use crate::factory::RenderReturn; use crate::innerlude::{Mutations, SuspenseContext}; use crate::mutations::Mutation; use crate::mutations::Mutation::*; use crate::nodes::VNode; use crate::nodes::{DynamicNode, TemplateNode}; use crate::virtual_dom::VirtualDom; use crate::{AttributeValue, ElementId, ScopeId, TemplateAttribute}; impl VirtualDom { pub(crate) fn create_scope<'a>( &mut self, scope: ScopeId, mutations: &mut Mutations<'a>, template: &'a VNode<'a>, ) -> usize { self.scope_stack.push(scope); let out = self.create(mutations, template); self.scope_stack.pop(); out } /// Create this template and write its mutations pub(crate) fn create<'a>( &mut self, mutations: &mut Mutations<'a>, template: &'a VNode<'a>, ) -> usize { // The best renderers will have templates prehydrated and registered // Just in case, let's create the template using instructions anyways if !self.templates.contains_key(&template.template.id) { for node in template.template.roots { let mutations = &mut mutations.template_mutations; self.create_static_node(mutations, template, node); } mutations.template_mutations.push(SaveTemplate { name: template.template.id, m: template.template.roots.len(), }); self.templates .insert(template.template.id, template.template.clone()); } // Walk the roots, creating nodes and assigning IDs // todo: adjust dynamic nodes to be in the order of roots and then leaves (ie BFS) let mut dynamic_attrs = template.template.attr_paths.iter().enumerate().peekable(); let mut dynamic_nodes = template.template.node_paths.iter().enumerate().peekable(); let cur_scope = self.scope_stack.last().copied().unwrap(); println!("creating template: {:#?}", template); let mut on_stack = 0; for (root_idx, root) in template.template.roots.iter().enumerate() { on_stack += match root { TemplateNode::Element { .. } | TemplateNode::Text(_) => { mutations.push(LoadTemplate { name: template.template.id, index: root_idx, }); 1 } TemplateNode::DynamicText(id) | TemplateNode::Dynamic(id) => { let dynamic_node = &template.dynamic_nodes[*id]; match dynamic_node { DynamicNode::Fragment { .. } | DynamicNode::Component { .. } => self .create_dynamic_node( mutations, template, &template.dynamic_nodes[*id], *id, ), DynamicNode::Text { id: slot, value, .. } => { let id = self.next_element(template); slot.set(id); mutations.push(CreateTextNode { value: value.clone(), id, }); 1 } DynamicNode::Placeholder(id) => { let id = self.next_element(template); mutations.push(CreatePlaceholder { id }); 1 } } // self.create_dynamic_node(mutations, template, &template.dynamic_nodes[*id], *id) } }; // we're on top of a node that has a dynamic attribute for a descendant // Set that attribute now before the stack gets in a weird state while let Some((mut attr_id, path)) = dynamic_attrs.next_if(|(_, p)| p[0] == root_idx as u8) { let id = self.next_element(template); mutations.push(AssignId { path: &path[1..], id, }); loop { let attribute = template.dynamic_attrs.get(attr_id).unwrap(); attribute.mounted_element.set(id); match &attribute.value { AttributeValue::Text(value) => mutations.push(SetAttribute { name: attribute.name, value: *value, ns: attribute.namespace, id, }), AttributeValue::Bool(value) => mutations.push(SetBoolAttribute { name: attribute.name, value: *value, id, }), AttributeValue::Listener(_) => mutations.push(NewEventListener { event_name: attribute.name, scope: cur_scope, id, }), AttributeValue::Float(_) => todo!(), AttributeValue::Int(_) => todo!(), AttributeValue::Any(_) => todo!(), AttributeValue::None => todo!(), } // Only push the dynamic attributes forward if they match the current path (same element) match dynamic_attrs.next_if(|(_, p)| *p == path) { Some((next_attr_id, _)) => attr_id = next_attr_id, None => break, } } } // todo: // // we walk the roots front to back when creating nodes, bur want to fill in the dynamic nodes // back to front. This is because the indices would shift around because the paths become invalid // // We could easily implement this without the vec by walking the indicies forward let mut queued_changes = vec![]; // We're on top of a node that has a dynamic child for a descendant // Skip any node that's a root while let Some((idx, path)) = dynamic_nodes.next_if(|(_, p)| p.len() > 1 && p[0] == root_idx as u8) { let node = &template.dynamic_nodes[idx]; let m = self.create_dynamic_node(mutations, template, node, idx); if m > 0 { queued_changes.push(ReplacePlaceholder { m, path: &path[1..], }); } } for change in queued_changes.into_iter().rev() { mutations.push(change); } } on_stack } pub(crate) fn create_static_node<'a>( &mut self, mutations: &mut Vec>, template: &'a VNode<'a>, node: &'a TemplateNode<'static>, ) { match *node { // Todo: create the children's template TemplateNode::Dynamic(_) => { let id = self.next_element(template); mutations.push(CreatePlaceholder { id }) } TemplateNode::Text(value) => mutations.push(CreateStaticText { value }), TemplateNode::DynamicText { .. } => mutations.push(CreateStaticText { value: "placeholder", }), TemplateNode::Element { attrs, children, namespace, tag, inner_opt, } => { let id = self.next_element(template); mutations.push(CreateElement { name: tag, namespace, id, }); mutations.extend(attrs.into_iter().filter_map(|attr| match attr { TemplateAttribute::Static { name, value, namespace, .. } => Some(SetAttribute { name, value, id, ns: *namespace, }), _ => None, })); if children.is_empty() && inner_opt { return; } children .into_iter() .for_each(|child| self.create_static_node(mutations, template, child)); mutations.push(AppendChildren { m: children.len() }) } } } pub(crate) fn create_dynamic_node<'a>( &mut self, mutations: &mut Mutations<'a>, template: &'a VNode<'a>, node: &'a DynamicNode<'a>, idx: usize, ) -> usize { match &node { DynamicNode::Text { id, value, inner } => { let new_id = self.next_element(template); id.set(new_id); mutations.push(HydrateText { id: new_id, path: &template.template.node_paths[idx][1..], value, }); 0 } DynamicNode::Component { props, placeholder, scope: scope_slot, .. } => { let scope = self .new_scope(unsafe { std::mem::transmute(props.get()) }) .id; scope_slot.set(Some(scope)); let return_nodes = unsafe { self.run_scope(scope).extend_lifetime_ref() }; match return_nodes { RenderReturn::Sync(None) | RenderReturn::Async(_) => { let new_id = self.next_element(template); placeholder.set(Some(new_id)); self.scopes[scope.0].placeholder.set(Some(new_id)); mutations.push(AssignId { id: new_id, path: &template.template.node_paths[idx][1..], }); 0 } RenderReturn::Sync(Some(template)) => { let mutations_to_this_point = mutations.len(); self.scope_stack.push(scope); let mut created = self.create(mutations, template); self.scope_stack.pop(); if !self.collected_leaves.is_empty() { if let Some(boundary) = self.scopes[scope.0].has_context::() { let mut boundary_mut = boundary.borrow_mut(); let split_off = mutations.split_off(mutations_to_this_point); let split_off = unsafe { std::mem::transmute(split_off) }; boundary_mut.mutations.edits = split_off; boundary_mut .waiting_on .extend(self.collected_leaves.drain(..)); // Since this is a boundary, use it as a placeholder let new_id = self.next_element(template); placeholder.set(Some(new_id)); self.scopes[scope.0].placeholder.set(Some(new_id)); mutations.push(AssignId { id: new_id, path: &template.template.node_paths[idx][1..], }); created = 0; } } // handle any waiting on futures accumulated by async calls down the tree // if this is a boundary, we split off the tree created } } } DynamicNode::Fragment { nodes, .. } => { // nodes .iter() .fold(0, |acc, child| acc + self.create(mutations, child)) } DynamicNode::Placeholder(slot) => { let id = self.next_element(template); slot.set(id); mutations.push(AssignId { path: &template.template.node_paths[idx][1..], id, }); 0 } } } }