coreutils/tests/common/util.rs
Alex Lyon 23f6dbf2d3
Merge pull request #1306 from rinconjc/1235
tests: untrimmed stdout assertion (fix #1235)
2019-04-05 22:22:18 -07:00

628 lines
22 KiB
Rust
Executable file

#![allow(dead_code)]
extern crate tempdir;
use std::env;
use std::fs::{self, File, OpenOptions};
use std::io::{Read, Result, Write};
#[cfg(unix)]
use std::os::unix::fs::{symlink as symlink_dir, symlink as symlink_file};
#[cfg(windows)]
use std::os::windows::fs::{symlink_dir, symlink_file};
use std::path::{Path, PathBuf};
use std::process::{Child, Command, Stdio};
use std::str::from_utf8;
use std::ffi::OsStr;
use std::rc::Rc;
use std::thread::sleep;
use std::time::Duration;
use self::tempdir::TempDir;
#[cfg(windows)]
static PROGNAME: &'static str = "uutils.exe";
#[cfg(not(windows))]
static PROGNAME: &'static str = "uutils";
static TESTS_DIR: &'static str = "tests";
static FIXTURES_DIR: &'static str = "fixtures";
static ALREADY_RUN: &'static str =
" you have already run this UCommand, if you want to run \
another command in the same test, use TestScenario::new instead of \
testing();";
static MULTIPLE_STDIN_MEANINGLESS: &'static str = "Ucommand is designed around a typical use case of: provide args and input stream -> spawn process -> block until completion -> return output streams. For verifying that a particular section of the input stream is what causes a particular behavior, use the Command type directly.";
fn read_scenario_fixture<S: AsRef<OsStr>>(tmpd: &Option<Rc<TempDir>>, file_rel_path: S) -> String {
let tmpdir_path = tmpd.as_ref().unwrap().as_ref().path();
AtPath::new(tmpdir_path).read(file_rel_path.as_ref().to_str().unwrap())
}
pub fn repeat_str(s: &str, n: u32) -> String {
let mut repeated = String::new();
for _ in 0..n {
repeated.push_str(s);
}
repeated
}
/// A command result is the outputs of a command (streams and status code)
/// within a struct which has convenience assertion functions about those outputs
pub struct CmdResult {
//tmpd is used for convenience functions for asserts against fixtures
tmpd: Option<Rc<TempDir>>,
pub success: bool,
pub stdout: String,
pub stderr: String,
}
impl CmdResult {
/// asserts that the command resulted in a success (zero) status code
pub fn success(&self) -> Box<&CmdResult> {
assert!(self.success);
Box::new(self)
}
/// asserts that the command resulted in a failure (non-zero) status code
pub fn failure(&self) -> Box<&CmdResult> {
assert!(!self.success);
Box::new(self)
}
/// asserts that the command resulted in empty (zero-length) stderr stream output
/// generally, it's better to use stdout_only() instead,
/// but you might find yourself using this function if
/// 1. you can not know exactly what stdout will be
/// or 2. you know that stdout will also be empty
pub fn no_stderr(&self) -> Box<&CmdResult> {
assert_eq!("", self.stderr);
Box::new(self)
}
/// asserts that the command resulted in empty (zero-length) stderr stream output
/// unless asserting there was neither stdout or stderr, stderr_only is usually a better choice
/// generally, it's better to use stderr_only() instead,
/// but you might find yourself using this function if
/// 1. you can not know exactly what stderr will be
/// or 2. you know that stderr will also be empty
pub fn no_stdout(&self) -> Box<&CmdResult> {
assert_eq!("", self.stdout);
Box::new(self)
}
/// asserts that the command resulted in stdout stream output that equals the
/// passed in value, trailing whitespace are kept to force strict comparison (#1235)
/// stdout_only is a better choice unless stderr may or will be non-empty
pub fn stdout_is<T: AsRef<str>>(&self, msg: T) -> Box<&CmdResult> {
assert_eq!(
String::from(msg.as_ref()),
self.stdout
);
Box::new(self)
}
/// like stdout_is(...), but expects the contents of the file at the provided relative path
pub fn stdout_is_fixture<T: AsRef<OsStr>>(&self, file_rel_path: T) -> Box<&CmdResult> {
let contents = read_scenario_fixture(&self.tmpd, file_rel_path);
self.stdout_is(contents)
}
/// asserts that the command resulted in stderr stream output that equals the
/// passed in value, when both are trimmed of trailing whitespace
/// stderr_only is a better choice unless stdout may or will be non-empty
pub fn stderr_is<T: AsRef<str>>(&self, msg: T) -> Box<&CmdResult> {
assert_eq!(
String::from(msg.as_ref()).trim_right(),
self.stderr.trim_right()
);
Box::new(self)
}
/// like stderr_is(...), but expects the contents of the file at the provided relative path
pub fn stderr_is_fixture<T: AsRef<OsStr>>(&self, file_rel_path: T) -> Box<&CmdResult> {
let contents = read_scenario_fixture(&self.tmpd, file_rel_path);
self.stderr_is(contents)
}
/// asserts that
/// 1. the command resulted in stdout stream output that equals the
/// passed in value, when both are trimmed of trailing whitespace
/// and 2. the command resulted in empty (zero-length) stderr stream output
pub fn stdout_only<T: AsRef<str>>(&self, msg: T) -> Box<&CmdResult> {
self.no_stderr().stdout_is(msg)
}
/// like stdout_only(...), but expects the contents of the file at the provided relative path
pub fn stdout_only_fixture<T: AsRef<OsStr>>(&self, file_rel_path: T) -> Box<&CmdResult> {
let contents = read_scenario_fixture(&self.tmpd, file_rel_path);
self.stdout_only(contents)
}
/// asserts that
/// 1. the command resulted in stderr stream output that equals the
/// passed in value, when both are trimmed of trailing whitespace
/// and 2. the command resulted in empty (zero-length) stdout stream output
pub fn stderr_only<T: AsRef<str>>(&self, msg: T) -> Box<&CmdResult> {
self.no_stdout().stderr_is(msg)
}
/// like stderr_only(...), but expects the contents of the file at the provided relative path
pub fn stderr_only_fixture<T: AsRef<OsStr>>(&self, file_rel_path: T) -> Box<&CmdResult> {
let contents = read_scenario_fixture(&self.tmpd, file_rel_path);
self.stderr_only(contents)
}
pub fn fails_silently(&self) -> Box<&CmdResult> {
assert!(!self.success);
assert_eq!("", self.stderr);
Box::new(self)
}
}
pub fn log_info<T: AsRef<str>, U: AsRef<str>>(msg: T, par: U) {
println!("{}: {}", msg.as_ref(), par.as_ref());
}
pub fn recursive_copy(src: &Path, dest: &Path) -> Result<()> {
if try!(fs::metadata(src)).is_dir() {
for entry in try!(fs::read_dir(src)) {
let entry = try!(entry);
let mut new_dest = PathBuf::from(dest);
new_dest.push(entry.file_name());
if try!(fs::metadata(entry.path())).is_dir() {
try!(fs::create_dir(&new_dest));
try!(recursive_copy(&entry.path(), &new_dest));
} else {
try!(fs::copy(&entry.path(), new_dest));
}
}
}
Ok(())
}
pub fn get_root_path() -> &'static str {
if cfg!(windows) {
"C:\\"
} else {
"/"
}
}
/// Object-oriented path struct that represents and operates on
/// paths relative to the directory it was constructed for.
#[derive(Clone)]
pub struct AtPath {
pub subdir: PathBuf,
}
impl AtPath {
pub fn new(subdir: &Path) -> AtPath {
AtPath {
subdir: PathBuf::from(subdir),
}
}
pub fn as_string(&self) -> String {
self.subdir.to_str().unwrap().to_owned()
}
pub fn plus(&self, name: &str) -> PathBuf {
let mut pathbuf = self.subdir.clone();
pathbuf.push(name);
pathbuf
}
pub fn plus_as_string(&self, name: &str) -> String {
String::from(self.plus(name).to_str().unwrap())
}
fn minus(&self, name: &str) -> PathBuf {
let prefixed = PathBuf::from(name);
if prefixed.starts_with(&self.subdir) {
let mut unprefixed = PathBuf::new();
for component in prefixed.components().skip(self.subdir.components().count()) {
unprefixed.push(component.as_os_str().to_str().unwrap());
}
unprefixed
} else {
prefixed
}
}
pub fn minus_as_string(&self, name: &str) -> String {
String::from(self.minus(name).to_str().unwrap())
}
pub fn open(&self, name: &str) -> File {
log_info("open", self.plus_as_string(name));
File::open(self.plus(name)).unwrap()
}
pub fn read(&self, name: &str) -> String {
let mut f = self.open(name);
let mut contents = String::new();
let _ = f.read_to_string(&mut contents);
contents
}
pub fn write(&self, name: &str, contents: &str) {
let mut f = self.open(name);
let _ = f.write(contents.as_bytes());
}
pub fn append(&self, name: &str, contents: &str) {
log_info("open(append)", self.plus_as_string(name));
let mut f = OpenOptions::new()
.write(true)
.append(true)
.open(self.plus(name))
.unwrap();
let _ = f.write(contents.as_bytes());
}
pub fn mkdir(&self, dir: &str) {
log_info("mkdir", self.plus_as_string(dir));
fs::create_dir(&self.plus(dir)).unwrap();
}
pub fn mkdir_all(&self, dir: &str) {
log_info("mkdir_all", self.plus_as_string(dir));
fs::create_dir_all(self.plus(dir)).unwrap();
}
pub fn make_file(&self, name: &str) -> File {
match File::create(&self.plus(name)) {
Ok(f) => f,
Err(e) => panic!("{}", e),
}
}
pub fn touch(&self, file: &str) {
log_info("touch", self.plus_as_string(file));
File::create(&self.plus(file)).unwrap();
}
pub fn symlink_file(&self, src: &str, dst: &str) {
log_info(
"symlink",
&format!("{},{}", self.plus_as_string(src), self.plus_as_string(dst)),
);
symlink_file(&self.plus(src), &self.plus(dst)).unwrap();
}
pub fn symlink_dir(&self, src: &str, dst: &str) {
log_info(
"symlink",
&format!("{},{}", self.plus_as_string(src), self.plus_as_string(dst)),
);
symlink_dir(&self.plus(src), &self.plus(dst)).unwrap();
}
pub fn is_symlink(&self, path: &str) -> bool {
log_info("is_symlink", self.plus_as_string(path));
match fs::symlink_metadata(&self.plus(path)) {
Ok(m) => m.file_type().is_symlink(),
Err(_) => false,
}
}
pub fn resolve_link(&self, path: &str) -> String {
log_info("resolve_link", self.plus_as_string(path));
match fs::read_link(&self.plus(path)) {
Ok(p) => self.minus_as_string(p.to_str().unwrap()),
Err(_) => "".to_string(),
}
}
pub fn symlink_metadata(&self, path: &str) -> fs::Metadata {
match fs::symlink_metadata(&self.plus(path)) {
Ok(m) => m,
Err(e) => panic!("{}", e),
}
}
pub fn metadata(&self, path: &str) -> fs::Metadata {
match fs::metadata(&self.plus(path)) {
Ok(m) => m,
Err(e) => panic!("{}", e),
}
}
pub fn file_exists(&self, path: &str) -> bool {
match fs::metadata(&self.plus(path)) {
Ok(m) => m.is_file(),
Err(_) => false,
}
}
pub fn dir_exists(&self, path: &str) -> bool {
match fs::metadata(&self.plus(path)) {
Ok(m) => m.is_dir(),
Err(_) => false,
}
}
pub fn cleanup(&self, path: &'static str) {
let p = &self.plus(path);
if let Ok(m) = fs::metadata(p) {
if m.is_file() {
fs::remove_file(&p).unwrap();
} else {
fs::remove_dir(&p).unwrap();
}
}
}
pub fn root_dir(&self) -> String {
log_info("current_directory", "");
self.subdir.to_str().unwrap().to_owned()
}
pub fn root_dir_resolved(&self) -> String {
log_info("current_directory_resolved", "");
let s = self.subdir
.canonicalize()
.unwrap()
.to_str()
.unwrap()
.to_owned();
// Due to canonicalize()'s use of GetFinalPathNameByHandleW() on Windows, the resolved path
// starts with '\\?\' to extend the limit of a given path to 32,767 wide characters.
//
// To address this issue, we remove this prepended string if available.
//
// Source:
// http://stackoverflow.com/questions/31439011/getfinalpathnamebyhandle-without-prepended
let prefix = "\\\\?\\";
if s.starts_with(prefix) {
String::from(&s[prefix.len()..])
} else {
s
}
}
}
/// An environment for running a single uutils test case, serves three functions:
/// 1. centralizes logic for locating the uutils binary and calling the utility
/// 2. provides a temporary directory for the test case
/// 3. copies over fixtures for the utility to the temporary directory
pub struct TestScenario {
bin_path: PathBuf,
util_name: String,
pub fixtures: AtPath,
tmpd: Rc<TempDir>,
}
impl TestScenario {
pub fn new(util_name: &str) -> TestScenario {
let tmpd = Rc::new(TempDir::new("uutils").unwrap());
let ts = TestScenario {
bin_path: {
// Instead of hardcoding the path relative to the current
// directory, use Cargo's OUT_DIR to find path to executable.
// This allows tests to be run using profiles other than debug.
let target_dir = path_concat!(env!("OUT_DIR"), "..", "..", "..", PROGNAME);
PathBuf::from(AtPath::new(Path::new(&target_dir)).root_dir_resolved())
},
util_name: String::from(util_name),
fixtures: AtPath::new(tmpd.as_ref().path()),
tmpd: tmpd,
};
let mut fixture_path_builder = env::current_dir().unwrap();
fixture_path_builder.push(TESTS_DIR);
fixture_path_builder.push(FIXTURES_DIR);
fixture_path_builder.push(util_name);
if let Ok(m) = fs::metadata(&fixture_path_builder) {
if m.is_dir() {
recursive_copy(&fixture_path_builder, &ts.fixtures.subdir).unwrap();
}
}
ts
}
pub fn ucmd(&self) -> UCommand {
let mut cmd = self.cmd(&self.bin_path);
cmd.arg(&self.util_name);
cmd
}
pub fn cmd<S: AsRef<OsStr>>(&self, bin: S) -> UCommand {
UCommand::new_from_tmp(bin, self.tmpd.clone(), true)
}
// different names are used rather than an argument
// because the need to keep the environment is exceedingly rare.
pub fn ucmd_keepenv(&self) -> UCommand {
let mut cmd = self.cmd_keepenv(&self.bin_path);
cmd.arg(&self.util_name);
cmd
}
pub fn cmd_keepenv<S: AsRef<OsStr>>(&self, bin: S) -> UCommand {
UCommand::new_from_tmp(bin, self.tmpd.clone(), false)
}
}
/// A `UCommand` is a wrapper around an individual Command that provides several additional features
/// 1. it has convenience functions that are more ergonomic to use for piping in stdin, spawning the command
/// and asserting on the results.
/// 2. it tracks arguments provided so that in test cases which may provide variations of an arg in loops
/// the test failure can display the exact call which preceded an assertion failure.
/// 3. it provides convenience construction arguments to set the Command working directory and/or clear its environment.
pub struct UCommand {
pub raw: Command,
comm_string: String,
tmpd: Option<Rc<TempDir>>,
has_run: bool,
stdin: Option<Vec<u8>>,
}
impl UCommand {
pub fn new<T: AsRef<OsStr>, U: AsRef<OsStr>>(arg: T, curdir: U, env_clear: bool) -> UCommand {
UCommand {
tmpd: None,
has_run: false,
raw: {
let mut cmd = Command::new(arg.as_ref());
cmd.current_dir(curdir.as_ref());
if env_clear {
if cfg!(windows) {
// %SYSTEMROOT% is required on Windows to initialize crypto provider
// ... and crypto provider is required for std::rand
// From procmon: RegQueryValue HKLM\SOFTWARE\Microsoft\Cryptography\Defaults\Provider\Microsoft Strong Cryptographic Provider\Image Path
// SUCCESS Type: REG_SZ, Length: 66, Data: %SystemRoot%\system32\rsaenh.dll"
for (key, _) in env::vars_os() {
if key.as_os_str() != "SYSTEMROOT" {
cmd.env_remove(key);
}
}
} else {
cmd.env_clear();
}
}
cmd
},
comm_string: String::from(arg.as_ref().to_str().unwrap()),
stdin: None,
}
}
pub fn new_from_tmp<T: AsRef<OsStr>>(arg: T, tmpd: Rc<TempDir>, env_clear: bool) -> UCommand {
let tmpd_path_buf = String::from(&(*tmpd.as_ref().path().to_str().unwrap()));
let mut ucmd: UCommand = UCommand::new(arg.as_ref(), tmpd_path_buf, env_clear);
ucmd.tmpd = Some(tmpd);
ucmd
}
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> Box<&mut UCommand> {
if self.has_run {
panic!(ALREADY_RUN);
}
self.comm_string.push_str(" ");
self.comm_string.push_str(arg.as_ref().to_str().unwrap());
self.raw.arg(arg.as_ref());
Box::new(self)
}
/// like arg(...), but uses the contents of the file at the provided relative path as the argument
pub fn arg_fixture<S: AsRef<OsStr>>(&mut self, file_rel_path: S) -> Box<&mut UCommand> {
let contents = read_scenario_fixture(&self.tmpd, file_rel_path);
self.arg(contents)
}
pub fn args<S: AsRef<OsStr>>(&mut self, args: &[S]) -> Box<&mut UCommand> {
if self.has_run {
panic!(MULTIPLE_STDIN_MEANINGLESS);
}
for s in args {
self.comm_string.push_str(" ");
self.comm_string.push_str(s.as_ref().to_str().unwrap());
}
self.raw.args(args.as_ref());
Box::new(self)
}
/// provides stdinput to feed in to the command when spawned
pub fn pipe_in<T: Into<Vec<u8>>>(&mut self, input: T) -> Box<&mut UCommand> {
if self.stdin.is_some() {
panic!(MULTIPLE_STDIN_MEANINGLESS);
}
self.stdin = Some(input.into());
Box::new(self)
}
/// like pipe_in(...), but uses the contents of the file at the provided relative path as the piped in data
pub fn pipe_in_fixture<S: AsRef<OsStr>>(&mut self, file_rel_path: S) -> Box<&mut UCommand> {
let contents = read_scenario_fixture(&self.tmpd, file_rel_path);
self.pipe_in(contents)
}
pub fn env<K, V>(&mut self, key: K, val: V) -> Box<&mut UCommand>
where
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
if self.has_run {
panic!(ALREADY_RUN);
}
self.raw.env(key, val);
Box::new(self)
}
/// Spawns the command, feeds the stdin if any, and returns the
/// child process immediately.
pub fn run_no_wait(&mut self) -> Child {
if self.has_run {
panic!(ALREADY_RUN);
}
self.has_run = true;
log_info("run", &self.comm_string);
let mut result = self.raw
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.spawn()
.unwrap();
if let Some(ref input) = self.stdin {
result
.stdin
.take()
.unwrap_or_else(|| panic!("Could not take child process stdin"))
.write_all(input)
.unwrap_or_else(|e| panic!("{}", e));
}
result
}
/// Spawns the command, feeds the stdin if any, waits for the result
/// and returns a command result.
/// It is recommended that you instead use succeeds() or fails()
pub fn run(&mut self) -> CmdResult {
let prog = self.run_no_wait().wait_with_output().unwrap();
CmdResult {
tmpd: self.tmpd.clone(),
success: prog.status.success(),
stdout: from_utf8(&prog.stdout).unwrap().to_string(),
stderr: from_utf8(&prog.stderr).unwrap().to_string(),
}
}
/// Spawns the command, feeding the passed in stdin, waits for the result
/// and returns a command result.
/// It is recommended that, instead of this, you use a combination of pipe_in()
/// with succeeds() or fails()
pub fn run_piped_stdin<T: Into<Vec<u8>>>(&mut self, input: T) -> CmdResult {
self.pipe_in(input).run()
}
/// Spawns the command, feeds the stdin if any, waits for the result,
/// asserts success, and returns a command result.
pub fn succeeds(&mut self) -> CmdResult {
let cmd_result = self.run();
cmd_result.success();
cmd_result
}
/// Spawns the command, feeds the stdin if any, waits for the result,
/// asserts success, and returns a command result.
pub fn fails(&mut self) -> CmdResult {
let cmd_result = self.run();
cmd_result.failure();
cmd_result
}
}
pub fn read_size(child: &mut Child, size: usize) -> String {
let mut output = Vec::new();
output.resize(size, 0);
sleep(Duration::from_secs(1));
child
.stdout
.as_mut()
.unwrap()
.read(output.as_mut_slice())
.unwrap();
String::from_utf8(output).unwrap()
}