/* * This file is part of the uutils coreutils package. * * (c) kwantam * * For the full copyright and license information, please view the LICENSE file * that was distributed with this source code. */ use std::iter::{Chain, Cycle, Map}; use std::slice::Iter; /// A lazy Sieve of Eratosthenes. /// /// This is a reasonably efficient implementation based on /// O'Neill, M. E. "[The Genuine Sieve of Eratosthenes.](http://dx.doi.org/10.1017%2FS0956796808007004)" /// Journal of Functional Programming, Volume 19, Issue 1, 2009, pp. 95--106. pub struct Sieve { inner: Wheel, filts: PrimeHeap, } impl Iterator for Sieve { type Item = u64; #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } #[inline] fn next(&mut self) -> Option { while let Some(n) = self.inner.next() { let mut prime = true; while let Some((next, inc)) = self.filts.peek() { // need to keep checking the min element of the heap // until we've found an element that's greater than n if next > n { break; // next heap element is bigger than n } if next == n { // n == next, and is composite. prime = false; } // Increment the element in the prime heap. self.filts.replace((next + inc, inc)); } if prime { // this is a prime; add it to the heap self.filts.insert(n); return Some(n); } } None } } impl Sieve { fn new() -> Sieve { Sieve { inner: Wheel::new(), filts: PrimeHeap::new(), } } #[allow(dead_code)] #[inline] pub fn primes() -> PrimeSieve { fn deref(x: &u64) -> u64 { *x } let deref = deref as fn(&u64) -> u64; INIT_PRIMES.iter().map(deref).chain(Sieve::new()) } #[allow(dead_code)] #[inline] pub fn odd_primes() -> PrimeSieve { fn deref(x: &u64) -> u64 { *x } let deref = deref as fn(&u64) -> u64; (&INIT_PRIMES[1..]).iter().map(deref).chain(Sieve::new()) } } pub type PrimeSieve = Chain, fn(&u64) -> u64>, Sieve>; /// An iterator that generates an infinite list of numbers that are /// not divisible by any of 2, 3, 5, or 7. struct Wheel { next: u64, increment: Cycle>, } impl Iterator for Wheel { type Item = u64; #[inline] fn size_hint(&self) -> (usize, Option) { (1, None) } #[inline] fn next(&mut self) -> Option { let increment = self.increment.next().unwrap(); // infinite iterator, no check necessary let ret = self.next; self.next = ret + increment; Some(ret) } } impl Wheel { #[inline] fn new() -> Wheel { Wheel { next: 11u64, increment: WHEEL_INCS.iter().cycle(), } } } /// The increments of a wheel of circumference 210 /// (i.e., a wheel that skips all multiples of 2, 3, 5, 7) const WHEEL_INCS: &'static [u64] = &[ 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10, ]; const INIT_PRIMES: &'static [u64] = &[2, 3, 5, 7]; /// A min-heap of "infinite lists" of prime multiples, where a list is /// represented as (head, increment). #[derive(Debug)] struct PrimeHeap { data: Vec<(u64, u64)>, } impl PrimeHeap { fn new() -> PrimeHeap { PrimeHeap { data: Vec::new() } } fn peek(&self) -> Option<(u64, u64)> { if let Some(&(x, y)) = self.data.get(0) { Some((x, y)) } else { None } } fn insert(&mut self, next: u64) { let mut idx = self.data.len(); let key = next * next; let item = (key, next); self.data.push(item); loop { // break if we've bubbled to the top if idx == 0 { break; } let paridx = (idx - 1) / 2; let (k, _) = self.data[paridx]; if key < k { // bubble up, found a smaller key self.data.swap(idx, paridx); idx = paridx; } else { // otherwise, parent is smaller, so we're done break; } } } fn remove(&mut self) -> (u64, u64) { let ret = self.data.swap_remove(0); let mut idx = 0; let len = self.data.len(); let (key, _) = self.data[0]; loop { let child1 = 2 * idx + 1; let child2 = 2 * idx + 2; // no more children if child1 >= len { break; } // find lesser child let (c1key, _) = self.data[child1]; let (minidx, minkey) = if child2 >= len { (child1, c1key) } else { let (c2key, _) = self.data[child2]; if c1key < c2key { (child1, c1key) } else { (child2, c2key) } }; if minkey < key { self.data.swap(minidx, idx); idx = minidx; continue; } // smaller than both children, so done break; } ret } /// More efficient than inserting and removing in two steps /// because we save one traversal of the heap. fn replace(&mut self, next: (u64, u64)) -> (u64, u64) { self.data.push(next); self.remove() } }