dioxus/packages/core/old/old.rs

1007 lines
37 KiB
Rust
Raw Normal View History

2021-01-14 07:56:41 +00:00
mod old {
// #![feature(type_alias_impl_trait)]
//
use std::future::Future;
trait Props {}
struct Context<T: Props> {
_props: std::marker::PhantomData<T>,
}
struct VNode {}
// type FC<T: Props> = fn(&mut Context<T>) -> VNode;
// type FC<T: Props> = fn(&mut Context<T>) -> Box<dyn Future<Output = VNode>>;
impl Props for () {}
// async fn some_component(g: &mut Context<()>) -> VNode {
// rsx! {
// <div>
// </div>
// }
// }
// Absolve ourselves of any type data about the context itself
trait ContextApplier {
fn use_hook<O, H>(
&mut self,
initializer: impl FnOnce() -> H,
runner: impl Fn(&mut H) -> O,
tear_down: impl Fn(&mut H),
) -> O;
}
impl<T: Props> ContextApplier for Context<T> {
fn use_hook<O, H>(
&mut self,
initializer: impl FnOnce() -> H,
runner: impl Fn(&mut H) -> O,
tear_down: impl Fn(&mut H),
) -> O {
todo!()
}
}
fn use_state<T>(c: &mut impl ContextApplier, g: impl Fn() -> T) -> T {
c.use_hook(|| {}, |_| {}, |_| {});
g()
}
enum SomeComponent {
Imperative,
Async,
}
// impl<F, G> From<F> for SomeComponent
// where
// F: Fn() -> G,
// G: Future<Output = ()>,
// {
// fn from(_: F) -> Self {
// SomeComponent::Async
// }
// }
// impl From<fn() -> ()> for SomeComponent {
// fn from(_: F) -> Self {
// SomeComponent::Async
// }
// }
// impl<F> Into<SomeComponent> for fn() -> F
// where
// F: Future<Output = ()>,
// {
// fn into(self) -> SomeComponent {
// todo!()
// }
// }
// #[test]
// fn test() {
// let b: SomeComponent = test_comp.into();
// }
// Does this make sense?
// Any component labeled with async can halt its rendering, but won't be able to process updates?
// Or, those updates can still happen virtually, just not propogated into the view?
// async fn test_comp() -> () {
// timer::new(300).await;
// html! {
// <div>
// "hello world!"
// </div>
// }
// }
// fn use_state<T: Props>(c: &mut Context<T>) {}
// async fn another_component(ctx: &mut Context<()>) -> VNode {
// // delay the re-render until component when the future is ready
// // "use_future" loads the promise and provides a value (aka a loadable)
// let value = use_effect(move || async {
// get_value().join(timer::new(300));
// set_value(blah);
// });
// rsx! {
// <Suspense fallback={<div>"Loading..."</div>}>
// <div>
// "hello {name}!"
// </div>
// <Suspense />
// }
// }
/*
Rationale
Today, you can do use_async and do some async operations,
*/
// type FC<P: Props> = fn(&mut Context<P>) -> VNode;
// static Example: FC<()> = |_| async {
// // some async work
// };
// type FC2 = fn() -> impl Future<Output = ()>;
// struct fc<P: Props>(fn(&mut Context<P>) -> G);
// fn blah<P: Props, G: Future<Output = VNode>>(a: fn(&mut Context<P>) -> G) {}
// static Example2: FC2<()> = fc(|_| async { VNode {} });
// static Example2: () = blah(|_: &mut Context<()>| async { VNode {} });
// static Example: FC<()> = |_| {
// let g = async { VNode {} };
// Box::new(g)
// };
// static Example2: = || {};
// type FA<R: Future<Output = i32>> = fn(i32) -> R;
// async fn my_component()
// static MyThing: FA<dyn Future<Output = i32>> = |_| async { 10 };
// type SomeFn = fn() -> ();
// static MyFn: SomeFn = || {};
}
mod old2 {
mod vdom {
//! Virtual DOM implementation
use super::*;
pub struct VDom {
patches: Vec<Patch>,
}
impl VDom {
// fn new(root: ComponentFn) -> Self {
// let scope = Scope::new();
// Self {}
// }
}
}
mod nodes {}
mod patch {}
mod scope {
//! Wrappers around components
pub struct Scope {}
impl Scope {
fn new() -> Self {
Self {}
}
}
}
mod context {}
struct EventListener {}
struct VNode {
/// key-value pairs of attributes
attributes: Vec<(&'static str, &'static str)>,
/// onclick/onhover/on etc listeners
/// goal is to standardize around a set of cross-platform listeners?
listeners: Vec<EventListener>,
/// Direct children, non arena-allocated
children: Vec<VNode>,
}
enum ElementType {
div,
p,
a,
img,
}
struct ComponentContext {}
type ComponentFn = fn(ctx: &ComponentContext) -> VNode;
enum Patch {}
mod tests {
use super::*;
/// Ensure components can be made from the raw components
#[test]
fn simple_test() {
fn component(ctx: &ComponentContext) -> VNode {
println!("Running component");
VNode {}
}
let dom = VDom::new(component);
}
/// Ensure components can be made from the raw components
#[test]
fn simple_test_closure() {
let component: ComponentFn = |ctx| {
println!("Running component");
VNode {}
};
let dom = VDom::new(component);
}
}
}
2021-02-03 07:26:04 +00:00
mod text {
//! Old methods that clouded the element implementation
//! These all add a dedicated text renderer implementation
mod vnode {
impl From<&str> for VNode {
fn from(other: &str) -> Self {
VNode::text(other)
}
}
impl From<String> for VNode {
fn from(other: String) -> Self {
VNode::text(other.as_str())
}
}
// -----------------------------------------------
// Allow VNodes to be iterated for map-based UI
// -----------------------------------------------
impl IntoIterator for VNode {
type Item = VNode;
// TODO: Is this possible with an array [VNode] instead of a vec?
type IntoIter = ::std::vec::IntoIter<VNode>;
fn into_iter(self) -> Self::IntoIter {
vec![self].into_iter()
}
}
impl Into<::std::vec::IntoIter<VNode>> for VNode {
fn into(self) -> ::std::vec::IntoIter<VNode> {
self.into_iter()
}
}
// -----------------------------------------------
// Allow debug/display adherent to the HTML spec
// -----------------------------------------------
use std::fmt;
impl fmt::Debug for VNode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
VNode::Element(e) => write!(f, "Node::{:?}", e),
VNode::Text(t) => write!(f, "Node::{:?}", t),
VNode::Component(c) => write!(f, "Node::{:?}", c),
}
}
}
// Turn a VNode into an HTML string (delegate impl to variants)
impl fmt::Display for VNode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
VNode::Element(element) => write!(f, "{}", element),
VNode::Text(text) => write!(f, "{}", text),
VNode::Component(c) => write!(f, "{}", c),
}
}
}
}
mod velement {
// -----------------------------------------------
// Allow debug/display adherent to the HTML spec
// -----------------------------------------------
use std::fmt;
impl fmt::Debug for VElement {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Element(<{}>, attrs: {:?}, children: {:?})",
self.tag, self.attrs, self.children,
)
}
}
impl fmt::Display for VElement {
// Turn a VElement and all of it's children (recursively) into an HTML string
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "<{}", self.tag).unwrap();
for (attr, value) in self.attrs.iter() {
write!(f, r#" {}="{}""#, attr, value)?;
}
write!(f, ">")?;
for child in self.children.iter() {
write!(f, "{}", child.to_string())?;
}
if !crate::validation::is_self_closing(&self.tag) {
write!(f, "</{}>", self.tag)?;
}
Ok(())
}
}
}
mod vtext {
// -----------------------------------------------
// Convert from primitives directly into VText
// -----------------------------------------------
impl From<&str> for VText {
fn from(text: &str) -> Self {
VText {
text: text.to_string(),
}
}
}
impl From<String> for VText {
fn from(text: String) -> Self {
VText { text }
}
}
// -----------------------------------------------
// Allow debug/display adherent to the HTML spec
// -----------------------------------------------
use std::fmt;
impl fmt::Debug for VText {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Text({})", self.text)
}
}
// Turn a VText into an HTML string
impl fmt::Display for VText {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.text)
}
}
}
mod iterables {
// TODO @Jon
// Set this up so instead of the view trait, we can just take functions
// Functions with no context should just be rendered
// But functions with a context should be treated as regular components
// impl<V: View> From<Vec<V>> for IterableNodes {
// fn from(other: Vec<V>) -> Self {
// IterableNodes(other.into_iter().map(|it| it.render()).collect())
// }
// }
// impl<V: View> From<&Vec<V>> for IterableNodes {
// fn from(other: &Vec<V>) -> Self {
// IterableNodes(other.iter().map(|it| it.render()).collect())
// }
// }
// impl<V: View> From<&[V]> for IterableNodes {
// fn from(other: &[V]) -> Self {
// IterableNodes(other.iter().map(|it| it.render()).collect())
// }
// }
impl From<&str> for IterableNodes {
fn from(other: &str) -> Self {
IterableNodes(vec![VNode::text(other)])
}
}
impl From<String> for IterableNodes {
fn from(other: String) -> Self {
IterableNodes(vec![VNode::text(other.as_str())])
}
}
}
mod tests {
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn self_closing_tag_to_string() {
let node = VNode::element("br");
// No </br> since self closing tag
assert_eq!(&node.to_string(), "<br>");
}
#[test]
fn to_string() {
let mut node = VNode::Element(VElement::new("div"));
node.as_velement_mut()
.unwrap()
.attrs
.insert("id".into(), "some-id".into());
let mut child = VNode::Element(VElement::new("span"));
let mut text = VNode::Text(VText::new("Hello world"));
child.as_velement_mut().unwrap().children.push(text);
node.as_velement_mut().unwrap().children.push(child);
let expected = r#"<div id="some-id"><span>Hello world</span></div>"#;
assert_eq!(node.to_string(), expected);
}
}
}
mod ddiff {
/// The diffing algorithm to compare two VNode trees and generate a list of patches to update the VDom.
/// Currently, using an index-based patching algorithm
///
pub mod diff {
use super::*;
use crate::nodes::{VNode, VText};
use std::cmp::min;
use std::collections::HashMap;
use std::mem;
// pub use apply_patches::patch;
/// A Patch encodes an operation that modifies a real DOM element.
///
/// To update the real DOM that a user sees you'll want to first diff your
/// old virtual dom and new virtual dom.
///
/// This diff operation will generate `Vec<Patch>` with zero or more patches that, when
/// applied to your real DOM, will make your real DOM look like your new virtual dom.
///
/// Each Patch has a u32 node index that helps us identify the real DOM node that it applies to.
///
/// Our old virtual dom's nodes are indexed depth first, as shown in this illustration
/// (0 being the root node, 1 being it's first child, 2 being it's first child's first child).
///
/// ```text
/// .─.
/// ( 0 )
/// `┬'
/// ┌────┴──────┐
/// │ │
/// ▼ ▼
/// .─. .─.
/// ( 1 ) ( 4 )
/// `┬' `─'
/// ┌────┴───┐ │
/// │ │ ├─────┬─────┐
/// ▼ ▼ │ │ │
/// .─. .─. ▼ ▼ ▼
/// ( 2 ) ( 3 ) .─. .─. .─.
/// `─' `─' ( 5 ) ( 6 ) ( 7 )
/// `─' `─' `─'
/// ```
///
/// The patching process is tested in a real browser in crates/virtual-dom-rs/tests/diff_patch.rs
#[derive(PartialEq)]
pub enum Patch<'a> {
/// Append a vector of child nodes to a parent node id.
AppendChildren(NodeIdx, Vec<&'a VNode>),
/// For a `node_i32`, remove all children besides the first `len`
TruncateChildren(NodeIdx, usize),
/// Replace a node with another node. This typically happens when a node's tag changes.
/// ex: <div> becomes <span>
Replace(NodeIdx, &'a VNode),
/// Add attributes that the new node has that the old node does not
AddAttributes(NodeIdx, HashMap<&'a str, &'a str>),
/// Remove attributes that the old node had that the new node doesn't
RemoveAttributes(NodeIdx, Vec<&'a str>),
/// Change the text of a Text node.
ChangeText(NodeIdx, &'a VText),
}
type NodeIdx = usize;
impl<'a> Patch<'a> {
/// Every Patch is meant to be applied to a specific node within the DOM. Get the
/// index of the DOM node that this patch should apply to. DOM nodes are indexed
/// depth first with the root node in the tree having index 0.
pub fn node_idx(&self) -> usize {
match self {
Patch::AppendChildren(node_idx, _) => *node_idx,
Patch::TruncateChildren(node_idx, _) => *node_idx,
Patch::Replace(node_idx, _) => *node_idx,
Patch::AddAttributes(node_idx, _) => *node_idx,
Patch::RemoveAttributes(node_idx, _) => *node_idx,
Patch::ChangeText(node_idx, _) => *node_idx,
}
}
}
/// Given two VNode's generate Patch's that would turn the old virtual node's
/// real DOM node equivalent into the new VNode's real DOM node equivalent.
pub fn diff_vnodes<'a>(old: &'a VNode, new: &'a VNode) -> Vec<Patch<'a>> {
diff_recursive(&old, &new, &mut 0)
}
fn diff_recursive<'a, 'b>(
old: &'a VNode,
new: &'a VNode,
cur_node_idx: &'b mut usize,
) -> Vec<Patch<'a>> {
let mut patches = vec![];
let mut replace = false;
// Different enum variants, replace!
// VNodes are of different types, and therefore will cause a re-render.
// TODO: Handle previously-mounted children so they don't get re-mounted
if mem::discriminant(old) != mem::discriminant(new) {
replace = true;
}
if let (VNode::Element(old_element), VNode::Element(new_element)) = (old, new) {
// Replace if there are different element tags
if old_element.tag != new_element.tag {
replace = true;
}
// Replace if two elements have different keys
// TODO: More robust key support. This is just an early stopgap to allow you to force replace
// an element... say if it's event changed. Just change the key name for now.
// In the future we want keys to be used to create a Patch::ReOrder to re-order siblings
if old_element.attrs.get("key").is_some()
&& old_element.attrs.get("key") != new_element.attrs.get("key")
{
replace = true;
}
}
// Handle replacing of a node
if replace {
patches.push(Patch::Replace(*cur_node_idx, &new));
if let VNode::Element(old_element_node) = old {
for child in old_element_node.children.iter() {
increment_node_idx_for_children(child, cur_node_idx);
}
}
return patches;
}
// The following comparison can only contain identical variants, other
// cases have already been handled above by comparing variant
// discriminants.
match (old, new) {
// We're comparing two text nodes
(VNode::Text(old_text), VNode::Text(new_text)) => {
if old_text != new_text {
patches.push(Patch::ChangeText(*cur_node_idx, &new_text));
}
}
// We're comparing two element nodes
(VNode::Element(old_element), VNode::Element(new_element)) => {
let mut add_attributes: HashMap<&str, &str> = HashMap::new();
let mut remove_attributes: Vec<&str> = vec![];
// TODO: -> split out into func
for (new_attr_name, new_attr_val) in new_element.attrs.iter() {
match old_element.attrs.get(new_attr_name) {
Some(ref old_attr_val) => {
if old_attr_val != &new_attr_val {
add_attributes.insert(new_attr_name, new_attr_val);
}
}
None => {
add_attributes.insert(new_attr_name, new_attr_val);
}
};
}
// TODO: -> split out into func
for (old_attr_name, old_attr_val) in old_element.attrs.iter() {
if add_attributes.get(&old_attr_name[..]).is_some() {
continue;
};
match new_element.attrs.get(old_attr_name) {
Some(ref new_attr_val) => {
if new_attr_val != &old_attr_val {
remove_attributes.push(old_attr_name);
}
}
None => {
remove_attributes.push(old_attr_name);
}
};
}
if add_attributes.len() > 0 {
patches.push(Patch::AddAttributes(*cur_node_idx, add_attributes));
}
if remove_attributes.len() > 0 {
patches.push(Patch::RemoveAttributes(*cur_node_idx, remove_attributes));
}
let old_child_count = old_element.children.len();
let new_child_count = new_element.children.len();
if new_child_count > old_child_count {
let append_patch: Vec<&'a VNode> =
new_element.children[old_child_count..].iter().collect();
patches.push(Patch::AppendChildren(*cur_node_idx, append_patch))
}
if new_child_count < old_child_count {
patches.push(Patch::TruncateChildren(*cur_node_idx, new_child_count))
}
let min_count = min(old_child_count, new_child_count);
for index in 0..min_count {
*cur_node_idx = *cur_node_idx + 1;
let old_child = &old_element.children[index];
let new_child = &new_element.children[index];
patches.append(&mut diff_recursive(
&old_child,
&new_child,
cur_node_idx,
))
}
if new_child_count < old_child_count {
for child in old_element.children[min_count..].iter() {
increment_node_idx_for_children(child, cur_node_idx);
}
}
}
(VNode::Text(_), VNode::Element(_)) | (VNode::Element(_), VNode::Text(_)) => {
unreachable!(
"Unequal variant discriminants should already have been handled"
);
}
_ => todo!("Diffing Not yet implemented for all node types"),
};
// new_root.create_element()
patches
}
fn increment_node_idx_for_children<'a, 'b>(
old: &'a VNode,
cur_node_idx: &'b mut usize,
) {
*cur_node_idx += 1;
if let VNode::Element(element_node) = old {
for child in element_node.children.iter() {
increment_node_idx_for_children(&child, cur_node_idx);
}
}
}
// #[cfg(test)]
// mod tests {
// use super::*;
// use crate::prelude::*;
// type VirtualNode = VNode;
// /// Test that we generate the right Vec<Patch> for some start and end virtual dom.
// pub struct DiffTestCase<'a> {
// // ex: "Patching root level nodes works"
// pub description: &'static str,
// // ex: html! { <div> </div> }
// pub old: VNode,
// // ex: html! { <strong> </strong> }
// pub new: VNode,
// // ex: vec![Patch::Replace(0, &html! { <strong></strong> })],
// pub expected: Vec<Patch<'a>>,
// }
// impl<'a> DiffTestCase<'a> {
// pub fn test(&self) {
// // ex: vec![Patch::Replace(0, &html! { <strong></strong> })],
// let patches = diff_vnodes(&self.old, &self.new);
// assert_eq!(patches, self.expected, "{}", self.description);
// }
// }
// use super::*;
// use crate::nodes::{VNode, VText};
// use std::collections::HashMap;
// #[test]
// fn replace_node() {
// DiffTestCase {
// description: "Replace the root if the tag changed",
// old: html! { <div> </div> },
// new: html! { <span> </span> },
// expected: vec![Patch::Replace(0, &html! { <span></span> })],
// }
// .test();
// DiffTestCase {
// description: "Replace a child node",
// old: html! { <div> <b></b> </div> },
// new: html! { <div> <strong></strong> </div> },
// expected: vec![Patch::Replace(1, &html! { <strong></strong> })],
// }
// .test();
// DiffTestCase {
// description: "Replace node with a child",
// old: html! { <div> <b>1</b> <b></b> </div> },
// new: html! { <div> <i>1</i> <i></i> </div>},
// expected: vec![
// Patch::Replace(1, &html! { <i>1</i> }),
// Patch::Replace(3, &html! { <i></i> }),
// ], //required to check correct index
// }
// .test();
// }
// #[test]
// fn add_children() {
// DiffTestCase {
// description: "Added a new node to the root node",
// old: html! { <div> <b></b> </div> },
// new: html! { <div> <b></b> <span></span> </div> },
// expected: vec![Patch::AppendChildren(0, vec![&html! { <span></span> }])],
// }
// .test();
// }
// #[test]
// fn remove_nodes() {
// DiffTestCase {
// description: "Remove all child nodes at and after child sibling index 1",
// old: html! { <div> <b></b> <span></span> </div> },
// new: html! { <div> </div> },
// expected: vec![Patch::TruncateChildren(0, 0)],
// }
// .test();
// DiffTestCase {
// description: "Remove a child and a grandchild node",
// old: html! {
// <div>
// <span>
// <b></b>
// // This `i` tag will get removed
// <i></i>
// </span>
// // This `strong` tag will get removed
// <strong></strong>
// </div> },
// new: html! {
// <div>
// <span>
// <b></b>
// </span>
// </div> },
// expected: vec![Patch::TruncateChildren(0, 1), Patch::TruncateChildren(1, 1)],
// }
// .test();
// DiffTestCase {
// description: "Removing child and change next node after parent",
// old: html! { <div> <b> <i></i> <i></i> </b> <b></b> </div> },
// new: html! { <div> <b> <i></i> </b> <i></i> </div>},
// expected: vec![
// Patch::TruncateChildren(1, 1),
// Patch::Replace(4, &html! { <i></i> }),
// ], //required to check correct index
// }
// .test();
// }
// #[test]
// fn add_attributes() {
// let mut attributes = HashMap::new();
// attributes.insert("id", "hello");
// DiffTestCase {
// old: html! { <div> </div> },
// new: html! { <div id="hello"> </div> },
// expected: vec![Patch::AddAttributes(0, attributes.clone())],
// description: "Add attributes",
// }
// .test();
// DiffTestCase {
// old: html! { <div id="foobar"> </div> },
// new: html! { <div id="hello"> </div> },
// expected: vec![Patch::AddAttributes(0, attributes)],
// description: "Change attribute",
// }
// .test();
// }
// #[test]
// fn remove_attributes() {
// DiffTestCase {
// old: html! { <div id="hey-there"></div> },
// new: html! { <div> </div> },
// expected: vec![Patch::RemoveAttributes(0, vec!["id"])],
// description: "Add attributes",
// }
// .test();
// }
// #[test]
// fn change_attribute() {
// let mut attributes = HashMap::new();
// attributes.insert("id", "changed");
// DiffTestCase {
// description: "Add attributes",
// old: html! { <div id="hey-there"></div> },
// new: html! { <div id="changed"> </div> },
// expected: vec![Patch::AddAttributes(0, attributes)],
// }
// .test();
// }
// #[test]
// fn replace_text_node() {
// DiffTestCase {
// description: "Replace text node",
// old: html! { Old },
// new: html! { New },
// expected: vec![Patch::ChangeText(0, &VText::new("New"))],
// }
// .test();
// }
// // Initially motivated by having two elements where all that changed was an event listener
// // because right now we don't patch event listeners. So.. until we have a solution
// // for that we can just give them different keys to force a replace.
// #[test]
// fn replace_if_different_keys() {
// DiffTestCase {
// description: "If two nodes have different keys always generate a full replace.",
// old: html! { <div key="1"> </div> },
// new: html! { <div key="2"> </div> },
// expected: vec![Patch::Replace(0, &html! {<div key="2"> </div>})],
// }
// .test()
// }
// // // TODO: Key support
// // #[test]
// // fn reorder_chldren() {
// // let mut attributes = HashMap::new();
// // attributes.insert("class", "foo");
// //
// // let old_children = vec![
// // // old node 0
// // html! { <div key="hello", id="same-id", style="",></div> },
// // // removed
// // html! { <div key="gets-removed",> { "This node gets removed"} </div>},
// // // old node 2
// // html! { <div key="world", class="changed-class",></div>},
// // // removed
// // html! { <div key="this-got-removed",> { "This node gets removed"} </div>},
// // ];
// //
// // let new_children = vec![
// // html! { <div key="world", class="foo",></div> },
// // html! { <div key="new",> </div>},
// // html! { <div key="hello", id="same-id",></div>},
// // ];
// //
// // test(DiffTestCase {
// // old: html! { <div> { old_children } </div> },
// // new: html! { <div> { new_children } </div> },
// // expected: vec![
// // // TODO: Come up with the patch structure for keyed nodes..
// // // keying should only work if all children have keys..
// // ],
// // description: "Add attributes",
// // })
// // }
// }
}
}
mod vcomponent {
// -----------------------------------------------
// Allow debug/display adherent to the HTML spec
// -----------------------------------------------
impl fmt::Debug for VComponent {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// TODO: @JON Implement how components should be formatted when spit out to html
// It probably can't be as straightforward as renderinng their VNodes
// It _could_ be, but we can't really implement that directly
// Instead, we should drop a vnode labeled with the component id/key
// write!(
// f,
// "Element(<{}>, attrs: {:?}, children: {:?})",
// self.tag, self.attrs, self.children,
// )
Ok(())
}
}
impl fmt::Display for VComponent {
// Turn a VElement and all of it's children (recursively) into an HTML string
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// write!(f, "<{}", self.tag).unwrap();
// for (attr, value) in self.attrs.iter() {
// write!(f, r#" {}="{}""#, attr, value)?;
// }
// write!(f, ">")?;
// for child in self.children.iter() {
// write!(f, "{}", child.to_string())?;
// }
// if !crate::validation::is_self_closing(&self.tag) {
// write!(f, "</{}>", self.tag)?;
// }
Ok(())
}
}
}
}
// pub mod iterables {
// use super::*;
// /// Used by the html! macro for all braced child nodes so that we can use any type
// /// that implements Into<IterableNodes>
// ///
// /// html! { <div> { nodes } </div> }
// ///
// /// nodes can be a String .. VNode .. Vec<VNode> ... etc
// pub struct IterableNodes(Vec<VNode>);
// impl IterableNodes {
// /// Retrieve the first node mutably
// pub fn first(&mut self) -> &mut VNode {
// self.0.first_mut().unwrap()
// }
// /// Retrieve the last node mutably
// pub fn last(&mut self) -> &mut VNode {
// self.0.last_mut().unwrap()
// }
// }
// impl IntoIterator for IterableNodes {
// type Item = VNode;
// // TODO: Is this possible with an array [VNode] instead of a vec?
// type IntoIter = ::std::vec::IntoIter<VNode>;
// fn into_iter(self) -> Self::IntoIter {
// self.0.into_iter()
// }
// }
// impl From<VNode> for IterableNodes {
// fn from(other: VNode) -> Self {
// IterableNodes(vec![other])
// }
// }
// impl From<Vec<VNode>> for IterableNodes {
// fn from(other: Vec<VNode>) -> Self {
// IterableNodes(other)
// }
// }
// }