dioxus/packages/hooks/src/usestate.rs

256 lines
7.4 KiB
Rust
Raw Normal View History

2021-07-09 15:54:07 +00:00
use dioxus_core::prelude::Context;
use std::{
cell::{Cell, Ref, RefCell, RefMut},
fmt::Display,
2021-07-21 21:05:48 +00:00
ops::{Deref, DerefMut, Not},
2021-07-09 15:54:07 +00:00
rc::Rc,
};
/// Store state between component renders!
///
2021-07-21 21:05:48 +00:00
/// ## The "Pinnacle" of state hooks
2021-07-09 15:54:07 +00:00
///
/// The Dioxus version of `useState` is the "king daddy" of state management. It allows you to ergonomically store and
/// modify state between component renders. When the state is updated, the component will re-render.
///
/// Dioxus' use_state basically wraps a RefCell with helper methods and integrates it with the VirtualDOM update system.
///
/// [`use_state`] exposes a few helper methods to modify the underlying state:
/// - `.set(new)` allows you to override the "work in progress" value with a new value
/// - `.get_mut()` allows you to modify the WIP value
/// - `.get_wip()` allows you to access the WIP value
/// - `.deref()` provides the previous value (often done implicitly, though a manual dereference with `*` might be required)
///
/// Additionally, a ton of std::ops traits are implemented for the `UseState` wrapper, meaning any mutative type operations
/// will automatically be called on the WIP value.
///
/// ## Combinators
///
/// On top of the methods to set/get state, `use_state` also supports fancy combinators to extend its functionality:
/// - `.classic()` and `.split()` convert the hook into the classic React-style hook
/// ```rust
/// let (state, set_state) = use_state(cx, || 10).split()
/// ```
///
2021-07-09 15:54:07 +00:00
///
/// Usage:
/// ```ignore
/// const Example: FC<()> = |cx| {
/// let counter = use_state(cx, || 0);
/// let increment = |_| counter += 1;
/// let decrement = |_| counter += 1;
///
/// html! {
/// <div>
/// <h1>"Counter: {counter}" </h1>
/// <button onclick={increment}> "Increment" </button>
/// <button onclick={decrement}> "Decrement" </button>
/// </div>
/// }
/// }
/// ```
pub fn use_state<'a, 'c, T: 'static, F: FnOnce() -> T, P>(
cx: Context<'a, P>,
initial_state_fn: F,
) -> UseState<T> {
cx.use_hook(
2021-07-15 03:18:02 +00:00
move |_| UseStateInner {
2021-07-09 15:54:07 +00:00
current_val: initial_state_fn(),
callback: cx.schedule_update(),
wip: Rc::new(RefCell::new(None)),
2021-07-09 15:54:07 +00:00
update_scheuled: Cell::new(false),
},
move |hook| {
hook.update_scheuled.set(false);
let mut new_val = hook.wip.borrow_mut();
if new_val.is_some() {
hook.current_val = new_val.take().unwrap();
}
UseState { inner: &*hook }
},
|_| {},
)
}
struct UseStateInner<T: 'static> {
current_val: T,
update_scheuled: Cell<bool>,
callback: Rc<dyn Fn()>,
wip: Rc<RefCell<Option<T>>>,
2021-07-09 15:54:07 +00:00
}
pub struct UseState<'a, T: 'static> {
inner: &'a UseStateInner<T>,
}
impl<T> Copy for UseState<'_, T> {}
impl<'a, T> Clone for UseState<'a, T>
where
T: 'static,
{
fn clone(&self) -> Self {
UseState { inner: self.inner }
}
}
impl<'a, T: 'static> UseState<'a, T> {
/// Tell the Dioxus Scheduler that we need to be processed
pub fn needs_update(&self) {
if !self.inner.update_scheuled.get() {
self.inner.update_scheuled.set(true);
(self.inner.callback)();
}
}
pub fn set(&self, new_val: T) {
self.needs_update();
*self.inner.wip.borrow_mut() = Some(new_val);
}
2021-07-20 23:03:49 +00:00
pub fn get(&self) -> &'a T {
2021-07-09 15:54:07 +00:00
&self.inner.current_val
}
/// Get the current status of the work-in-progress data
pub fn get_wip(&self) -> Ref<Option<T>> {
self.inner.wip.borrow()
}
pub fn classic(self) -> (&'a T, &'a Rc<dyn Fn(T)>) {
2021-07-09 16:47:41 +00:00
todo!()
2021-07-09 15:54:07 +00:00
}
pub fn setter(&self) -> Rc<dyn Fn(T)> {
let slot = self.inner.wip.clone();
Rc::new(move |new| *slot.borrow_mut() = Some(new))
}
2021-07-16 20:11:25 +00:00
pub fn for_async(&self) -> AsyncUseState<T> {
AsyncUseState {
wip: self.inner.wip.clone(),
}
}
2021-07-21 21:05:48 +00:00
pub fn split_for_async(&'a self) -> (&'a Self, AsyncUseState<T>) {
(self, self.for_async())
}
2021-07-09 15:54:07 +00:00
}
2021-07-16 20:11:25 +00:00
2021-07-09 15:54:07 +00:00
impl<'a, T: 'static + ToOwned<Owned = T>> UseState<'a, T> {
pub fn get_mut(self) -> RefMut<'a, T> {
// make sure we get processed
self.needs_update();
// Bring out the new value, cloning if it we need to
// "get_mut" is locked behind "ToOwned" to make it explicit that cloning occurs to use this
RefMut::map(self.inner.wip.borrow_mut(), |slot| {
if slot.is_none() {
*slot = Some(self.inner.current_val.to_owned());
}
slot.as_mut().unwrap()
})
}
}
2021-07-21 21:05:48 +00:00
impl<'a, T> std::ops::Deref for UseState<'a, T> {
2021-07-09 15:54:07 +00:00
type Target = T;
fn deref(&self) -> &Self::Target {
2021-07-21 21:05:48 +00:00
self.get()
2021-07-09 15:54:07 +00:00
}
}
2021-07-21 21:05:48 +00:00
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
2021-07-16 04:27:06 +00:00
2021-07-09 15:54:07 +00:00
impl<'a, T: Copy + Add<T, Output = T>> Add<T> for UseState<'a, T> {
type Output = T;
fn add(self, rhs: T) -> Self::Output {
self.inner.current_val.add(rhs)
}
}
impl<'a, T: Copy + Add<T, Output = T>> AddAssign<T> for UseState<'a, T> {
fn add_assign(&mut self, rhs: T) {
self.set(self.inner.current_val.add(rhs));
}
}
impl<'a, T: Copy + Sub<T, Output = T>> Sub<T> for UseState<'a, T> {
type Output = T;
fn sub(self, rhs: T) -> Self::Output {
self.inner.current_val.sub(rhs)
}
}
impl<'a, T: Copy + Sub<T, Output = T>> SubAssign<T> for UseState<'a, T> {
fn sub_assign(&mut self, rhs: T) {
self.set(self.inner.current_val.sub(rhs));
}
}
2021-07-16 20:11:25 +00:00
/// MUL
impl<'a, T: Copy + Mul<T, Output = T>> Mul<T> for UseState<'a, T> {
type Output = T;
fn mul(self, rhs: T) -> Self::Output {
self.inner.current_val.mul(rhs)
}
}
impl<'a, T: Copy + Mul<T, Output = T>> MulAssign<T> for UseState<'a, T> {
fn mul_assign(&mut self, rhs: T) {
self.set(self.inner.current_val.mul(rhs));
}
}
/// DIV
impl<'a, T: Copy + Div<T, Output = T>> Div<T> for UseState<'a, T> {
type Output = T;
fn div(self, rhs: T) -> Self::Output {
self.inner.current_val.div(rhs)
}
}
impl<'a, T: Copy + Div<T, Output = T>> DivAssign<T> for UseState<'a, T> {
fn div_assign(&mut self, rhs: T) {
self.set(self.inner.current_val.div(rhs));
}
}
2021-07-21 21:05:48 +00:00
impl<'a, T: PartialEq<T>> PartialEq<T> for UseState<'a, T> {
fn eq(&self, other: &T) -> bool {
self.get() == other
}
}
impl<'a, O, T: Not<Output = O> + Copy> Not for UseState<'a, T> {
type Output = O;
fn not(self) -> Self::Output {
!*self.get()
}
}
2021-07-16 20:11:25 +00:00
2021-07-09 15:54:07 +00:00
// enable displaty for the handle
impl<'a, T: 'static + Display> std::fmt::Display for UseState<'a, T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.inner.current_val)
}
}
2021-07-16 20:11:25 +00:00
/// A less ergonmic but still capable form of use_state that's valid for `static lifetime
pub struct AsyncUseState<T: 'static> {
wip: Rc<RefCell<Option<T>>>,
}
impl<T: ToOwned> AsyncUseState<T> {
pub fn get_mut<'a>(&'a self) -> RefMut<'a, T> {
// make sure we get processed
// self.needs_update();
// Bring out the new value, cloning if it we need to
// "get_mut" is locked behind "ToOwned" to make it explicit that cloning occurs to use this
RefMut::map(self.wip.borrow_mut(), |slot| {
//
slot.as_mut().unwrap()
})
}
2021-07-21 21:05:48 +00:00
pub fn set(&mut self, val: T) {
*self.wip.borrow_mut() = Some(val);
}
2021-07-16 20:11:25 +00:00
}