use crate::any_props::AnyProps; use crate::innerlude::{VComponent, VPlaceholder, VText}; use crate::mutations::Mutation; use crate::mutations::Mutation::*; use crate::nodes::VNode; use crate::nodes::{DynamicNode, TemplateNode}; use crate::virtual_dom::VirtualDom; use crate::{AttributeValue, ElementId, RenderReturn, ScopeId, SuspenseContext, Template}; use std::cell::Cell; use std::iter::Peekable; use std::rc::Rc; use TemplateNode::*; fn sort_bfs(paths: &[&'static [u8]]) -> Vec<(usize, &'static [u8])> { let mut with_indecies = paths.iter().copied().enumerate().collect::>(); with_indecies.sort_unstable_by(|(_, a), (_, b)| { let mut a = a.iter(); let mut b = b.iter(); loop { match (a.next(), b.next()) { (Some(a), Some(b)) => { if a != b { return a.cmp(b); } } // The shorter path goes first (Some(_), None) => return std::cmp::Ordering::Less, (None, Some(_)) => return std::cmp::Ordering::Greater, (None, None) => return std::cmp::Ordering::Equal, } } }); with_indecies } #[test] fn sorting() { let r: [(usize, &[u8]); 5] = [ (0, &[0, 1]), (1, &[0, 2]), (2, &[1, 0]), (4, &[1, 1]), (3, &[1, 2]), ]; assert_eq!( sort_bfs(&[&[0, 1,], &[0, 2,], &[1, 0,], &[1, 2,], &[1, 1,],]), r ); assert!(matches!(&[0], &[_, ..])) } impl<'b> VirtualDom { /// Create a new template [`VNode`] and write it to the [`Mutations`] buffer. /// /// This method pushes the ScopeID to the internal scopestack and returns the number of nodes created. pub(crate) fn create_scope(&mut self, scope: ScopeId, template: &'b VNode<'b>) -> usize { self.scope_stack.push(scope); let out = self.create(template); self.scope_stack.pop(); out } /// Create this template and write its mutations pub(crate) fn create(&mut self, node: &'b VNode<'b>) -> usize { // Intialize the root nodes slice node.root_ids .intialize(vec![ElementId(0); node.template.get().roots.len()].into_boxed_slice()); // The best renderers will have templates prehydrated and registered // Just in case, let's create the template using instructions anyways if !self.templates.contains_key(&node.template.get().name) { self.register_template(node.template.get()); } // we know that this will generate at least one mutation per node self.mutations .edits .reserve(node.template.get().roots.len()); // Walk the roots, creating nodes and assigning IDs // nodes in an iterator of ((dynamic_node_index, sorted_index), path) // todo: adjust dynamic nodes to be in the order of roots and then leaves (ie BFS) #[cfg(not(debug_assertions))] let (mut attrs, mut nodes) = ( node.template .get() .attr_paths .iter() .copied() .enumerate() .peekable(), node.template .get() .node_paths .iter() .copied() .enumerate() .map(|(i, path)| ((i, i), path)) .peekable(), ); // If this is a debug build, we need to check that the paths are in the correct order because hot reloading can cause scrambled states #[cfg(debug_assertions)] let (attrs_sorted, nodes_sorted) = { ( sort_bfs(node.template.get().attr_paths), sort_bfs(node.template.get().node_paths), ) }; #[cfg(debug_assertions)] let (mut attrs, mut nodes) = { ( attrs_sorted.into_iter().peekable(), nodes_sorted .iter() .copied() .enumerate() .map(|(i, (id, path))| ((id, i), path)) .peekable(), ) }; node.template .get() .roots .iter() .enumerate() .map(|(idx, root)| match root { DynamicText { id } | Dynamic { id } => { nodes.next().unwrap(); self.write_dynamic_root(node, *id) } Element { .. } => { #[cfg(not(debug_assertions))] let id = self.write_element_root(node, idx, &mut attrs, &mut nodes, &[]); #[cfg(debug_assertions)] let id = self.write_element_root(node, idx, &mut attrs, &mut nodes, &nodes_sorted); id } Text { .. } => self.write_static_text_root(node, idx), }) .sum() } fn write_static_text_root(&mut self, node: &VNode, idx: usize) -> usize { // Simply just load the template root, no modifications needed self.load_template_root(node, idx); // Text producs just one node on the stack 1 } fn write_dynamic_root(&mut self, template: &'b VNode<'b>, idx: usize) -> usize { use DynamicNode::*; match &template.dynamic_nodes[idx] { node @ Component { .. } | node @ Fragment(_) => { self.create_dynamic_node(template, node, idx) } Placeholder(VPlaceholder { id }) => { let id = self.set_slot(template, id, idx); self.mutations.push(CreatePlaceholder { id }); 1 } Text(VText { id, value }) => { let id = self.set_slot(template, id, idx); self.create_static_text(value, id); 1 } } } fn create_static_text(&mut self, value: &str, id: ElementId) { // Safety: we promise not to re-alias this text later on after committing it to the mutation let unbounded_text: &str = unsafe { std::mem::transmute(value) }; self.mutations.push(CreateTextNode { value: unbounded_text, id, }); } /// We write all the descndent data for this element /// /// Elements can contain other nodes - and those nodes can be dynamic or static /// /// We want to make sure we write these nodes while on top of the root fn write_element_root( &mut self, template: &'b VNode<'b>, root_idx: usize, dynamic_attrs: &mut Peekable>, dynamic_nodes_iter: &mut Peekable>, dynamic_nodes: &[(usize, &'static [u8])], ) -> usize { // Load the template root and get the ID for the node on the stack let root_on_stack = self.load_template_root(template, root_idx); // Write all the attributes below this root self.write_attrs_on_root(dynamic_attrs, root_idx as u8, root_on_stack, template); // Load in all of the placeholder or dynamic content under this root too self.load_placeholders(dynamic_nodes_iter, dynamic_nodes, root_idx as u8, template); 1 } /// Load all of the placeholder nodes for descendents of this root node /// /// ```rust, ignore /// rsx! { /// div { /// // This is a placeholder /// some_value, /// /// // Load this too /// "{some_text}" /// } /// } /// ``` #[allow(unused)] fn load_placeholders( &mut self, dynamic_nodes_iter: &mut Peekable>, dynamic_nodes: &[(usize, &'static [u8])], root_idx: u8, template: &'b VNode<'b>, ) { let (start, end) = match collect_dyn_node_range(dynamic_nodes_iter, root_idx) { Some((a, b)) => (a, b), None => return, }; // If hot reloading is enabled, we need to map the sorted index to the original index of the dynamic node. If it is disabled, we can just use the sorted index #[cfg(not(debug_assertions))] let reversed_iter = (start..=end).rev(); #[cfg(debug_assertions)] let reversed_iter = (start..=end) .rev() .map(|sorted_index| dynamic_nodes[sorted_index].0); for idx in reversed_iter { let m = self.create_dynamic_node(template, &template.dynamic_nodes[idx], idx); if m > 0 { // The path is one shorter because the top node is the root let path = &template.template.get().node_paths[idx][1..]; self.mutations.push(ReplacePlaceholder { m, path }); } } } fn write_attrs_on_root( &mut self, attrs: &mut Peekable>, root_idx: u8, root: ElementId, node: &VNode, ) { while let Some((mut attr_id, path)) = attrs.next_if(|(_, p)| p.first().copied() == Some(root_idx)) { let id = self.assign_static_node_as_dynamic(path, root, node, attr_id); loop { self.write_attribute(&node.dynamic_attrs[attr_id], id); // Only push the dynamic attributes forward if they match the current path (same element) match attrs.next_if(|(_, p)| *p == path) { Some((next_attr_id, _)) => attr_id = next_attr_id, None => break, } } } } fn write_attribute(&mut self, attribute: &crate::Attribute, id: ElementId) { // Make sure we set the attribute's associated id attribute.mounted_element.set(id); // Safety: we promise not to re-alias this text later on after committing it to the mutation let unbounded_name: &str = unsafe { std::mem::transmute(attribute.name) }; match &attribute.value { AttributeValue::Text(value) => { // Safety: we promise not to re-alias this text later on after committing it to the mutation let unbounded_value: &str = unsafe { std::mem::transmute(*value) }; self.mutations.push(SetAttribute { name: unbounded_name, value: unbounded_value, ns: attribute.namespace, id, }) } AttributeValue::Bool(value) => self.mutations.push(SetBoolAttribute { name: unbounded_name, value: *value, id, }), AttributeValue::Listener(_) => { self.mutations.push(NewEventListener { // all listeners start with "on" name: &unbounded_name[2..], id, }) } AttributeValue::Float(_) => todo!(), AttributeValue::Int(_) => todo!(), AttributeValue::Any(_) => todo!(), AttributeValue::None => todo!(), } } fn load_template_root(&mut self, template: &VNode, root_idx: usize) -> ElementId { // Get an ID for this root since it's a real root let this_id = self.next_root(template, root_idx); template.root_ids.set(root_idx, this_id); self.mutations.push(LoadTemplate { name: template.template.get().name, index: root_idx, id: this_id, }); this_id } /// We have some dynamic attributes attached to a some node /// /// That node needs to be loaded at runtime, so we need to give it an ID /// /// If the node in question is on the stack, we just return that ID /// /// If the node is not on the stack, we create a new ID for it and assign it fn assign_static_node_as_dynamic( &mut self, path: &'static [u8], this_id: ElementId, template: &VNode, attr_id: usize, ) -> ElementId { if path.len() == 1 { return this_id; } // if attribute is on a root node, then we've already created the element // Else, it's deep in the template and we should create a new id for it let id = self.next_element(template, template.template.get().attr_paths[attr_id]); self.mutations.push(Mutation::AssignId { path: &path[1..], id, }); id } /// Insert a new template into the VirtualDom's template registry pub(crate) fn register_template_first_byte_index(&mut self, mut template: Template<'static>) { // First, make sure we mark the template as seen, regardless if we process it let (path, _) = template.name.rsplit_once(':').unwrap(); if let Some((_, old_template)) = self .templates .entry(path) .or_default() .iter_mut() .min_by_key(|(byte_index, _)| **byte_index) { // the byte index of the hot reloaded template could be different template.name = old_template.name; *old_template = template; } else { panic!( "Template {path} was not registered in\n{:#?}", self.templates ); } // If it's all dynamic nodes, then we don't need to register it if !template.is_completely_dynamic() { self.mutations.templates.push(template); } } /// Insert a new template into the VirtualDom's template registry pub(crate) fn register_template(&mut self, template: Template<'static>) { // First, make sure we mark the template as seen, regardless if we process it let (path, byte_index) = template.name.rsplit_once(':').unwrap(); let byte_index = byte_index.parse::().unwrap(); self.templates .entry(path) .or_default() .insert(byte_index, template); // If it's all dynamic nodes, then we don't need to register it if !template.is_completely_dynamic() { self.mutations.templates.push(template); } } pub(crate) fn create_dynamic_node( &mut self, template: &'b VNode<'b>, node: &'b DynamicNode<'b>, idx: usize, ) -> usize { use DynamicNode::*; match node { Text(text) => self.create_dynamic_text(template, text, idx), Fragment(frag) => self.create_fragment(frag), Placeholder(frag) => self.create_placeholder(frag, template, idx), Component(component) => self.create_component_node(template, component, idx), } } fn create_dynamic_text( &mut self, template: &'b VNode<'b>, text: &'b VText<'b>, idx: usize, ) -> usize { // Allocate a dynamic element reference for this text node let new_id = self.next_element(template, template.template.get().node_paths[idx]); // Make sure the text node is assigned to the correct element text.id.set(Some(new_id)); // Safety: we promise not to re-alias this text later on after committing it to the mutation let value = unsafe { std::mem::transmute(text.value) }; // Add the mutation to the list self.mutations.push(HydrateText { id: new_id, path: &template.template.get().node_paths[idx][1..], value, }); // Since we're hydrating an existing node, we don't create any new nodes 0 } pub(crate) fn create_placeholder( &mut self, placeholder: &VPlaceholder, template: &'b VNode<'b>, idx: usize, ) -> usize { // Allocate a dynamic element reference for this text node let id = self.next_element(template, template.template.get().node_paths[idx]); // Make sure the text node is assigned to the correct element placeholder.id.set(Some(id)); // Assign the ID to the existing node in the template self.mutations.push(AssignId { path: &template.template.get().node_paths[idx][1..], id, }); // Since the placeholder is already in the DOM, we don't create any new nodes 0 } pub(crate) fn create_fragment(&mut self, nodes: &'b [VNode<'b>]) -> usize { nodes.iter().map(|child| self.create(child)).sum() } pub(super) fn create_component_node( &mut self, template: &'b VNode<'b>, component: &'b VComponent<'b>, idx: usize, ) -> usize { let scope = match component.props.take() { Some(props) => { let unbounded_props: Box = unsafe { std::mem::transmute(props) }; let scope = self.new_scope(unbounded_props, component.name); scope.id } // Component is coming back, it probably still exists, right? None => component.scope.get().unwrap(), }; component.scope.set(Some(scope)); let return_nodes = unsafe { self.run_scope(scope).extend_lifetime_ref() }; use RenderReturn::*; match return_nodes { Sync(Some(t)) => self.mount_component(scope, template, t, idx), Sync(None) => todo!("Propogate error upwards"), Async(_) => self.mount_component_placeholder(template, idx, scope), } } fn mount_component( &mut self, scope: ScopeId, parent: &'b VNode<'b>, new: &'b VNode<'b>, idx: usize, ) -> usize { // Keep track of how many mutations are in the buffer in case we need to split them out if a suspense boundary // is encountered let mutations_to_this_point = self.mutations.edits.len(); // Create the component's root element let created = self.create_scope(scope, new); // If there are no suspense leaves below us, then just don't bother checking anything suspense related if self.collected_leaves.is_empty() { return created; } // If running the scope has collected some leaves and *this* component is a boundary, then handle the suspense let boundary = match self.scopes[scope.0].has_context::>() { Some(boundary) => boundary, _ => return created, }; // Since this is a boundary, use its placeholder within the template as the placeholder for the suspense tree let new_id = self.next_element(new, parent.template.get().node_paths[idx]); // Now connect everything to the boundary self.scopes[scope.0].placeholder.set(Some(new_id)); // This involves breaking off the mutations to this point, and then creating a new placeholder for the boundary // Note that we break off dynamic mutations only - since static mutations aren't rendered immediately let split_off = unsafe { std::mem::transmute::, Vec>( self.mutations.edits.split_off(mutations_to_this_point), ) }; boundary.mutations.borrow_mut().edits.extend(split_off); boundary.created_on_stack.set(created); boundary .waiting_on .borrow_mut() .extend(self.collected_leaves.drain(..)); // Now assign the placeholder in the DOM self.mutations.push(AssignId { id: new_id, path: &parent.template.get().node_paths[idx][1..], }); 0 } /// Take the rendered nodes from a component and handle them if they were async /// /// IE simply assign an ID to the placeholder fn mount_component_placeholder( &mut self, template: &VNode, idx: usize, scope: ScopeId, ) -> usize { let new_id = self.next_element(template, template.template.get().node_paths[idx]); // Set the placeholder of the scope self.scopes[scope.0].placeholder.set(Some(new_id)); // Since the placeholder is already in the DOM, we don't create any new nodes self.mutations.push(AssignId { id: new_id, path: &template.template.get().node_paths[idx][1..], }); 0 } fn set_slot( &mut self, template: &'b VNode<'b>, slot: &'b Cell>, id: usize, ) -> ElementId { let id = self.next_element(template, template.template.get().node_paths[id]); slot.set(Some(id)); id } } fn collect_dyn_node_range( dynamic_nodes: &mut Peekable>, root_idx: u8, ) -> Option<(usize, usize)> { let start = match dynamic_nodes.peek() { Some(((_, idx), [first, ..])) if *first == root_idx => *idx, _ => return None, }; let mut end = start; while let Some(((_, idx), p)) = dynamic_nodes.next_if(|(_, p)| matches!(p, [idx, ..] if *idx == root_idx)) { if p.len() == 1 { continue; } end = idx; } Some((start, end)) }