dioxus/packages/hooks/src/usestate.rs

213 lines
6.3 KiB
Rust
Raw Normal View History

2022-01-16 20:56:48 +00:00
use dioxus_core::prelude::*;
use std::{
cell::{Cell, Ref, RefCell, RefMut},
fmt::{Debug, Display},
rc::Rc,
};
/// Store state between component renders!
///
/// ## Dioxus equivalent of useState, designed for Rust
///
/// The Dioxus version of `useState` for state management inside components. It allows you to ergonomically store and
/// modify state between component renders. When the state is updated, the component will re-render.
///
/// Dioxus' use_state basically wraps a RefCell with helper methods and integrates it with the VirtualDOM update system.
///
/// [`use_state`] exposes a few helper methods to modify the underlying state:
/// - `.set(new)` allows you to override the "work in progress" value with a new value
/// - `.get_mut()` allows you to modify the WIP value
/// - `.get_wip()` allows you to access the WIP value
/// - `.deref()` provides the previous value (often done implicitly, though a manual dereference with `*` might be required)
///
/// Additionally, a ton of std::ops traits are implemented for the `UseState` wrapper, meaning any mutative type operations
/// will automatically be called on the WIP value.
///
/// ## Combinators
///
/// On top of the methods to set/get state, `use_state` also supports fancy combinators to extend its functionality:
/// - `.classic()` and `.split()` convert the hook into the classic React-style hook
/// ```rust
/// let (state, set_state) = use_state(&cx, || 10).split()
/// ```
/// Usage:
///
/// ```ignore
/// const Example: Component = |cx| {
/// let counter = use_state(&cx, || 0);
///
/// cx.render(rsx! {
/// div {
/// h1 { "Counter: {counter}" }
/// button { onclick: move |_| counter.set(**counter + 1), "Increment" }
/// button { onclick: move |_| counter.set(**counter - 1), "Decrement" }
/// }
/// ))
/// }
/// ```
pub fn use_state<'a, T: 'static>(
cx: &'a ScopeState,
initial_state_fn: impl FnOnce() -> T,
) -> &'a UseState<T> {
let hook = cx.use_hook(move |_| UseState {
current_val: Rc::new(initial_state_fn()),
update_callback: cx.schedule_update(),
wip: Rc::new(RefCell::new(None)),
update_scheuled: Cell::new(false),
});
hook.update_scheuled.set(false);
let mut new_val = hook.wip.borrow_mut();
if new_val.is_some() {
// if there's only one reference (weak or otherwise), we can just swap the values
if let Some(val) = Rc::get_mut(&mut hook.current_val) {
*val = new_val.take().unwrap();
} else {
hook.current_val = Rc::new(new_val.take().unwrap());
}
}
hook
}
pub struct UseState<T: 'static> {
pub(crate) current_val: Rc<T>,
pub(crate) wip: Rc<RefCell<Option<T>>>,
pub(crate) update_callback: Rc<dyn Fn()>,
pub(crate) update_scheuled: Cell<bool>,
}
impl<T: Debug> Debug for UseState<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self.current_val)
}
}
impl<T: 'static> UseState<T> {
/// Tell the Dioxus Scheduler that we need to be processed
pub fn needs_update(&self) {
if !self.update_scheuled.get() {
self.update_scheuled.set(true);
(self.update_callback)();
}
}
pub fn set(&self, new_val: T) {
*self.wip.borrow_mut() = Some(new_val);
self.needs_update();
}
pub fn get(&self) -> &T {
&self.current_val
}
pub fn get_rc(&self) -> &Rc<T> {
&self.current_val
}
/// Get the current status of the work-in-progress data
pub fn get_wip(&self) -> Ref<Option<T>> {
self.wip.borrow()
}
/// Get the current status of the work-in-progress data
pub fn get_wip_mut(&self) -> RefMut<Option<T>> {
self.wip.borrow_mut()
}
pub fn split(&self) -> (&T, Rc<dyn Fn(T)>) {
(&self.current_val, self.setter())
}
pub fn setter(&self) -> Rc<dyn Fn(T)> {
let slot = self.wip.clone();
let callback = self.update_callback.clone();
Rc::new(move |new| {
callback();
*slot.borrow_mut() = Some(new)
})
}
pub fn wtih(&self, f: impl FnOnce(&mut T)) {
let mut val = self.wip.borrow_mut();
if let Some(inner) = val.as_mut() {
f(inner);
}
}
pub fn for_async(&self) -> UseState<T> {
let UseState {
current_val,
wip,
update_callback,
update_scheuled,
} = self;
UseState {
current_val: current_val.clone(),
wip: wip.clone(),
update_callback: update_callback.clone(),
update_scheuled: update_scheuled.clone(),
}
}
}
impl<T: 'static + ToOwned<Owned = T>> UseState<T> {
/// Gain mutable access to the new value via [`RefMut`].
///
/// If `modify` is called, then the component will re-render.
///
/// This method is only available when the value is a `ToOwned` type.
///
/// Mutable access is derived by calling "ToOwned" (IE cloning) on the current value.
///
/// To get a reference to the current value, use `.get()`
pub fn modify(&self) -> RefMut<T> {
// make sure we get processed
self.needs_update();
// Bring out the new value, cloning if it we need to
// "get_mut" is locked behind "ToOwned" to make it explicit that cloning occurs to use this
RefMut::map(self.wip.borrow_mut(), |slot| {
if slot.is_none() {
*slot = Some(self.current_val.as_ref().to_owned());
}
slot.as_mut().unwrap()
})
}
pub fn inner(self) -> T {
self.current_val.as_ref().to_owned()
}
}
impl<'a, T> std::ops::Deref for UseState<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.get()
}
}
// enable displaty for the handle
impl<'a, T: 'static + Display> std::fmt::Display for UseState<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.current_val)
}
}
impl<'a, V, T: PartialEq<V>> PartialEq<V> for UseState<T> {
fn eq(&self, other: &V) -> bool {
self.get() == other
}
}
impl<'a, O, T: std::ops::Not<Output = O> + Copy> std::ops::Not for UseState<T> {
type Output = O;
fn not(self) -> Self::Output {
!*self.get()
}
}