//! Virtual Node Support //! VNodes represent lazily-constructed VDom trees that support diffing and event handlers. //! //! These VNodes should be *very* cheap and *very* fast to construct - building a full tree should be insanely quick. use crate::{ events::VirtualEvent, innerlude::{Context, Properties, Scope, ScopeIdx, FC}, nodebuilder::{text3, NodeCtx}, virtual_dom::RealDomNode, }; use bumpalo::Bump; use std::{ any::Any, cell::{Cell, RefCell}, fmt::{Arguments, Debug}, marker::PhantomData, rc::Rc, }; /// Tools for the base unit of the virtual dom - the VNode /// VNodes are intended to be quickly-allocated, lightweight enum values. /// /// Components will be generating a lot of these very quickly, so we want to /// limit the amount of heap allocations / overly large enum sizes. pub enum VNode<'src> { /// An element node (node type `ELEMENT_NODE`). Element(&'src VElement<'src>), /// A text node (node type `TEXT_NODE`). Text(VText<'src>), /// A fragment is a "virtual position" in the DOM /// Fragments may have children and keys Fragment(&'src VFragment<'src>), /// A "suspended component" /// This is a masqeurade over an underlying future that needs to complete /// When the future is completed, the VNode will then trigger a render Suspended, /// A User-defined componen node (node type COMPONENT_NODE) Component(&'src VComponent<'src>), } // it's okay to clone because vnodes are just references to places into the bump impl<'a> Clone for VNode<'a> { fn clone(&self) -> Self { match self { VNode::Element(element) => VNode::Element(element), VNode::Text(old) => VNode::Text(old.clone()), VNode::Fragment(fragment) => VNode::Fragment(fragment), VNode::Component(component) => VNode::Component(component), VNode::Suspended => VNode::Suspended, } } } impl<'a> VNode<'a> { /// Low-level constructor for making a new `Node` of type element with given /// parts. /// /// This is primarily intended for JSX and templating proc-macros to compile /// down into. If you are building nodes by-hand, prefer using the /// `dodrio::builder::*` APIs. #[inline] pub fn element( bump: &'a Bump, key: NodeKey<'a>, tag_name: &'a str, listeners: &'a [Listener<'a>], attributes: &'a [Attribute<'a>], children: &'a [VNode<'a>], namespace: Option<&'a str>, ) -> VNode<'a> { let element = bump.alloc_with(|| VElement { key, tag_name, listeners, attributes, children, namespace, dom_id: Cell::new(RealDomNode::empty()), }); VNode::Element(element) } /// Construct a new text node with the given text. #[inline] pub fn text(text: &'a str) -> VNode<'a> { VNode::Text(VText { text, dom_id: Cell::new(RealDomNode::empty()), }) } pub fn text_args(bump: &'a Bump, args: Arguments) -> VNode<'a> { text3(bump, args) } #[inline] pub(crate) fn key(&self) -> NodeKey { match &self { VNode::Text { .. } => NodeKey::NONE, VNode::Element(e) => e.key, VNode::Fragment(frag) => frag.key, VNode::Component(c) => c.key, // todo suspend should be allowed to have keys VNode::Suspended => NodeKey::NONE, } } fn get_child(&self, id: u32) -> Option<&'a VNode<'a>> { todo!() } pub fn is_real(&self) -> bool { match self { VNode::Element(_) => true, VNode::Text(_) => true, VNode::Fragment(_) => false, VNode::Suspended => false, VNode::Component(_) => false, } } pub fn get_mounted_id(&self) -> Option { match self { VNode::Element(_) => todo!(), VNode::Text(_) => todo!(), VNode::Fragment(_) => todo!(), VNode::Suspended => todo!(), VNode::Component(_) => todo!(), } } } #[derive(Clone)] pub struct VText<'src> { pub text: &'src str, pub dom_id: Cell, } // ======================================================== // VElement (div, h1, etc), attrs, keys, listener handle // ======================================================== pub struct VElement<'a> { /// Elements have a tag name, zero or more attributes, and zero or more pub key: NodeKey<'a>, pub tag_name: &'a str, pub listeners: &'a [Listener<'a>], pub attributes: &'a [Attribute<'a>], pub children: &'a [VNode<'a>], pub namespace: Option<&'a str>, pub dom_id: Cell, } /// An attribute on a DOM node, such as `id="my-thing"` or /// `href="https://example.com"`. #[derive(Clone, Debug)] pub struct Attribute<'a> { pub name: &'static str, pub value: &'a str, } impl<'a> Attribute<'a> { /// Get this attribute's name, such as `"id"` in `
`. #[inline] pub fn name(&self) -> &'a str { self.name } /// The attribute value, such as `"my-thing"` in `
`. #[inline] pub fn value(&self) -> &'a str { self.value } /// Certain attributes are considered "volatile" and can change via user /// input that we can't see when diffing against the old virtual DOM. For /// these attributes, we want to always re-set the attribute on the physical /// DOM node, even if the old and new virtual DOM nodes have the same value. #[inline] pub(crate) fn is_volatile(&self) -> bool { match self.name { "value" | "checked" | "selected" => true, _ => false, } } } pub struct ListenerHandle { pub event: &'static str, pub scope: ScopeIdx, pub id: usize, } /// An event listener. pub struct Listener<'bump> { /// The type of event to listen for. pub(crate) event: &'static str, pub scope: ScopeIdx, pub id: usize, /// The callback to invoke when the event happens. pub(crate) callback: &'bump (dyn Fn(VirtualEvent)), } /// The key for keyed children. /// /// Keys must be unique among siblings. /// /// If any sibling is keyed, then they all must be keyed. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct NodeKey<'a>(pub(crate) Option<&'a str>); impl<'a> Default for NodeKey<'a> { fn default() -> NodeKey<'a> { NodeKey::NONE } } impl<'a> NodeKey<'a> { /// The default, lack of a key. pub const NONE: NodeKey<'a> = NodeKey(None); /// Is this key `NodeKey::NONE`? #[inline] pub fn is_none(&self) -> bool { *self == Self::NONE } /// Is this key not `NodeKey::NONE`? #[inline] pub fn is_some(&self) -> bool { !self.is_none() } /// Create a new `NodeKey`. /// /// `key` must not be `u32::MAX`. #[inline] pub fn new(key: &'a str) -> Self { NodeKey(Some(key)) } } // ============================== // Custom components // ============================== /// Virtual Components for custom user-defined components /// Only supports the functional syntax pub type StableScopeAddres = Option; pub type VCompAssociatedScope = Option; pub struct VComponent<'src> { pub key: NodeKey<'src>, pub mounted_root: Cell, pub ass_scope: RefCell, // pub comparator: Rc bool + 'src>, pub caller: Rc VNode>, pub children: &'src [VNode<'src>], pub comparator: Option<&'src dyn Fn(&VComponent) -> bool>, // a pointer into the bump arena (given by the 'src lifetime) // raw_props: Box, raw_props: *const (), // a pointer to the raw fn typ pub user_fc: *const (), } impl<'a> VComponent<'a> { /// When the rsx! macro is called, it will check if the CanMemo flag is set to true (from the Props impl) /// If it is set to true, then this method will be called which implements automatic memoization. /// /// If the CanMemo is `false`, then the macro will call the backup method which always defaults to "false" pub fn new( ctx: &NodeCtx<'a>, component: FC

, props: P, key: Option<&'a str>, children: &'a [VNode<'a>], ) -> Self { let bump = ctx.bump(); let user_fc = component as *const (); let props = bump.alloc(props); let raw_props = props as *const P as *const (); let comparator: Option<&dyn Fn(&VComponent) -> bool> = { Some(bump.alloc(move |other: &VComponent| { // Safety: // ------ // // Invariants: // - Component function pointers are the same // - Generic properties on the same function pointer are the same // - Lifetime of P borrows from its parent // - The parent scope still exists when method is called // - Casting from T to *const () is portable // // Explanation: // We are guaranteed that the props will be of the same type because // there is no way to create a VComponent other than this `new` method. // // Therefore, if the render functions are identical (by address), then so will be // props type paramter (because it is the same render function). Therefore, we can be // sure that it is safe to interperet the previous props raw pointer as the same props // type. From there, we can call the props' "memoize" method to see if we can // avoid re-rendering the component. if user_fc == other.user_fc { let real_other = unsafe { &*(other.raw_props as *const _ as *const P) }; let props_memoized = unsafe { props.memoize(&real_other) }; match (props_memoized, children.len() == 0) { (true, true) => true, _ => false, } } else { false } })) }; Self { user_fc, comparator, raw_props, children, ass_scope: RefCell::new(None), key: match key { Some(key) => NodeKey::new(key), None => NodeKey(None), }, caller: create_closure(component, raw_props), mounted_root: Cell::new(RealDomNode::empty()), } } } type Captured<'a> = Rc Fn(&'r Scope) -> VNode<'r> + 'a>; fn create_closure<'a, P: 'a>( component: FC

, raw_props: *const (), ) -> Rc Fn(&'r Scope) -> VNode<'r>> { // ) -> impl for<'r> Fn(&'r Scope) -> VNode<'r> { let g: Captured = Rc::new(move |scp: &Scope| -> VNode { // cast back into the right lifetime let safe_props: &'_ P = unsafe { &*(raw_props as *const P) }; // let ctx: Context = todo!(); let ctx: Context

= Context { props: safe_props, scope: scp, }; let g = component(ctx); let g2 = unsafe { std::mem::transmute(g) }; g2 }); let r: Captured<'static> = unsafe { std::mem::transmute(g) }; r } pub struct VFragment<'src> { pub key: NodeKey<'src>, pub children: &'src [VNode<'src>], } impl<'a> VFragment<'a> { pub fn new(key: Option<&'a str>, children: &'a [VNode<'a>]) -> Self { let key = match key { Some(key) => NodeKey::new(key), None => NodeKey(None), }; Self { key, children } } } /// This method converts a list of nested real/virtual nodes into a stream of nodes that are definitely associated /// with the real dom. The only types of nodes that may be returned are text, elemets, and components. /// /// Components *are* considered virtual, but this iterator can't necessarily handle them without the scope arena. /// /// Why? /// --- /// Fragments are seen as virtual nodes but are actually a list of possibly-real nodes. /// JS implementations normalize their node lists when fragments are present. Here, we just create a new iterator /// that iterates through the recursive nesting of fragments. /// /// Fragments are stupid and I wish we didn't need to support them. /// /// This iterator only supports 3 levels of nested fragments /// pub fn iterate_real_nodes<'a>(nodes: &'a [VNode<'a>]) -> RealNodeIterator<'a> { RealNodeIterator::new(nodes) } pub struct RealNodeIterator<'a> { nodes: &'a [VNode<'a>], // this node is always a "real" node // the index is "what sibling # is it" // IE in a list of children on a fragment, the node will be a text node that's the 5th sibling node_stack: Vec<(&'a VNode<'a>, u32)>, } impl<'a> RealNodeIterator<'a> { // We immediately descend to the first real node we can find fn new(nodes: &'a [VNode<'a>]) -> Self { let mut node_stack = Vec::new(); if nodes.len() > 0 { let mut cur_node = nodes.get(0).unwrap(); loop { node_stack.push((cur_node, 0_u32)); if !cur_node.is_real() { cur_node = cur_node.get_child(0).unwrap(); } else { break; } } } Self { nodes, node_stack } } // // advances the cursor to the next element, panicing if we're on the 3rd level and still finding fragments // fn advance_cursor(&mut self) { // let (mut cur_node, mut cur_id) = self.node_stack.last().unwrap(); // while !cur_node.is_real() { // match cur_node { // VNode::Element(_) | VNode::Text(_) => todo!(), // VNode::Suspended => todo!(), // VNode::Component(_) => todo!(), // VNode::Fragment(frag) => { // let p = frag.children; // } // } // } // } fn next_node(&mut self) -> bool { let (mut cur_node, cur_id) = self.node_stack.last_mut().unwrap(); match cur_node { VNode::Fragment(frag) => { // if *cur_id + 1 > frag.children.len() as u32 { self.node_stack.pop(); let next = self.node_stack.last_mut(); return false; } *cur_id += 1; true } VNode::Element(_) => todo!(), VNode::Text(_) => todo!(), VNode::Suspended => todo!(), VNode::Component(_) => todo!(), } } fn get_current_node(&self) -> Option<&VNode<'a>> { self.node_stack.last().map(|(node, id)| match node { VNode::Element(_) => todo!(), VNode::Text(_) => todo!(), VNode::Fragment(_) => todo!(), VNode::Suspended => todo!(), VNode::Component(_) => todo!(), }) } } impl<'a> Iterator for RealNodeIterator<'a> { type Item = &'a VNode<'a>; fn next(&mut self) -> Option { todo!() // let top_idx = self.nesting_idxs.get_mut(0).unwrap(); // let node = &self.nodes.get_mut(*top_idx as usize); // if node.is_none() { // return None; // } // let node = node.unwrap(); // match node { // VNode::Element(_) | VNode::Text(_) => { // *top_idx += 1; // return Some(node); // } // VNode::Suspended => todo!(), // // we need access over the scope map // VNode::Component(_) => todo!(), // VNode::Fragment(frag) => { // let nest_idx = self.nesting_idxs.get_mut(1).unwrap(); // let node = &frag.children.get_mut(*nest_idx as usize); // match node { // VNode::Element(_) | VNode::Text(_) => { // *nest_idx += 1; // return Some(node); // } // VNode::Fragment(_) => todo!(), // VNode::Suspended => todo!(), // VNode::Component(_) => todo!(), // } // } // } } } mod tests { use crate::debug_renderer::DebugRenderer; use crate::nodebuilder::LazyNodes; use crate as dioxus; use dioxus::prelude::*; #[test] fn iterate_nodes() { let rs = rsx! { Fragment { Fragment { Fragment { Fragment { h1 {"abc1"} } h2 {"abc2"} } h3 {"abc3"} } h4 {"abc4"} } }; } }