest sequence on DOM nodes in `old` that are relatively ordered // correctly within `new`. We will leave these nodes in place in the DOM, // and only move nodes that are not part of the LIS. This results in the // maximum number of DOM nodes left in place, AKA the minimum number of DOM // nodes moved. let mut new_index_is_in_lis = FxHashSet::default(); new_index_is_in_lis.reserve(new_index_to_old_index.len()); let mut predecessors = vec![0; new_index_to_old_index.len()]; let mut starts = vec![0; new_index_to_old_index.len()]; longest_increasing_subsequence::lis_with( &new_index_to_old_index, &mut new_index_is_in_lis, |a, b| a < b, &mut predecessors, &mut starts, ); // Now we will iterate from the end of the new children back to the // beginning, diffing old children we are reusing and if they aren't in the // LIS moving them to their new destination, or creating new children. Note // that iterating in reverse order lets us use `Node.prototype.insertBefore` // to move/insert children. // // But first, we ensure that we have a child on the change list stack that // we can `insertBefore`. We handle this once before looping over `new` // children, so that we don't have to keep checking on every loop iteration. if shared_suffix_count > 0 { // There is a shared suffix after these middle children. We will be // inserting before that shared suffix, so add the first child of that // shared suffix to the change list stack. // // [... parent] change_list.go_down_to_child(old_shared_suffix_start - removed_count); // [... parent first_child_of_shared_suffix] } else { // There is no shared suffix coming after these middle children. // Therefore we have to process the last child in `new` and move it to // the end of the parent's children if it isn't already there. let last_index = new.len() - 1; let last = new.last().unwrap_throw(); new = &new[..new.len() - 1]; if shared_keys.contains(&last.key()) { let old_index = new_index_to_old_index[last_index]; let temp = old_index_to_temp[old_index]; // [... parent] change_list.go_down_to_temp_child(temp); // [... parent last] diff( cached_set, change_list, registry, &old[old_index], last, cached_roots, ); if new_index_is_in_lis.contains(&last_index) { // Don't move it, since it is already where it needs to be. } else { change_list.commit_traversal(); // [... parent last] change_list.append_child(); // [... parent] change_list.go_down_to_temp_child(temp); // [... parent last] } } else { change_list.commit_traversal(); // [... parent] create(cached_set, change_list, registry, last, cached_roots); // [... parent last] change_list.append_child(); // [... parent] change_list.go_down_to_reverse_child(0); // [... parent last] } } for (new_index, new_child) in new.iter().enumerate().rev() { let old_index = new_index_to_old_index[new_index]; if old_index == u32::MAX as usize { debug_assert!(!shared_keys.contains(&new_child.key())); change_list.commit_traversal(); // [... parent successor] create(cached_set, change_list, registry, new_child, cached_roots); // [... parent successor new_child] change_list.insert_before(); // [... parent new_child] } else { debug_assert!(shared_keys.contains(&new_child.key())); let temp = old_index_to_temp[old_index]; debug_assert_ne!(temp, u32::MAX); if new_index_is_in_lis.contains(&new_index) { // [... parent successor] change_list.go_to_temp_sibling(temp); // [... parent new_child] } else { change_list.commit_traversal(); // [... parent successor] change_list.push_temporary(temp); // [... parent successor new_child] change_list.insert_before(); // [... parent new_child] } diff( cached_set, change_list, registry, &old[old_index], new_child, cached_roots, ); } } // [... parent child] change_list.go_up(); // [... parent] } // Diff the suffix of keyed children that share the same keys in the same order. // // The parent must be on the change list stack when we enter this function: // // [... parent] // // When this function exits, the change list stack remains the same. fn diff_keyed_suffix( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], new: &[Node], cached_roots: &mut FxHashSet, new_shared_suffix_start: usize, ) { debug_assert_eq!(old.len(), new.len()); debug_assert!(!old.is_empty()); // [... parent] change_list.go_down(); // [... parent new_child] for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() { change_list.go_to_sibling(new_shared_suffix_start + i); diff( cached_set, change_list, registry, old_child, new_child, cached_roots, ); } // [... parent] change_list.go_up(); } // Diff children that are not keyed. // // The parent must be on the top of the change list stack when entering this // function: // // [... parent] // // the change list stack is in the same state when this function returns. fn diff_non_keyed_children( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], new: &[Node], cached_roots: &mut FxHashSet, ) { // Handled these cases in `diff_children` before calling this function. debug_assert!(!new.is_empty()); debug_assert!(!old.is_empty()); // [... parent] change_list.go_down(); // [... parent child] for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() { // [... parent prev_child] change_list.go_to_sibling(i); // [... parent this_child] diff( cached_set, change_list, registry, old_child, new_child, cached_roots, ); } match old.len().cmp(&new.len()) { Ordering::Greater => { // [... parent prev_child] change_list.go_to_sibling(new.len()); // [... parent first_child_to_remove] change_list.commit_traversal(); remove_self_and_next_siblings(change_list, registry, &old[new.len()..]); // [... parent] } Ordering::Less => { // [... parent last_child] change_list.go_up(); // [... parent] change_list.commit_traversal(); create_and_append_children( cached_set, change_list, registry, &new[old.len()..], cached_roots, ); } Ordering::Equal => { // [... parent child] change_list.go_up(); // [... parent] } } } // Create the given children and append them to the parent node. // // The parent node must currently be on top of the change list stack: // // [... parent] // // When this function returns, the change list stack is in the same state. fn create_and_append_children( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, new: &[Node], cached_roots: &mut FxHashSet, ) { debug_assert!(change_list.traversal_is_committed()); for child in new { create(cached_set, change_list, registry, child, cached_roots); change_list.append_child(); } } // Remove all of a node's children. // // The change list stack must have this shape upon entry to this function: // // [... parent] // // When this function returns, the change list stack is in the same state. fn remove_all_children( change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], ) { debug_assert!(change_list.traversal_is_committed()); for child in old { registry.remove_subtree(child); } // Fast way to remove all children: set the node's textContent to an empty // string. change_list.set_text(""); } // Remove the current child and all of its following siblings. // // The change list stack must have this shape upon entry to this function: // // [... parent child] // // After the function returns, the child is no longer on the change list stack: // // [... parent] fn remove_self_and_next_siblings( change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, old: &[Node], ) { debug_assert!(change_list.traversal_is_committed()); for child in old { registry.remove_subtree(child); } change_list.remove_self_and_next_siblings(); } // Emit instructions to create the given virtual node. // // The change list stack may have any shape upon entering this function: // // [...] // // When this function returns, the new node is on top of the change list stack: // // [... node] fn create( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, node: &Node, cached_roots: &mut FxHashSet, ) { debug_assert!(change_list.traversal_is_committed()); match node.kind { NodeKind::Text(TextNode { text }) => { change_list.create_text_node(text); } NodeKind::Element(&ElementNode { key: _, tag_name, listeners, attributes, children, namespace, }) => { if let Some(namespace) = namespace { change_list.create_element_ns(tag_name, namespace); } else { change_list.create_element(tag_name); } for l in listeners { unsafe { registry.add(l); } change_list.new_event_listener(l); } for attr in attributes { change_list.set_attribute(&attr.name, &attr.value, namespace.is_some()); } // Fast path: if there is a single text child, it is faster to // create-and-append the text node all at once via setting the // parent's `textContent` in a single change list instruction than // to emit three instructions to (1) create a text node, (2) set its // text content, and finally (3) append the text node to this // parent. if children.len() == 1 { if let Node { kind: NodeKind::Text(TextNode { text }), } = children[0] { change_list.set_text(text); return; } } for child in children { create(cached_set, change_list, registry, child, cached_roots); change_list.append_child(); } } NodeKind::Cached(ref c) => { cached_roots.insert(c.id); let (node, template) = cached_set.get(c.id); if let Some(template) = template { create_with_template( cached_set, change_list, registry, template, node, cached_roots, ); } else { create(cached_set, change_list, registry, node, cached_roots); } } } } // Get or create the template. // // Upon entering this function the change list stack may be in any shape: // // [...] // // When this function returns, it leaves a freshly cloned copy of the template // on the top of the change list stack: // // [... template] #[inline] fn get_or_create_template<'a>( cached_set: &'a CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, cached_roots: &mut FxHashSet, template_id: CacheId, ) -> (&'a Node<'a>, bool) { let (template, template_template) = cached_set.get(template_id); debug_assert!( template_template.is_none(), "templates should not be templated themselves" ); // If we haven't already created and saved the physical DOM subtree for this // template, do that now. if change_list.has_template(template_id) { // Clone the template and push it onto the stack. // // [...] change_list.push_template(template_id); // [... template] (template, true) } else { // [...] create(cached_set, change_list, registry, template, cached_roots); // [... template] change_list.save_template(template_id); // [... template] (template, false) } } fn create_and_replace( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, new_template: Option, old: &Node, new: &Node, cached_roots: &mut FxHashSet, ) { debug_assert!(change_list.traversal_is_committed()); if let Some(template_id) = new_template { let (template, needs_listeners) = get_or_create_template( cached_set, change_list, registry, cached_roots, template_id, ); change_list.replace_with(); let mut old_forcing = None; if needs_listeners { old_forcing = Some(change_list.push_force_new_listeners()); } diff( cached_set, change_list, registry, template, new, cached_roots, ); if let Some(old) = old_forcing { change_list.pop_force_new_listeners(old); } change_list.commit_traversal(); } else { create(cached_set, change_list, registry, new, cached_roots); change_list.replace_with(); } registry.remove_subtree(old); } fn create_with_template( cached_set: &CachedSet, change_list: &mut ChangeListBuilder, registry: &mut EventsRegistry, template_id: CacheId, node: &Node, cached_roots: &mut FxHashSet, ) { debug_assert!(change_list.traversal_is_committed()); // [...] let (template, needs_listeners) = get_or_create_template(cached_set, change_list, registry, cached_roots, template_id); // [... template] // Now diff the node with its template. // // We must force adding new listeners instead of updating existing ones, // since listeners don't get cloned in `cloneNode`. let mut old_forcing = None; if needs_listeners { old_forcing = Some(change_list.push_force_new_listeners()); } diff( cached_set, change_list, registry, template, node, cached_roots, ); if let Some(old) = old_forcing { change_list.pop_force_new_listeners(old); } // Make sure that we come back up to the level we were at originally. change_list.commit_traversal(); } }