feat: async components!

This commit is contained in:
Jonathan Kelley 2022-11-03 17:34:42 -07:00
parent 51aeb29d1a
commit 94601ccd1f
13 changed files with 702 additions and 501 deletions

View file

@ -1,7 +1,9 @@
use std::marker::PhantomData;
use futures_util::Future;
use crate::{
component::{Component, ComponentFn, Dummy, IntoComponent},
factory::ReturnType,
scopes::{Scope, ScopeState},
Element,
};
@ -12,25 +14,30 @@ pub trait AnyProps<'a> {
unsafe fn memoize(&self, other: &dyn AnyProps) -> bool;
}
pub(crate) struct VComponentProps<'a, P, F: Future<Output = Element<'a>> = Dummy<'a>> {
pub render_fn: ComponentFn<'a, P, F>,
pub(crate) struct VComponentProps<'a, P, A, F = Element<'a>>
where
F: ReturnType<'a, A>,
{
pub render_fn: fn(Scope<'a, P>) -> F,
pub memo: unsafe fn(&P, &P) -> bool,
pub props: *const P,
pub _marker: PhantomData<A>,
}
impl<'a> VComponentProps<'a, ()> {
pub fn new_empty(render_fn: Component<'a, ()>) -> Self {
impl<'a> VComponentProps<'a, (), ()> {
pub fn new_empty(render_fn: fn(Scope) -> Element) -> Self {
Self {
render_fn: render_fn.into_component(),
render_fn,
memo: <() as PartialEq>::eq,
props: std::ptr::null_mut(),
_marker: PhantomData,
}
}
}
impl<'a, P, F: Future<Output = Element<'a>>> VComponentProps<'a, P, F> {
impl<'a, P, A, F: ReturnType<'a, A>> VComponentProps<'a, P, A, F> {
pub(crate) fn new(
render_fn: ComponentFn<'a, P, F>,
render_fn: fn(Scope<'a, P>) -> F,
memo: unsafe fn(&P, &P) -> bool,
props: *const P,
) -> Self {
@ -38,11 +45,12 @@ impl<'a, P, F: Future<Output = Element<'a>>> VComponentProps<'a, P, F> {
render_fn,
memo,
props,
_marker: PhantomData,
}
}
}
impl<'a, P, F: Future<Output = Element<'a>>> AnyProps<'a> for VComponentProps<'a, P, F> {
impl<'a, P, A, F: ReturnType<'a, A>> AnyProps<'a> for VComponentProps<'a, P, A, F> {
fn as_ptr(&self) -> *const () {
&self.props as *const _ as *const ()
}

View file

@ -9,73 +9,3 @@ use futures_util::Future;
use crate::{scopes::Scope, Element};
pub type Component<'a, T = ()> = fn(Scope<'a, T>) -> Element<'a>;
pub enum ComponentFn<'a, T, F: Future<Output = Element<'a>> = Dummy<'a>> {
Sync(fn(Scope<'a, T>) -> Element),
Async(fn(Scope<'a, T>) -> F),
}
pub trait IntoComponent<'a, T, F: Future<Output = Element<'a>> = Dummy<'a>, A = ()> {
fn into_component(self) -> ComponentFn<'a, T, F>;
}
impl<'a, T> IntoComponent<'a, T, Dummy<'a>> for fn(Scope<'a, T>) -> Element<'a> {
fn into_component(self) -> ComponentFn<'a, T> {
ComponentFn::Sync(self)
}
}
enum ComponentFn2 {
Sync(fn(Scope) -> Element),
}
trait AsComponent {
fn as_component(self) -> ComponentFn2;
}
// impl AsComponent for fn(Scope) -> Element {
// fn as_component(self) -> ComponentFn2 {
// ComponentFn2::Sync(self)
// }
// }
// impl<F> AsComponent for for<'r> fn(Scope<'r>) ->
// where
// F: Future<Output = Element<'r>>,
// {
// fn as_component(self) -> ComponentFn2 {
// ComponentFn2::Sync(self)
// }
// }
fn takes_f(f: impl AsComponent) {}
#[test]
fn example() {
fn app(cx: Scope) -> Element {
todo!()
}
// takes_f(app as fn(Scope) -> Element);
}
// pub struct AsyncMarker;
// impl<'a, T, F: Future<Output = Element<'a>>> IntoComponent<'a, T, F, AsyncMarker>
// for fn(Scope<'a, T>) -> F
// {
// fn into_component(self) -> ComponentFn<'a, T, F> {
// ComponentFn::Async(self)
// }
// }
pub struct Dummy<'a>(PhantomData<&'a ()>);
impl<'a> Future for Dummy<'a> {
type Output = Element<'a>;
fn poll(
self: std::pin::Pin<&mut Self>,
_cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Self::Output> {
unreachable!()
}
}

View file

@ -3,7 +3,7 @@ use crate::mutations::Mutation::*;
use crate::nodes::VNode;
use crate::nodes::{DynamicNode, TemplateNode};
use crate::virtualdom::VirtualDom;
use crate::{AttributeValue, TemplateAttribute};
use crate::{AttributeValue, ElementId, TemplateAttribute};
impl VirtualDom {
/// Create this template and write its mutations
@ -106,7 +106,7 @@ impl VirtualDom {
on_stack
}
fn create_static_node<'a>(
pub fn create_static_node<'a>(
&mut self,
mutations: &mut Vec<Mutation<'a>>,
template: &'a VNode<'a>,
@ -114,7 +114,7 @@ impl VirtualDom {
) {
match *node {
// Todo: create the children's template
TemplateNode::Dynamic(_) => mutations.push(CreatePlaceholder),
TemplateNode::Dynamic(_) => mutations.push(CreatePlaceholder { id: ElementId(0) }),
TemplateNode::Text(value) => mutations.push(CreateText { value }),
TemplateNode::DynamicText { .. } => mutations.push(CreateText {
value: "placeholder",
@ -149,7 +149,7 @@ impl VirtualDom {
}
}
fn create_dynamic_node<'a>(
pub fn create_dynamic_node<'a>(
&mut self,
mutations: &mut Vec<Mutation<'a>>,
template: &'a VNode<'a>,
@ -170,7 +170,7 @@ impl VirtualDom {
}
DynamicNode::Component { props, .. } => {
let id = self.new_scope(unsafe { std::mem::transmute(*props) });
let id = self.new_scope(unsafe { std::mem::transmute(props.get()) });
let template = self.run_scope(id);
@ -184,11 +184,14 @@ impl VirtualDom {
created
}
DynamicNode::Fragment { children } => {
//
children
.iter()
.fold(0, |acc, child| acc + self.create(mutations, child))
DynamicNode::Fragment(children) => children
.iter()
.fold(0, |acc, child| acc + self.create(mutations, child)),
DynamicNode::Placeholder(_) => {
let id = self.next_element(template);
mutations.push(CreatePlaceholder { id });
1
}
}
}

View file

@ -1,4 +1,7 @@
use std::any::Any;
use crate::virtualdom::VirtualDom;
use crate::{Attribute, AttributeValue, TemplateNode};
use crate::any_props::VComponentProps;
@ -13,6 +16,7 @@ use crate::{
nodes::VNode,
scopes::{ScopeId, ScopeState},
};
use fxhash::{FxHashMap, FxHashSet};
use slab::Slab;
pub struct DirtyScope {
@ -20,16 +24,574 @@ pub struct DirtyScope {
id: ScopeId,
}
impl VirtualDom {
fn diff_scope<'a>(&'a mut self, mutations: &mut Vec<Mutation<'a>>, scope: ScopeId) {
impl<'b> VirtualDom {
pub fn diff_scope(&mut self, mutations: &mut Vec<Mutation<'b>>, scope: ScopeId) {
let scope_state = &mut self.scopes[scope.0];
}
fn diff_template<'a>(
&'a mut self,
mutations: &mut Vec<Mutation<'a>>,
left: &VNode,
right: &VNode,
pub fn diff_node(
&mut self,
muts: &mut Vec<Mutation<'b>>,
left_template: &'b VNode<'b>,
right_template: &'b VNode<'b>,
) {
if left_template.template.id != right_template.template.id {
// do a light diff of the roots nodes.
return;
}
for (_idx, (left_attr, right_attr)) in left_template
.dynamic_attrs
.iter()
.zip(right_template.dynamic_attrs.iter())
.enumerate()
{
debug_assert!(left_attr.name == right_attr.name);
debug_assert!(left_attr.value == right_attr.value);
// Move over the ID from the old to the new
right_attr
.mounted_element
.set(left_attr.mounted_element.get());
if left_attr.value != right_attr.value {
let value = "todo!()";
muts.push(Mutation::SetAttribute {
id: left_attr.mounted_element.get(),
name: left_attr.name,
value,
});
}
}
for (idx, (left_node, right_node)) in left_template
.dynamic_nodes
.iter()
.zip(right_template.dynamic_nodes.iter())
.enumerate()
{
#[rustfmt::skip]
match (left_node, right_node) {
(DynamicNode::Component { props: lprops, .. }, DynamicNode::Component { is_static , props: rprops, .. }) => {
let left_props = unsafe { &mut *lprops.get()};
let right_props = unsafe { &mut *rprops.get()};
// Ensure these two props are of the same component type
match left_props.as_ptr() == right_props.as_ptr() {
true => {
//
if *is_static {
let props_are_same = unsafe { left_props.memoize(right_props) };
if props_are_same{
//
} else {
//
}
} else {
}
},
false => todo!(),
}
//
},
// Make sure to drop the component properly
(DynamicNode::Component { .. }, right) => {
// remove all the component roots except for the first
// replace the first with the new node
let m = self.create_dynamic_node(muts, right_template, right, idx);
todo!()
},
(DynamicNode::Text { id: lid, value: lvalue }, DynamicNode::Text { id: rid, value: rvalue }) => {
rid.set(lid.get());
if lvalue != rvalue {
muts.push(Mutation::SetText {
id: lid.get(),
value: rvalue,
});
}
},
(DynamicNode::Text { id: lid, .. }, right) => {
let m = self.create_dynamic_node(muts, right_template, right, idx);
muts.push(Mutation::Replace { id: lid.get(), m });
}
(DynamicNode::Placeholder(_), DynamicNode::Placeholder(_)) => todo!(),
(DynamicNode::Placeholder(_), _) => todo!(),
(DynamicNode::Fragment (l), DynamicNode::Fragment (r)) => {
// match (old, new) {
// ([], []) => rp.set(lp.get()),
// ([], _) => {
// //
// todo!()
// },
// (_, []) => {
// todo!()
// },
// _ => {
// let new_is_keyed = new[0].key.is_some();
// let old_is_keyed = old[0].key.is_some();
// debug_assert!(
// new.iter().all(|n| n.key.is_some() == new_is_keyed),
// "all siblings must be keyed or all siblings must be non-keyed"
// );
// debug_assert!(
// old.iter().all(|o| o.key.is_some() == old_is_keyed),
// "all siblings must be keyed or all siblings must be non-keyed"
// );
// if new_is_keyed && old_is_keyed {
// self.diff_keyed_children(muts, old, new);
// } else {
// self.diff_non_keyed_children(muts, old, new);
// }
// }
// }
},
// Make sure to drop all the fragment children properly
(DynamicNode::Fragment { .. }, right) => todo!(),
};
}
}
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_non_keyed_children(
&mut self,
muts: &mut Vec<Mutation<'b>>,
old: &'b [VNode<'b>],
new: &'b [VNode<'b>],
) {
use std::cmp::Ordering;
// Handled these cases in `diff_children` before calling this function.
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
match old.len().cmp(&new.len()) {
Ordering::Greater => self.remove_nodes(muts, &old[new.len()..]),
Ordering::Less => todo!(),
// Ordering::Less => self.create_and_insert_after(&new[old.len()..], old.last().unwrap()),
Ordering::Equal => {}
}
for (new, old) in new.iter().zip(old.iter()) {
self.diff_node(muts, old, new);
}
}
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// The stack is empty upon entry.
fn diff_keyed_children(
&mut self,
muts: &mut Vec<Mutation<'b>>,
old: &'b [VNode<'b>],
new: &'b [VNode<'b>],
) {
// if cfg!(debug_assertions) {
// let mut keys = fxhash::FxHashSet::default();
// let mut assert_unique_keys = |children: &'b [VNode<'b>]| {
// keys.clear();
// for child in children {
// let key = child.key;
// debug_assert!(
// key.is_some(),
// "if any sibling is keyed, all siblings must be keyed"
// );
// keys.insert(key);
// }
// debug_assert_eq!(
// children.len(),
// keys.len(),
// "keyed siblings must each have a unique key"
// );
// };
// assert_unique_keys(old);
// assert_unique_keys(new);
// }
// // First up, we diff all the nodes with the same key at the beginning of the
// // children.
// //
// // `shared_prefix_count` is the count of how many nodes at the start of
// // `new` and `old` share the same keys.
// let (left_offset, right_offset) = match self.diff_keyed_ends(muts, old, new) {
// Some(count) => count,
// None => return,
// };
// // Ok, we now hopefully have a smaller range of children in the middle
// // within which to re-order nodes with the same keys, remove old nodes with
// // now-unused keys, and create new nodes with fresh keys.
// let old_middle = &old[left_offset..(old.len() - right_offset)];
// let new_middle = &new[left_offset..(new.len() - right_offset)];
// debug_assert!(
// !((old_middle.len() == new_middle.len()) && old_middle.is_empty()),
// "keyed children must have the same number of children"
// );
// if new_middle.is_empty() {
// // remove the old elements
// self.remove_nodes(muts, old_middle);
// } else if old_middle.is_empty() {
// // there were no old elements, so just create the new elements
// // we need to find the right "foothold" though - we shouldn't use the "append" at all
// if left_offset == 0 {
// // insert at the beginning of the old list
// let foothold = &old[old.len() - right_offset];
// self.create_and_insert_before(new_middle, foothold);
// } else if right_offset == 0 {
// // insert at the end the old list
// let foothold = old.last().unwrap();
// self.create_and_insert_after(new_middle, foothold);
// } else {
// // inserting in the middle
// let foothold = &old[left_offset - 1];
// self.create_and_insert_after(new_middle, foothold);
// }
// } else {
// self.diff_keyed_middle(muts, old_middle, new_middle);
// }
}
// /// Diff both ends of the children that share keys.
// ///
// /// Returns a left offset and right offset of that indicates a smaller section to pass onto the middle diffing.
// ///
// /// If there is no offset, then this function returns None and the diffing is complete.
// fn diff_keyed_ends(
// &mut self,
// muts: &mut Vec<Mutation<'b>>,
// old: &'b [VNode<'b>],
// new: &'b [VNode<'b>],
// ) -> Option<(usize, usize)> {
// let mut left_offset = 0;
// for (old, new) in old.iter().zip(new.iter()) {
// // abort early if we finally run into nodes with different keys
// if old.key != new.key {
// break;
// }
// self.diff_node(muts, old, new);
// left_offset += 1;
// }
// // If that was all of the old children, then create and append the remaining
// // new children and we're finished.
// if left_offset == old.len() {
// self.create_and_insert_after(&new[left_offset..], old.last().unwrap());
// return None;
// }
// // And if that was all of the new children, then remove all of the remaining
// // old children and we're finished.
// if left_offset == new.len() {
// self.remove_nodes(muts, &old[left_offset..]);
// return None;
// }
// // if the shared prefix is less than either length, then we need to walk backwards
// let mut right_offset = 0;
// for (old, new) in old.iter().rev().zip(new.iter().rev()) {
// // abort early if we finally run into nodes with different keys
// if old.key != new.key {
// break;
// }
// self.diff_node(muts, old, new);
// right_offset += 1;
// }
// Some((left_offset, right_offset))
// }
// // The most-general, expensive code path for keyed children diffing.
// //
// // We find the longest subsequence within `old` of children that are relatively
// // ordered the same way in `new` (via finding a longest-increasing-subsequence
// // of the old child's index within `new`). The children that are elements of
// // this subsequence will remain in place, minimizing the number of DOM moves we
// // will have to do.
// //
// // Upon entry to this function, the change list stack must be empty.
// //
// // This function will load the appropriate nodes onto the stack and do diffing in place.
// //
// // Upon exit from this function, it will be restored to that same self.
// #[allow(clippy::too_many_lines)]
// fn diff_keyed_middle(
// &mut self,
// muts: &mut Vec<Mutation<'b>>,
// old: &'b [VNode<'b>],
// new: &'b [VNode<'b>],
// ) {
// /*
// 1. Map the old keys into a numerical ordering based on indices.
// 2. Create a map of old key to its index
// 3. Map each new key to the old key, carrying over the old index.
// - IE if we have ABCD becomes BACD, our sequence would be 1,0,2,3
// - if we have ABCD to ABDE, our sequence would be 0,1,3,MAX because E doesn't exist
// now, we should have a list of integers that indicates where in the old list the new items map to.
// 4. Compute the LIS of this list
// - this indicates the longest list of new children that won't need to be moved.
// 5. Identify which nodes need to be removed
// 6. Identify which nodes will need to be diffed
// 7. Going along each item in the new list, create it and insert it before the next closest item in the LIS.
// - if the item already existed, just move it to the right place.
// 8. Finally, generate instructions to remove any old children.
// 9. Generate instructions to finally diff children that are the same between both
// */
// // 0. Debug sanity checks
// // Should have already diffed the shared-key prefixes and suffixes.
// debug_assert_ne!(new.first().map(|i| i.key), old.first().map(|i| i.key));
// debug_assert_ne!(new.last().map(|i| i.key), old.last().map(|i| i.key));
// // 1. Map the old keys into a numerical ordering based on indices.
// // 2. Create a map of old key to its index
// // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
// let old_key_to_old_index = old
// .iter()
// .enumerate()
// .map(|(i, o)| (o.key.unwrap(), i))
// .collect::<FxHashMap<_, _>>();
// let mut shared_keys = FxHashSet::default();
// // 3. Map each new key to the old key, carrying over the old index.
// let new_index_to_old_index = new
// .iter()
// .map(|node| {
// let key = node.key.unwrap();
// if let Some(&index) = old_key_to_old_index.get(&key) {
// shared_keys.insert(key);
// index
// } else {
// u32::MAX as usize
// }
// })
// .collect::<Vec<_>>();
// // If none of the old keys are reused by the new children, then we remove all the remaining old children and
// // create the new children afresh.
// if shared_keys.is_empty() {
// if let Some(first_old) = old.get(0) {
// self.remove_nodes(muts, &old[1..]);
// let nodes_created = self.create_children(new);
// self.replace_inner(first_old, nodes_created);
// } else {
// // I think this is wrong - why are we appending?
// // only valid of the if there are no trailing elements
// self.create_and_append_children(new);
// }
// return;
// }
// // remove any old children that are not shared
// // todo: make this an iterator
// for child in old {
// let key = child.key.unwrap();
// if !shared_keys.contains(&key) {
// todo!("remove node");
// // self.remove_nodes(muts, [child]);
// }
// }
// // 4. Compute the LIS of this list
// let mut lis_sequence = Vec::default();
// lis_sequence.reserve(new_index_to_old_index.len());
// let mut predecessors = vec![0; new_index_to_old_index.len()];
// let mut starts = vec![0; new_index_to_old_index.len()];
// longest_increasing_subsequence::lis_with(
// &new_index_to_old_index,
// &mut lis_sequence,
// |a, b| a < b,
// &mut predecessors,
// &mut starts,
// );
// // the lis comes out backwards, I think. can't quite tell.
// lis_sequence.sort_unstable();
// // if a new node gets u32 max and is at the end, then it might be part of our LIS (because u32 max is a valid LIS)
// if lis_sequence.last().map(|f| new_index_to_old_index[*f]) == Some(u32::MAX as usize) {
// lis_sequence.pop();
// }
// for idx in &lis_sequence {
// self.diff_node(muts, &old[new_index_to_old_index[*idx]], &new[*idx]);
// }
// let mut nodes_created = 0;
// // add mount instruction for the first items not covered by the lis
// let last = *lis_sequence.last().unwrap();
// if last < (new.len() - 1) {
// for (idx, new_node) in new[(last + 1)..].iter().enumerate() {
// let new_idx = idx + last + 1;
// let old_index = new_index_to_old_index[new_idx];
// if old_index == u32::MAX as usize {
// nodes_created += self.create(muts, new_node);
// } else {
// self.diff_node(muts, &old[old_index], new_node);
// nodes_created += self.push_all_real_nodes(new_node);
// }
// }
// self.mutations.insert_after(
// self.find_last_element(&new[last]).unwrap(),
// nodes_created as u32,
// );
// nodes_created = 0;
// }
// // for each spacing, generate a mount instruction
// let mut lis_iter = lis_sequence.iter().rev();
// let mut last = *lis_iter.next().unwrap();
// for next in lis_iter {
// if last - next > 1 {
// for (idx, new_node) in new[(next + 1)..last].iter().enumerate() {
// let new_idx = idx + next + 1;
// let old_index = new_index_to_old_index[new_idx];
// if old_index == u32::MAX as usize {
// nodes_created += self.create(muts, new_node);
// } else {
// self.diff_node(muts, &old[old_index], new_node);
// nodes_created += self.push_all_real_nodes(new_node);
// }
// }
// self.mutations.insert_before(
// self.find_first_element(&new[last]).unwrap(),
// nodes_created as u32,
// );
// nodes_created = 0;
// }
// last = *next;
// }
// // add mount instruction for the last items not covered by the lis
// let first_lis = *lis_sequence.first().unwrap();
// if first_lis > 0 {
// for (idx, new_node) in new[..first_lis].iter().enumerate() {
// let old_index = new_index_to_old_index[idx];
// if old_index == u32::MAX as usize {
// nodes_created += self.create_node(new_node);
// } else {
// self.diff_node(muts, &old[old_index], new_node);
// nodes_created += self.push_all_real_nodes(new_node);
// }
// }
// self.mutations.insert_before(
// self.find_first_element(&new[first_lis]).unwrap(),
// nodes_created as u32,
// );
// }
// }
/// Remove these nodes from the dom
/// Wont generate mutations for the inner nodes
fn remove_nodes(&mut self, muts: &mut Vec<Mutation<'b>>, nodes: &'b [VNode<'b>]) {
//
}
}
// /// Lightly diff the two templates and apply their edits to the dom
// fn light_diff_template_roots(
// &'a mut self,
// mutations: &mut Vec<Mutation<'a>>,
// left: &VNode,
// right: &VNode,
// ) {
// match right.template.roots.len().cmp(&left.template.roots.len()) {
// std::cmp::Ordering::Less => {
// // remove the old nodes at the end
// }
// std::cmp::Ordering::Greater => {
// // add the extra nodes.
// }
// std::cmp::Ordering::Equal => {}
// }
// for (left_node, right_node) in left.template.roots.iter().zip(right.template.roots.iter()) {
// if let (TemplateNode::Dynamic(lidx), TemplateNode::Dynamic(ridx)) =
// (left_node, right_node)
// {
// let left_node = &left.dynamic_nodes[*lidx];
// let right_node = &right.dynamic_nodes[*ridx];
// // match (left_node, right_node) {
// // (
// // DynamicNode::Component {
// // name,
// // can_memoize,
// // props,
// // },
// // DynamicNode::Component {
// // name,
// // can_memoize,
// // props,
// // },
// // ) => todo!(),
// // (
// // DynamicNode::Component {
// // name,
// // can_memoize,
// // props,
// // },
// // DynamicNode::Fragment { children },
// // ) => todo!(),
// // (
// // DynamicNode::Fragment { children },
// // DynamicNode::Component {
// // name,
// // can_memoize,
// // props,
// // },
// // ) => todo!(),
// // _ => {}
// // }
// }
// }
// }

View file

@ -6,7 +6,6 @@ use futures_util::Future;
use crate::{
any_props::{AnyProps, VComponentProps},
arena::ElementId,
component::IntoComponent,
innerlude::DynamicNode,
Attribute, AttributeValue, Element, LazyNodes, Properties, Scope, ScopeState, VNode,
};
@ -47,8 +46,9 @@ impl ScopeState {
bump_vec.push(item.into_dynamic_node(self));
}
DynamicNode::Fragment {
children: bump_vec.into_bump_slice(),
match bump_vec.len() {
0 => DynamicNode::Placeholder(Cell::new(ElementId(0))),
_ => DynamicNode::Fragment(bump_vec.into_bump_slice()),
}
}
@ -70,9 +70,9 @@ impl ScopeState {
}
/// Create a new [`VNode::Component`]
pub fn component<'a, P, F: Future<Output = Element<'a>>>(
pub fn component<'a, P, A, F: ReturnType<'a, A>>(
&'a self,
component: impl IntoComponent<'a, P, F>,
component: fn(Scope<'a, P>) -> F,
props: P,
fn_name: &'static str,
) -> DynamicNode<'a>
@ -80,7 +80,7 @@ impl ScopeState {
P: Properties + 'a,
{
let props = self.bump().alloc(props);
let as_component = component.into_component();
let as_component = component;
let vcomp = VComponentProps::new(as_component, P::memoize, props);
let as_dyn = self.bump().alloc(vcomp) as &mut dyn AnyProps;
let detached_dyn: *mut dyn AnyProps = unsafe { std::mem::transmute(as_dyn) };
@ -94,12 +94,30 @@ impl ScopeState {
DynamicNode::Component {
name: fn_name,
can_memoize: P::IS_STATIC,
props: detached_dyn,
is_static: P::IS_STATIC,
props: Cell::new(detached_dyn),
}
}
}
pub trait ReturnType<'a, A = ()> {}
impl<'a> ReturnType<'a> for Element<'a> {}
pub struct AsyncMarker;
impl<'a, F> ReturnType<'a, AsyncMarker> for F where F: Future<Output = Element<'a>> + 'a {}
#[test]
fn takes_it() {
fn demo(cx: Scope) -> Element {
todo!()
}
}
enum RenderReturn<'a> {
Sync(Element<'a>),
Async(*mut dyn Future<Output = Element<'a>>),
}
pub trait IntoVnode<'a, A = ()> {
fn into_dynamic_node(self, cx: &'a ScopeState) -> VNode<'a>;
}

View file

@ -19,7 +19,8 @@ impl VirtualDom {
todo!()
}
DynamicNode::Fragment { children } => {}
DynamicNode::Fragment(children) => {}
DynamicNode::Placeholder(_) => todo!(),
}
}
}

View file

@ -46,6 +46,7 @@ pub enum Mutation<'a> {
// Take the current element and replace it with the element with the given id.
Replace {
id: ElementId,
m: usize,
},
CreateElement {
@ -58,7 +59,9 @@ pub enum Mutation<'a> {
value: &'a str,
},
CreatePlaceholder,
CreatePlaceholder {
id: ElementId,
},
AppendChildren {
m: usize,

View file

@ -1,6 +1,6 @@
use crate::{any_props::AnyProps, arena::ElementId};
use std::{
any::Any,
any::{Any, TypeId},
cell::{Cell, RefCell},
hash::Hasher,
};
@ -77,8 +77,8 @@ pub enum DynamicNode<'a> {
// IE in caps or with underscores
Component {
name: &'static str,
can_memoize: bool,
props: *mut dyn AnyProps<'a>,
is_static: bool,
props: Cell<*mut dyn AnyProps<'a>>,
},
// Comes in with string interpolation or from format_args, include_str, etc
@ -88,9 +88,9 @@ pub enum DynamicNode<'a> {
},
// Anything that's coming in as an iterator
Fragment {
children: &'a [VNode<'a>],
},
Fragment(&'a [VNode<'a>]),
Placeholder(Cell<ElementId>),
}
#[derive(Debug)]
@ -122,26 +122,71 @@ pub enum AttributeValue<'a> {
None,
}
impl<'a> std::fmt::Debug for AttributeValue<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Text(arg0) => f.debug_tuple("Text").field(arg0).finish(),
Self::Float(arg0) => f.debug_tuple("Float").field(arg0).finish(),
Self::Int(arg0) => f.debug_tuple("Int").field(arg0).finish(),
Self::Bool(arg0) => f.debug_tuple("Bool").field(arg0).finish(),
Self::Listener(arg0) => f.debug_tuple("Listener").finish(),
Self::Any(arg0) => f.debug_tuple("Any").finish(),
Self::None => write!(f, "None"),
}
}
}
impl<'a> PartialEq for AttributeValue<'a> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Text(l0), Self::Text(r0)) => l0 == r0,
(Self::Float(l0), Self::Float(r0)) => l0 == r0,
(Self::Int(l0), Self::Int(r0)) => l0 == r0,
(Self::Bool(l0), Self::Bool(r0)) => l0 == r0,
(Self::Listener(l0), Self::Listener(r0)) => true,
(Self::Any(l0), Self::Any(r0)) => l0.any_cmp(*r0),
_ => core::mem::discriminant(self) == core::mem::discriminant(other),
}
}
}
impl<'a> AttributeValue<'a> {
pub fn matches_type(&self, other: &'a AttributeValue<'a>) -> bool {
match (self, other) {
(Self::Text(_), Self::Text(_)) => true,
(Self::Float(_), Self::Float(_)) => true,
(Self::Int(_), Self::Int(_)) => true,
(Self::Bool(_), Self::Bool(_)) => true,
(Self::Listener(_), Self::Listener(_)) => true,
(Self::Any(_), Self::Any(_)) => true,
_ => return false,
}
}
fn is_listener(&self) -> bool {
matches!(self, AttributeValue::Listener(_))
}
}
pub trait AnyValue {
fn any_cmp(&self, other: &dyn Any) -> bool;
fn any_cmp(&self, other: &dyn AnyValue) -> bool;
fn our_typeid(&self) -> TypeId;
}
impl<T> AnyValue for T
where
T: PartialEq + Any,
{
fn any_cmp(&self, other: &dyn Any) -> bool {
if self.type_id() != other.type_id() {
fn any_cmp(&self, other: &dyn AnyValue) -> bool {
if self.type_id() != other.our_typeid() {
return false;
}
self == unsafe { &*(other as *const _ as *const T) }
}
fn our_typeid(&self) -> TypeId {
self.type_id()
}
}
#[test]

View file

@ -165,6 +165,6 @@ impl EmptyBuilder {
/// This utility function launches the builder method so rsx! and html! macros can use the typed-builder pattern
/// to initialize a component's props.
pub fn fc_to_builder<'a, T: Properties + 'a>(_: fn(Scope<'a, T>) -> Element) -> T::Builder {
pub fn fc_to_builder<'a, A, T: Properties + 'a>(_: fn(Scope<'a, T>) -> A) -> T::Builder {
T::builder()
}

View file

@ -10,6 +10,7 @@ use crate::{
arena::ElementId,
scopes::{ScopeId, ScopeState},
};
use crate::{Element, Scope};
use futures_channel::mpsc::{UnboundedReceiver, UnboundedSender};
use slab::Slab;
use std::collections::{BTreeSet, HashMap};
@ -27,7 +28,7 @@ pub struct VirtualDom {
}
impl VirtualDom {
pub fn new<'a>(app: Component<'a, ()>) -> Self {
pub fn new(app: fn(Scope) -> Element) -> Self {
let (sender, receiver) = futures_channel::mpsc::unbounded();
let mut res = Self {
@ -43,7 +44,7 @@ impl VirtualDom {
};
let props = Box::into_raw(Box::new(VComponentProps::new_empty(app)));
let props: *mut VComponentProps<()> = unsafe { std::mem::transmute(props) };
let props: *mut VComponentProps<(), ()> = unsafe { std::mem::transmute(props) };
let root = res.new_scope(props);

View file

@ -24,28 +24,20 @@ fn basic_syntax_is_a_template(cx: Scope) -> Element {
}
fn basic_template(cx: Scope) -> Element {
let val = 123;
cx.component(basic_child, (), "fn_name");
todo!()
// cx.render(rsx! {
// div { class: "{val}", class: "{val}", class: "{val}", class: "{val}",
// (0..2).map(|i| rsx! { div { "asd {i}" } })
// basic_child { }
// }
// })
cx.render(rsx! {
div {
basic_child { }
async_child { }
}
})
}
/// A beautiful component
fn basic_child(cx: Scope) -> Element {
todo!()
}
async fn async_component(cx: Scope<'_>) -> Element {
cx.render(rsx! {
div { class: "asd" }
})
async fn async_child(cx: Scope<'_>) -> Element {
todo!()
}
#[test]
@ -63,4 +55,9 @@ fn basic_prints() {
// let renderer = dioxus_edit_stream::Mutations::default();
//
// dbg!(renderer.edits);
// takes_it(basic_child);
}
// fn takes_it(f: fn(Scope) -> Element) {}
// fn takes_it(f: fn(Scope) -> Element) {}

View file

@ -1,9 +0,0 @@
[package]
name = "dioxus-edit-stream"
version = "0.0.0"
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
dioxus-core = { path = "../core" }

View file

@ -1,358 +0,0 @@
use dioxus_core::*;
/// ## Mutations
///
/// This method returns "mutations" - IE the necessary changes to get the RealDOM to match the VirtualDOM. It also
/// includes a list of NodeRefs that need to be applied and effects that need to be triggered after the RealDOM has
/// applied the edits.
///
/// Mutations are the only link between the RealDOM and the VirtualDOM.
#[derive(Default)]
pub struct Mutations<'a> {
/// The list of edits that need to be applied for the RealDOM to match the VirtualDOM.
pub edits: Vec<DomEdit<'a>>,
/// The list of Scopes that were diffed, created, and removed during the Diff process.
pub dirty_scopes: Vec<ScopeId>,
}
/// A `DomEdit` represents a serialized form of the VirtualDom's trait-based API. This allows streaming edits across the
/// network or through FFI boundaries.
#[derive(Debug, PartialEq)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
serde(tag = "type")
)]
pub enum DomEdit<'bump> {
/// Push the given root node onto our stack.
PushRoot {
/// The ID of the root node to push.
root: ElementId,
},
/// Pop the topmost node from our stack and append them to the node
/// at the top of the stack.
AppendChildren {
/// How many nodes should be popped from the stack.
/// The node remaining on the stack will be the target for the append.
many: u32,
},
/// Replace a given (single) node with a handful of nodes currently on the stack.
ReplaceWith {
/// The ID of the node to be replaced.
root: ElementId,
/// How many nodes should be popped from the stack to replace the target node.
m: u32,
},
/// Insert a number of nodes after a given node.
InsertAfter {
/// The ID of the node to insert after.
root: ElementId,
/// How many nodes should be popped from the stack to insert after the target node.
n: u32,
},
/// Insert a number of nodes before a given node.
InsertBefore {
/// The ID of the node to insert before.
root: ElementId,
/// How many nodes should be popped from the stack to insert before the target node.
n: u32,
},
/// Remove a particular node from the DOM
Remove {
/// The ID of the node to remove.
root: ElementId,
},
/// Create a new purely-text node
CreateTextNode {
/// The ID the new node should have.
root: ElementId,
/// The textcontent of the node
text: &'bump str,
},
/// Create a new purely-element node
CreateElement {
/// The ID the new node should have.
root: ElementId,
/// The tagname of the node
tag: &'bump str,
},
/// Create a new purely-comment node with a given namespace
CreateElementNs {
/// The ID the new node should have.
root: ElementId,
/// The namespace of the node
tag: &'bump str,
/// The namespace of the node (like `SVG`)
ns: &'static str,
},
/// Create a new placeholder node.
/// In most implementations, this will either be a hidden div or a comment node.
CreatePlaceholder {
/// The ID the new node should have.
root: ElementId,
},
/// Create a new Event Listener.
NewEventListener {
/// The name of the event to listen for.
event_name: &'static str,
/// The ID of the node to attach the listener to.
scope: ScopeId,
/// The ID of the node to attach the listener to.
root: ElementId,
},
/// Remove an existing Event Listener.
RemoveEventListener {
/// The ID of the node to remove.
root: ElementId,
/// The name of the event to remove.
event: &'static str,
},
/// Set the textcontent of a node.
SetText {
/// The ID of the node to set the textcontent of.
root: ElementId,
/// The textcontent of the node
text: &'bump str,
},
/// Set the value of a node's attribute.
SetAttribute {
/// The ID of the node to set the attribute of.
root: ElementId,
/// The name of the attribute to set.
field: &'static str,
/// The value of the attribute.
value: AttributeValue<'bump>,
// value: &'bump str,
/// The (optional) namespace of the attribute.
/// For instance, "style" is in the "style" namespace.
ns: Option<&'bump str>,
},
/// Remove an attribute from a node.
RemoveAttribute {
/// The ID of the node to remove.
root: ElementId,
/// The name of the attribute to remove.
name: &'static str,
/// The namespace of the attribute.
ns: Option<&'bump str>,
},
/// Manually pop a root node from the stack.
PopRoot {
/// The amount of nodes to pop
count: u32,
},
/// Remove all the children of an element
RemoveChildren {
/// The root
root: ElementId,
},
/*
Template stuff
- load into scratch space
- dump nodes into stack
- assign ids of nodes in template
*/
/// Create a template using the nodes on the stack
Save {
/// The ID of the template
name: &'static str,
/// The amount of nodes to pop from the stack into the template
num_children: u32,
},
/// Load the template into a scratch space on the stack
///
/// The template body now lives on the stack, but needs to be finished before its nodes can be appended to the DOM.
Load {
/// The ID of the template
name: &'static str,
id: u32,
},
AssignId {
index: &'static str,
id: ElementId,
},
ReplaceDescendant {
index: &'static str,
m: u32,
},
}
use DomEdit::*;
impl<'a> dioxus_core::Renderer<'a> for Mutations<'a> {
// Navigation
fn push_root(&mut self, root: ElementId) {
self.edits.push(PushRoot { root });
}
// Navigation
fn pop_root(&mut self) {
self.edits.push(PopRoot { count: 1 });
}
fn replace_with(&mut self, root: ElementId, m: u32) {
self.edits.push(ReplaceWith { m, root });
}
fn replace_descendant(&mut self, descendent: &'static [u8], m: u32) {
self.edits.push(ReplaceDescendant {
// serializing is just hijacking ascii
index: unsafe { std::str::from_utf8_unchecked(descendent) },
m,
});
}
fn insert_after(&mut self, root: ElementId, n: u32) {
self.edits.push(InsertAfter { n, root });
}
fn insert_before(&mut self, root: ElementId, n: u32) {
self.edits.push(InsertBefore { n, root });
}
fn append_children(&mut self, n: u32) {
self.edits.push(AppendChildren { many: n });
}
// Create
fn create_text_node(&mut self, text: &'a str, root: ElementId) {
self.edits.push(CreateTextNode { text, root });
}
fn create_element(&mut self, tag: &'static str, ns: Option<&'static str>, id: ElementId) {
match ns {
Some(ns) => self.edits.push(CreateElementNs { root: id, ns, tag }),
None => self.edits.push(CreateElement { root: id, tag }),
}
}
// placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom
fn create_placeholder(&mut self, id: ElementId) {
self.edits.push(CreatePlaceholder { root: id });
}
fn assign_id(&mut self, descendent: &'static [u8], id: ElementId) {
self.edits.push(AssignId {
index: unsafe { std::str::from_utf8_unchecked(descendent) },
id,
});
}
// Remove Nodes from the dom
fn remove(&mut self, root: ElementId) {
self.edits.push(Remove { root });
}
fn remove_attribute(&mut self, attribute: &Attribute, root: ElementId) {
self.edits.push(RemoveAttribute {
name: attribute.name,
ns: attribute.namespace,
root,
});
}
// events
fn new_event_listener(&mut self, listener: &Listener, scope: ScopeId) {
let Listener {
event,
mounted_node,
..
} = listener;
let element_id = mounted_node.get();
self.edits.push(NewEventListener {
scope,
event_name: event,
root: element_id,
});
}
fn remove_event_listener(&mut self, event: &'static str, root: ElementId) {
self.edits.push(RemoveEventListener { event, root });
}
// modify
fn set_text(&mut self, text: &'a str, root: ElementId) {
self.edits.push(SetText { text, root });
}
fn save(&mut self, id: &'static str, num: u32) {
self.edits.push(Save {
name: id,
num_children: num,
});
}
fn load(&mut self, id: &'static str, index: u32) {
self.edits.push(Load {
name: id,
id: index,
});
}
fn mark_dirty_scope(&mut self, scope: ScopeId) {
self.dirty_scopes.push(scope);
}
fn set_attribute(
&mut self,
name: &'static str,
value: AttributeValue<'a>,
namespace: Option<&'a str>,
root: ElementId,
) {
self.edits.push(SetAttribute {
field: name,
value: value.clone(),
ns: namespace,
root,
});
}
fn remove_children(&mut self, element: ElementId) {
todo!()
}
}