// * This file is part of the uutils coreutils package. // * // * For the full copyright and license information, please view the LICENSE // * file that was distributed with this source code. //spell-checker: ignore (linux) rlimit prlimit coreutil ggroups #![allow(dead_code)] use pretty_assertions::assert_eq; #[cfg(target_os = "linux")] use rlimit::prlimit; #[cfg(unix)] use std::borrow::Cow; use std::env; #[cfg(not(windows))] use std::ffi::CString; use std::ffi::OsStr; use std::fs::{self, hard_link, File, OpenOptions}; use std::io::{BufWriter, Read, Result, Write}; #[cfg(unix)] use std::os::unix::fs::{symlink as symlink_dir, symlink as symlink_file}; #[cfg(windows)] use std::os::windows::fs::{symlink_dir, symlink_file}; #[cfg(windows)] use std::path::MAIN_SEPARATOR; use std::path::{Path, PathBuf}; use std::process::{Child, Command, Stdio}; use std::rc::Rc; use std::thread::sleep; use std::time::Duration; use tempfile::TempDir; use uucore::Args; #[cfg(windows)] static PROGNAME: &str = concat!(env!("CARGO_PKG_NAME"), ".exe"); #[cfg(not(windows))] static PROGNAME: &str = env!("CARGO_PKG_NAME"); static TESTS_DIR: &str = "tests"; static FIXTURES_DIR: &str = "fixtures"; static ALREADY_RUN: &str = " you have already run this UCommand, if you want to run \ another command in the same test, use TestScenario::new instead of \ testing();"; static MULTIPLE_STDIN_MEANINGLESS: &str = "Ucommand is designed around a typical use case of: provide args and input stream -> spawn process -> block until completion -> return output streams. For verifying that a particular section of the input stream is what causes a particular behavior, use the Command type directly."; static NO_STDIN_MEANINGLESS: &str = "Setting this flag has no effect if there is no stdin"; /// Test if the program is running under CI pub fn is_ci() -> bool { std::env::var("CI") .unwrap_or_else(|_| String::from("false")) .eq_ignore_ascii_case("true") } /// Read a test scenario fixture, returning its bytes fn read_scenario_fixture>(tmpd: &Option>, file_rel_path: S) -> Vec { let tmpdir_path = tmpd.as_ref().unwrap().as_ref().path(); AtPath::new(tmpdir_path).read_bytes(file_rel_path.as_ref().to_str().unwrap()) } /// A command result is the outputs of a command (streams and status code) /// within a struct which has convenience assertion functions about those outputs #[derive(Debug, Clone)] pub struct CmdResult { /// bin_path provided by `TestScenario` or `UCommand` bin_path: String, /// util_name provided by `TestScenario` or `UCommand` util_name: Option, //tmpd is used for convenience functions for asserts against fixtures tmpd: Option>, /// exit status for command (if there is one) code: Option, /// zero-exit from running the Command? /// see [`success`] success: bool, /// captured standard output after running the Command stdout: Vec, /// captured standard error after running the Command stderr: Vec, } impl CmdResult { pub fn new( bin_path: String, util_name: Option, tmpd: Option>, code: Option, success: bool, stdout: &[u8], stderr: &[u8], ) -> Self { Self { bin_path, util_name, tmpd, code, success, stdout: stdout.to_vec(), stderr: stderr.to_vec(), } } /// Returns a reference to the program's standard output as a slice of bytes pub fn stdout(&self) -> &[u8] { &self.stdout } /// Returns the program's standard output as a string slice pub fn stdout_str(&self) -> &str { std::str::from_utf8(&self.stdout).unwrap() } /// Returns the program's standard output as a string /// consumes self pub fn stdout_move_str(self) -> String { String::from_utf8(self.stdout).unwrap() } /// Returns the program's standard output as a vec of bytes /// consumes self pub fn stdout_move_bytes(self) -> Vec { self.stdout } /// Returns a reference to the program's standard error as a slice of bytes pub fn stderr(&self) -> &[u8] { &self.stderr } /// Returns the program's standard error as a string slice pub fn stderr_str(&self) -> &str { std::str::from_utf8(&self.stderr).unwrap() } /// Returns the program's standard error as a string /// consumes self pub fn stderr_move_str(self) -> String { String::from_utf8(self.stderr).unwrap() } /// Returns the program's standard error as a vec of bytes /// consumes self pub fn stderr_move_bytes(self) -> Vec { self.stderr } /// Returns the program's exit code /// Panics if not run pub fn code(&self) -> i32 { self.code.expect("Program must be run first") } pub fn code_is(&self, expected_code: i32) -> &Self { assert_eq!(self.code(), expected_code); self } /// Returns the program's TempDir /// Panics if not present pub fn tmpd(&self) -> Rc { match &self.tmpd { Some(ptr) => ptr.clone(), None => panic!("Command not associated with a TempDir"), } } /// Returns whether the program succeeded pub fn succeeded(&self) -> bool { self.success } /// asserts that the command resulted in a success (zero) status code pub fn success(&self) -> &Self { assert!( self.success, "Command was expected to succeed.\nstdout = {}\n stderr = {}", self.stdout_str(), self.stderr_str() ); self } /// asserts that the command resulted in a failure (non-zero) status code pub fn failure(&self) -> &Self { assert!( !self.success, "Command was expected to fail.\nstdout = {}\n stderr = {}", self.stdout_str(), self.stderr_str() ); self } /// asserts that the command's exit code is the same as the given one pub fn status_code(&self, code: i32) -> &Self { assert_eq!(self.code, Some(code)); self } /// asserts that the command resulted in empty (zero-length) stderr stream output /// generally, it's better to use stdout_only() instead, /// but you might find yourself using this function if /// 1. you can not know exactly what stdout will be or /// 2. you know that stdout will also be empty pub fn no_stderr(&self) -> &Self { assert!( self.stderr.is_empty(), "Expected stderr to be empty, but it's:\n{}", self.stderr_str() ); self } /// asserts that the command resulted in empty (zero-length) stderr stream output /// unless asserting there was neither stdout or stderr, stderr_only is usually a better choice /// generally, it's better to use stderr_only() instead, /// but you might find yourself using this function if /// 1. you can not know exactly what stderr will be or /// 2. you know that stderr will also be empty pub fn no_stdout(&self) -> &Self { assert!( self.stdout.is_empty(), "Expected stdout to be empty, but it's:\n{}", self.stdout_str() ); self } /// asserts that the command resulted in stdout stream output that equals the /// passed in value, trailing whitespace are kept to force strict comparison (#1235) /// stdout_only is a better choice unless stderr may or will be non-empty pub fn stdout_is>(&self, msg: T) -> &Self { assert_eq!(self.stdout_str(), String::from(msg.as_ref())); self } /// like `stdout_is`, but succeeds if any elements of `expected` matches stdout. pub fn stdout_is_any + std::fmt::Debug>(&self, expected: &[T]) -> &Self { if !expected.iter().any(|msg| self.stdout_str() == msg.as_ref()) { panic!( "stdout was {}\nExpected any of {:#?}", self.stdout_str(), expected ); } self } /// Like `stdout_is` but newlines are normalized to `\n`. pub fn normalized_newlines_stdout_is>(&self, msg: T) -> &Self { let msg = msg.as_ref().replace("\r\n", "\n"); assert_eq!(self.stdout_str().replace("\r\n", "\n"), msg); self } /// asserts that the command resulted in stdout stream output, /// whose bytes equal those of the passed in slice pub fn stdout_is_bytes>(&self, msg: T) -> &Self { assert_eq!(self.stdout, msg.as_ref()); self } /// like stdout_is(...), but expects the contents of the file at the provided relative path pub fn stdout_is_fixture>(&self, file_rel_path: T) -> &Self { let contents = read_scenario_fixture(&self.tmpd, file_rel_path); self.stdout_is(String::from_utf8(contents).unwrap()) } /// Assert that the bytes of stdout exactly match those of the given file. /// /// Contrast this with [`CmdResult::stdout_is_fixture`], which /// decodes the contents of the file as a UTF-8 [`String`] before /// comparison with stdout. /// /// # Examples /// /// Use this method in a unit test like this: /// /// ```rust,ignore /// #[test] /// fn test_something() { /// new_ucmd!().succeeds().stdout_is_fixture_bytes("expected.bin"); /// } /// ``` pub fn stdout_is_fixture_bytes>(&self, file_rel_path: T) -> &Self { let contents = read_scenario_fixture(&self.tmpd, file_rel_path); self.stdout_is_bytes(contents) } /// like stdout_is_fixture(...), but replaces the data in fixture file based on values provided in template_vars /// command output pub fn stdout_is_templated_fixture>( &self, file_rel_path: T, template_vars: &[(&str, &str)], ) -> &Self { let mut contents = String::from_utf8(read_scenario_fixture(&self.tmpd, file_rel_path)).unwrap(); for kv in template_vars { contents = contents.replace(kv.0, kv.1); } self.stdout_is(contents) } /// like `stdout_is_templated_fixture`, but succeeds if any replacement by `template_vars` results in the actual stdout. pub fn stdout_is_templated_fixture_any>( &self, file_rel_path: T, template_vars: &[Vec<(String, String)>], ) { let contents = String::from_utf8(read_scenario_fixture(&self.tmpd, file_rel_path)).unwrap(); let possible_values = template_vars.iter().map(|vars| { let mut contents = contents.clone(); for kv in vars.iter() { contents = contents.replace(&kv.0, &kv.1); } contents }); self.stdout_is_any(&possible_values.collect::>()); } /// asserts that the command resulted in stderr stream output that equals the /// passed in value, when both are trimmed of trailing whitespace /// stderr_only is a better choice unless stdout may or will be non-empty pub fn stderr_is>(&self, msg: T) -> &Self { assert_eq!( self.stderr_str().trim_end(), String::from(msg.as_ref()).trim_end() ); self } /// asserts that the command resulted in stderr stream output, /// whose bytes equal those of the passed in slice pub fn stderr_is_bytes>(&self, msg: T) -> &Self { assert_eq!(self.stderr, msg.as_ref()); self } /// Like stdout_is_fixture, but for stderr pub fn stderr_is_fixture>(&self, file_rel_path: T) -> &Self { let contents = read_scenario_fixture(&self.tmpd, file_rel_path); self.stderr_is(String::from_utf8(contents).unwrap()) } /// asserts that /// 1. the command resulted in stdout stream output that equals the /// passed in value /// 2. the command resulted in empty (zero-length) stderr stream output pub fn stdout_only>(&self, msg: T) -> &Self { self.no_stderr().stdout_is(msg) } /// asserts that /// 1. the command resulted in a stdout stream whose bytes /// equal those of the passed in value /// 2. the command resulted in an empty stderr stream pub fn stdout_only_bytes>(&self, msg: T) -> &Self { self.no_stderr().stdout_is_bytes(msg) } /// like stdout_only(...), but expects the contents of the file at the provided relative path pub fn stdout_only_fixture>(&self, file_rel_path: T) -> &Self { let contents = read_scenario_fixture(&self.tmpd, file_rel_path); self.stdout_only_bytes(contents) } /// asserts that /// 1. the command resulted in stderr stream output that equals the /// passed in value, when both are trimmed of trailing whitespace /// 2. the command resulted in empty (zero-length) stdout stream output pub fn stderr_only>(&self, msg: T) -> &Self { self.no_stdout().stderr_is(msg) } /// asserts that /// 1. the command resulted in a stderr stream whose bytes equal the ones /// of the passed value /// 2. the command resulted in an empty stdout stream pub fn stderr_only_bytes>(&self, msg: T) -> &Self { self.no_stdout().stderr_is_bytes(msg) } pub fn fails_silently(&self) -> &Self { assert!(!self.success); assert!(self.stderr.is_empty()); self } /// asserts that /// 1. the command resulted in stderr stream output that equals the /// the following format when both are trimmed of trailing whitespace /// `"{util_name}: {msg}\nTry '{bin_path} {util_name} --help' for more information."` /// This the expected format when a UUsageError is returned or when show_error! is called /// `msg` should be the same as the one provided to UUsageError::new or show_error! /// /// 2. the command resulted in empty (zero-length) stdout stream output pub fn usage_error>(&self, msg: T) -> &Self { self.stderr_only(format!( "{0}: {2}\nTry '{1} {0} --help' for more information.", self.util_name.as_ref().unwrap(), // This shouldn't be called using a normal command self.bin_path, msg.as_ref() )) } pub fn stdout_contains>(&self, cmp: T) -> &Self { assert!( self.stdout_str().contains(cmp.as_ref()), "'{}' does not contain '{}'", self.stdout_str(), cmp.as_ref() ); self } pub fn stderr_contains>(&self, cmp: T) -> &Self { assert!( self.stderr_str().contains(cmp.as_ref()), "'{}' does not contain '{}'", self.stderr_str(), cmp.as_ref() ); self } pub fn stdout_does_not_contain>(&self, cmp: T) -> &Self { assert!( !self.stdout_str().contains(cmp.as_ref()), "'{}' contains '{}' but should not", self.stdout_str(), cmp.as_ref(), ); self } pub fn stderr_does_not_contain>(&self, cmp: T) -> &Self { assert!(!self.stderr_str().contains(cmp.as_ref())); self } pub fn stdout_matches(&self, regex: ®ex::Regex) -> &Self { if !regex.is_match(self.stdout_str().trim()) { panic!("Stdout does not match regex:\n{}", self.stdout_str()); } self } pub fn stdout_does_not_match(&self, regex: ®ex::Regex) -> &Self { if regex.is_match(self.stdout_str().trim()) { panic!("Stdout matches regex:\n{}", self.stdout_str()); } self } } pub fn log_info, U: AsRef>(msg: T, par: U) { println!("{}: {}", msg.as_ref(), par.as_ref()); } pub fn recursive_copy(src: &Path, dest: &Path) -> Result<()> { if fs::metadata(src)?.is_dir() { for entry in fs::read_dir(src)? { let entry = entry?; let mut new_dest = PathBuf::from(dest); new_dest.push(entry.file_name()); if fs::metadata(entry.path())?.is_dir() { fs::create_dir(&new_dest)?; recursive_copy(&entry.path(), &new_dest)?; } else { fs::copy(&entry.path(), new_dest)?; } } } Ok(()) } pub fn get_root_path() -> &'static str { if cfg!(windows) { "C:\\" } else { "/" } } /// Object-oriented path struct that represents and operates on /// paths relative to the directory it was constructed for. #[derive(Clone)] pub struct AtPath { pub subdir: PathBuf, } impl AtPath { pub fn new(subdir: &Path) -> Self { Self { subdir: PathBuf::from(subdir), } } pub fn as_string(&self) -> String { self.subdir.to_str().unwrap().to_owned() } pub fn plus(&self, name: &str) -> PathBuf { let mut pathbuf = self.subdir.clone(); pathbuf.push(name); pathbuf } pub fn plus_as_string(&self, name: &str) -> String { String::from(self.plus(name).to_str().unwrap()) } fn minus(&self, name: &str) -> PathBuf { let prefixed = PathBuf::from(name); if prefixed.starts_with(&self.subdir) { let mut unprefixed = PathBuf::new(); for component in prefixed.components().skip(self.subdir.components().count()) { unprefixed.push(component.as_os_str().to_str().unwrap()); } unprefixed } else { prefixed } } pub fn minus_as_string(&self, name: &str) -> String { String::from(self.minus(name).to_str().unwrap()) } pub fn set_readonly(&self, name: &str) { let metadata = fs::metadata(self.plus(name)).unwrap(); let mut permissions = metadata.permissions(); permissions.set_readonly(true); fs::set_permissions(self.plus(name), permissions).unwrap(); } pub fn open(&self, name: &str) -> File { log_info("open", self.plus_as_string(name)); File::open(self.plus(name)).unwrap() } pub fn read(&self, name: &str) -> String { let mut f = self.open(name); let mut contents = String::new(); f.read_to_string(&mut contents) .unwrap_or_else(|e| panic!("Couldn't read {}: {}", name, e)); contents } pub fn read_bytes(&self, name: &str) -> Vec { let mut f = self.open(name); let mut contents = Vec::new(); f.read_to_end(&mut contents) .unwrap_or_else(|e| panic!("Couldn't read {}: {}", name, e)); contents } pub fn write(&self, name: &str, contents: &str) { log_info("write(default)", self.plus_as_string(name)); std::fs::write(self.plus(name), contents) .unwrap_or_else(|e| panic!("Couldn't write {}: {}", name, e)); } pub fn write_bytes(&self, name: &str, contents: &[u8]) { log_info("write(default)", self.plus_as_string(name)); std::fs::write(self.plus(name), contents) .unwrap_or_else(|e| panic!("Couldn't write {}: {}", name, e)); } pub fn append(&self, name: &str, contents: &str) { log_info("write(append)", self.plus_as_string(name)); let mut f = OpenOptions::new() .write(true) .append(true) .create(true) .open(self.plus(name)) .unwrap(); f.write_all(contents.as_bytes()) .unwrap_or_else(|e| panic!("Couldn't write(append) {}: {}", name, e)); } pub fn append_bytes(&self, name: &str, contents: &[u8]) { log_info("write(append)", self.plus_as_string(name)); let mut f = OpenOptions::new() .write(true) .append(true) .create(true) .open(self.plus(name)) .unwrap(); f.write_all(contents) .unwrap_or_else(|e| panic!("Couldn't write(append) to {}: {}", name, e)); } pub fn truncate(&self, name: &str, contents: &str) { log_info("write(truncate)", self.plus_as_string(name)); let mut f = OpenOptions::new() .write(true) .truncate(true) .create(true) .open(self.plus(name)) .unwrap(); f.write_all(contents.as_bytes()) .unwrap_or_else(|e| panic!("Couldn't write(truncate) {}: {}", name, e)); } pub fn rename(&self, source: &str, target: &str) { let source = self.plus(source); let target = self.plus(target); log_info("rename", format!("{:?} {:?}", source, target)); std::fs::rename(&source, &target) .unwrap_or_else(|e| panic!("Couldn't rename {:?} -> {:?}: {}", source, target, e)); } pub fn remove(&self, source: &str) { let source = self.plus(source); log_info("remove", format!("{:?}", source)); std::fs::remove_file(&source) .unwrap_or_else(|e| panic!("Couldn't remove {:?}: {}", source, e)); } pub fn copy(&self, source: &str, target: &str) { let source = self.plus(source); let target = self.plus(target); log_info("copy", format!("{:?} {:?}", source, target)); std::fs::copy(&source, &target) .unwrap_or_else(|e| panic!("Couldn't copy {:?} -> {:?}: {}", source, target, e)); } pub fn rmdir(&self, dir: &str) { log_info("rmdir", self.plus_as_string(dir)); fs::remove_dir(&self.plus(dir)).unwrap(); } pub fn mkdir(&self, dir: &str) { log_info("mkdir", self.plus_as_string(dir)); fs::create_dir(&self.plus(dir)).unwrap(); } pub fn mkdir_all(&self, dir: &str) { log_info("mkdir_all", self.plus_as_string(dir)); fs::create_dir_all(self.plus(dir)).unwrap(); } pub fn make_file(&self, name: &str) -> File { match File::create(&self.plus(name)) { Ok(f) => f, Err(e) => panic!("{}", e), } } pub fn touch(&self, file: &str) { log_info("touch", self.plus_as_string(file)); File::create(&self.plus(file)).unwrap(); } #[cfg(not(windows))] pub fn mkfifo(&self, fifo: &str) { let full_path = self.plus_as_string(fifo); log_info("mkfifo", &full_path); unsafe { let fifo_name: CString = CString::new(full_path).expect("CString creation failed."); libc::mkfifo(fifo_name.as_ptr(), libc::S_IWUSR | libc::S_IRUSR); } } #[cfg(not(windows))] pub fn is_fifo(&self, fifo: &str) -> bool { unsafe { let name = CString::new(self.plus_as_string(fifo)).unwrap(); let mut stat: libc::stat = std::mem::zeroed(); if libc::stat(name.as_ptr(), &mut stat) >= 0 { libc::S_IFIFO & stat.st_mode as libc::mode_t != 0 } else { false } } } pub fn hard_link(&self, original: &str, link: &str) { log_info( "hard_link", &format!( "{},{}", self.plus_as_string(original), self.plus_as_string(link) ), ); hard_link(&self.plus(original), &self.plus(link)).unwrap(); } pub fn symlink_file(&self, original: &str, link: &str) { log_info( "symlink", &format!( "{},{}", self.plus_as_string(original), self.plus_as_string(link) ), ); symlink_file(&self.plus(original), &self.plus(link)).unwrap(); } pub fn relative_symlink_file(&self, original: &str, link: &str) { #[cfg(windows)] let original = original.replace('/', &MAIN_SEPARATOR.to_string()); log_info( "symlink", &format!("{},{}", &original, &self.plus_as_string(link)), ); symlink_file(&original, &self.plus(link)).unwrap(); } pub fn symlink_dir(&self, original: &str, link: &str) { log_info( "symlink", &format!( "{},{}", self.plus_as_string(original), self.plus_as_string(link) ), ); symlink_dir(&self.plus(original), &self.plus(link)).unwrap(); } pub fn relative_symlink_dir(&self, original: &str, link: &str) { #[cfg(windows)] let original = original.replace('/', &MAIN_SEPARATOR.to_string()); log_info( "symlink", &format!("{},{}", &original, &self.plus_as_string(link)), ); symlink_dir(&original, &self.plus(link)).unwrap(); } pub fn is_symlink(&self, path: &str) -> bool { log_info("is_symlink", self.plus_as_string(path)); match fs::symlink_metadata(&self.plus(path)) { Ok(m) => m.file_type().is_symlink(), Err(_) => false, } } pub fn resolve_link(&self, path: &str) -> String { log_info("resolve_link", self.plus_as_string(path)); match fs::read_link(&self.plus(path)) { Ok(p) => self.minus_as_string(p.to_str().unwrap()), Err(_) => "".to_string(), } } pub fn symlink_metadata(&self, path: &str) -> fs::Metadata { match fs::symlink_metadata(&self.plus(path)) { Ok(m) => m, Err(e) => panic!("{}", e), } } pub fn metadata(&self, path: &str) -> fs::Metadata { match fs::metadata(&self.plus(path)) { Ok(m) => m, Err(e) => panic!("{}", e), } } pub fn file_exists(&self, path: &str) -> bool { match fs::metadata(&self.plus(path)) { Ok(m) => m.is_file(), Err(_) => false, } } /// Decide whether the named symbolic link exists in the test directory. pub fn symlink_exists(&self, path: &str) -> bool { match fs::symlink_metadata(&self.plus(path)) { Ok(m) => m.file_type().is_symlink(), Err(_) => false, } } pub fn dir_exists(&self, path: &str) -> bool { match fs::metadata(&self.plus(path)) { Ok(m) => m.is_dir(), Err(_) => false, } } pub fn root_dir_resolved(&self) -> String { log_info("current_directory_resolved", ""); let s = self .subdir .canonicalize() .unwrap() .to_str() .unwrap() .to_owned(); // Due to canonicalize()'s use of GetFinalPathNameByHandleW() on Windows, the resolved path // starts with '\\?\' to extend the limit of a given path to 32,767 wide characters. // // To address this issue, we remove this prepended string if available. // // Source: // http://stackoverflow.com/questions/31439011/getfinalpathnamebyhandle-without-prepended let prefix = "\\\\?\\"; if let Some(stripped) = s.strip_prefix(prefix) { String::from(stripped) } else { s } } } /// An environment for running a single uutils test case, serves three functions: /// 1. centralizes logic for locating the uutils binary and calling the utility /// 2. provides a unique temporary directory for the test case /// 3. copies over fixtures for the utility to the temporary directory /// /// Fixtures can be found under `tests/fixtures/$util_name/` pub struct TestScenario { pub bin_path: PathBuf, pub util_name: String, pub fixtures: AtPath, tmpd: Rc, } impl TestScenario { pub fn new(util_name: &str) -> Self { let tmpd = Rc::new(TempDir::new().unwrap()); let ts = Self { bin_path: { // Instead of hard coding the path relative to the current // directory, use Cargo's OUT_DIR to find path to executable. // This allows tests to be run using profiles other than debug. let target_dir = path_concat!(env!("OUT_DIR"), "..", "..", "..", PROGNAME); PathBuf::from(AtPath::new(Path::new(&target_dir)).root_dir_resolved()) }, util_name: String::from(util_name), fixtures: AtPath::new(tmpd.as_ref().path()), tmpd, }; let mut fixture_path_builder = env::current_dir().unwrap(); fixture_path_builder.push(TESTS_DIR); fixture_path_builder.push(FIXTURES_DIR); fixture_path_builder.push(util_name); if let Ok(m) = fs::metadata(&fixture_path_builder) { if m.is_dir() { recursive_copy(&fixture_path_builder, &ts.fixtures.subdir).unwrap(); } } ts } /// Returns builder for invoking the target uutils binary. Paths given are /// treated relative to the environment's unique temporary test directory. pub fn ucmd(&self) -> UCommand { self.composite_cmd(&self.bin_path, &self.util_name, true) } /// Returns builder for invoking the target uutils binary. Paths given are /// treated relative to the environment's unique temporary test directory. pub fn composite_cmd, T: AsRef>( &self, bin: S, util_name: T, env_clear: bool, ) -> UCommand { UCommand::new_from_tmp(bin, &Some(util_name), self.tmpd.clone(), env_clear) } /// Returns builder for invoking any system command. Paths given are treated /// relative to the environment's unique temporary test directory. pub fn cmd>(&self, bin: S) -> UCommand { UCommand::new_from_tmp::(bin, &None, self.tmpd.clone(), true) } /// Returns builder for invoking any uutils command. Paths given are treated /// relative to the environment's unique temporary test directory. pub fn ccmd>(&self, bin: S) -> UCommand { self.composite_cmd(&self.bin_path, bin, true) } // different names are used rather than an argument // because the need to keep the environment is exceedingly rare. pub fn ucmd_keepenv(&self) -> UCommand { self.composite_cmd(&self.bin_path, &self.util_name, false) } /// Returns builder for invoking any system command. Paths given are treated /// relative to the environment's unique temporary test directory. /// Differs from the builder returned by `cmd` in that `cmd_keepenv` does not call /// `Command::env_clear` (Clears the entire environment map for the child process.) pub fn cmd_keepenv>(&self, bin: S) -> UCommand { UCommand::new_from_tmp::(bin, &None, self.tmpd.clone(), false) } } /// A `UCommand` is a wrapper around an individual Command that provides several additional features /// 1. it has convenience functions that are more ergonomic to use for piping in stdin, spawning the command /// and asserting on the results. /// 2. it tracks arguments provided so that in test cases which may provide variations of an arg in loops /// the test failure can display the exact call which preceded an assertion failure. /// 3. it provides convenience construction arguments to set the Command working directory and/or clear its environment. #[derive(Debug)] pub struct UCommand { pub raw: Command, comm_string: String, bin_path: String, util_name: Option, tmpd: Option>, has_run: bool, ignore_stdin_write_error: bool, stdin: Option, stdout: Option, stderr: Option, bytes_into_stdin: Option>, #[cfg(any(target_os = "linux", target_os = "android"))] limits: Vec<(rlimit::Resource, u64, u64)>, } impl UCommand { pub fn new, S: AsRef, U: AsRef>( bin_path: T, util_name: &Option, curdir: U, env_clear: bool, ) -> Self { let bin_path = bin_path.as_ref(); let util_name = util_name.as_ref().map(|un| un.as_ref()); let mut ucmd = Self { tmpd: None, has_run: false, raw: { let mut cmd = Command::new(bin_path); cmd.current_dir(curdir.as_ref()); if env_clear { cmd.env_clear(); if cfg!(windows) { // spell-checker:ignore (dll) rsaenh // %SYSTEMROOT% is required on Windows to initialize crypto provider // ... and crypto provider is required for std::rand // From `procmon`: RegQueryValue HKLM\SOFTWARE\Microsoft\Cryptography\Defaults\Provider\Microsoft Strong Cryptographic Provider\Image Path // SUCCESS Type: REG_SZ, Length: 66, Data: %SystemRoot%\system32\rsaenh.dll" if let Some(systemroot) = env::var_os("SYSTEMROOT") { cmd.env("SYSTEMROOT", systemroot); } } else { // if someone is setting LD_PRELOAD, there's probably a good reason for it if let Some(ld_preload) = env::var_os("LD_PRELOAD") { cmd.env("LD_PRELOAD", ld_preload); } } } cmd }, comm_string: String::from(bin_path.to_str().unwrap()), bin_path: bin_path.to_str().unwrap().to_string(), util_name: util_name.map(|un| un.to_str().unwrap().to_string()), ignore_stdin_write_error: false, bytes_into_stdin: None, stdin: None, stdout: None, stderr: None, #[cfg(any(target_os = "linux", target_os = "android"))] limits: vec![], }; if let Some(un) = util_name { ucmd.arg(un); } ucmd } pub fn new_from_tmp, S: AsRef>( bin_path: T, util_name: &Option, tmpd: Rc, env_clear: bool, ) -> Self { let tmpd_path_buf = String::from(tmpd.as_ref().path().to_str().unwrap()); let mut ucmd: Self = Self::new(bin_path, util_name, tmpd_path_buf, env_clear); ucmd.tmpd = Some(tmpd); ucmd } pub fn set_stdin>(&mut self, stdin: T) -> &mut Self { self.stdin = Some(stdin.into()); self } pub fn set_stdout>(&mut self, stdout: T) -> &mut Self { self.stdout = Some(stdout.into()); self } pub fn set_stderr>(&mut self, stderr: T) -> &mut Self { self.stderr = Some(stderr.into()); self } /// Add a parameter to the invocation. Path arguments are treated relative /// to the test environment directory. pub fn arg>(&mut self, arg: S) -> &mut Self { assert!(!self.has_run, "{}", ALREADY_RUN); self.comm_string.push(' '); self.comm_string .push_str(arg.as_ref().to_str().unwrap_or_default()); self.raw.arg(arg.as_ref()); self } /// Add multiple parameters to the invocation. Path arguments are treated relative /// to the test environment directory. pub fn args>(&mut self, args: &[S]) -> &mut Self { assert!(!self.has_run, "{}", MULTIPLE_STDIN_MEANINGLESS); let strings = args .iter() .map(|s| s.as_ref().to_os_string()) .collect_ignore(); for s in strings { self.comm_string.push(' '); self.comm_string.push_str(&s); } self.raw.args(args.as_ref()); self } /// provides standard input to feed in to the command when spawned pub fn pipe_in>>(&mut self, input: T) -> &mut Self { assert!( self.bytes_into_stdin.is_none(), "{}", MULTIPLE_STDIN_MEANINGLESS ); self.bytes_into_stdin = Some(input.into()); self } /// like pipe_in(...), but uses the contents of the file at the provided relative path as the piped in data pub fn pipe_in_fixture>(&mut self, file_rel_path: S) -> &mut Self { let contents = read_scenario_fixture(&self.tmpd, file_rel_path); self.pipe_in(contents) } /// Ignores error caused by feeding stdin to the command. /// This is typically useful to test non-standard workflows /// like feeding something to a command that does not read it pub fn ignore_stdin_write_error(&mut self) -> &mut Self { assert!(self.bytes_into_stdin.is_some(), "{}", NO_STDIN_MEANINGLESS); self.ignore_stdin_write_error = true; self } pub fn env(&mut self, key: K, val: V) -> &mut Self where K: AsRef, V: AsRef, { assert!(!self.has_run, "{}", ALREADY_RUN); self.raw.env(key, val); self } #[cfg(any(target_os = "linux", target_os = "android"))] pub fn with_limit( &mut self, resource: rlimit::Resource, soft_limit: u64, hard_limit: u64, ) -> &mut Self { self.limits.push((resource, soft_limit, hard_limit)); self } /// Spawns the command, feeds the stdin if any, and returns the /// child process immediately. pub fn run_no_wait(&mut self) -> Child { assert!(!self.has_run, "{}", ALREADY_RUN); self.has_run = true; log_info("run", &self.comm_string); let mut child = self .raw .stdin(self.stdin.take().unwrap_or_else(Stdio::piped)) .stdout(self.stdout.take().unwrap_or_else(Stdio::piped)) .stderr(self.stderr.take().unwrap_or_else(Stdio::piped)) .spawn() .unwrap(); #[cfg(target_os = "linux")] for &(resource, soft_limit, hard_limit) in &self.limits { prlimit( child.id() as i32, resource, Some((soft_limit, hard_limit)), None, ) .unwrap(); } if let Some(ref input) = self.bytes_into_stdin { let child_stdin = child .stdin .take() .unwrap_or_else(|| panic!("Could not take child process stdin")); let mut writer = BufWriter::new(child_stdin); let result = writer.write_all(input); if !self.ignore_stdin_write_error { if let Err(e) = result { panic!("failed to write to stdin of child: {}", e); } } } child } /// Spawns the command, feeds the stdin if any, waits for the result /// and returns a command result. /// It is recommended that you instead use succeeds() or fails() pub fn run(&mut self) -> CmdResult { let prog = self.run_no_wait().wait_with_output().unwrap(); CmdResult { bin_path: self.bin_path.clone(), util_name: self.util_name.clone(), tmpd: self.tmpd.clone(), code: prog.status.code(), success: prog.status.success(), stdout: prog.stdout, stderr: prog.stderr, } } /// Spawns the command, feeding the passed in stdin, waits for the result /// and returns a command result. /// It is recommended that, instead of this, you use a combination of pipe_in() /// with succeeds() or fails() pub fn run_piped_stdin>>(&mut self, input: T) -> CmdResult { self.pipe_in(input).run() } /// Spawns the command, feeds the stdin if any, waits for the result, /// asserts success, and returns a command result. pub fn succeeds(&mut self) -> CmdResult { let cmd_result = self.run(); cmd_result.success(); cmd_result } /// Spawns the command, feeds the stdin if any, waits for the result, /// asserts failure, and returns a command result. pub fn fails(&mut self) -> CmdResult { let cmd_result = self.run(); cmd_result.failure(); cmd_result } pub fn get_full_fixture_path(&self, file_rel_path: &str) -> String { let tmpdir_path = self.tmpd.as_ref().unwrap().path(); format!("{}/{}", tmpdir_path.to_str().unwrap(), file_rel_path) } } /// Wrapper for `child.stdout.read_exact()`. /// Careful, this blocks indefinitely if `size` bytes is never reached. pub fn read_size(child: &mut Child, size: usize) -> String { String::from_utf8(read_size_bytes(child, size)).unwrap() } /// Read the specified number of bytes from the stdout of the child process. /// /// Careful, this blocks indefinitely if `size` bytes is never reached. pub fn read_size_bytes(child: &mut Child, size: usize) -> Vec { let mut output = Vec::new(); output.resize(size, 0); sleep(Duration::from_secs(1)); child .stdout .as_mut() .unwrap() .read_exact(output.as_mut_slice()) .unwrap(); output } pub fn vec_of_size(n: usize) -> Vec { let result = vec![b'a'; n]; assert_eq!(result.len(), n); result } pub fn whoami() -> String { // Apparently some CI environments have configuration issues, e.g. with 'whoami' and 'id'. // // From the Logs: "Build (ubuntu-18.04, x86_64-unknown-linux-gnu, feat_os_unix, use-cross)" // whoami: cannot find name for user ID 1001 // id --name: cannot find name for user ID 1001 // id --name: cannot find name for group ID 116 // // However, when running "id" from within "/bin/bash" it looks fine: // id: "uid=1001(runner) gid=118(docker) groups=118(docker),4(adm),101(systemd-journal)" // whoami: "runner" // Use environment variable to get current user instead of // invoking `whoami` and fall back to user "nobody" on error. std::env::var("USER") .or_else(|_| std::env::var("USERNAME")) .unwrap_or_else(|e| { println!("{}: {}, using \"nobody\" instead", UUTILS_WARNING, e); "nobody".to_string() }) } /// Add prefix 'g' for `util_name` if not on linux #[cfg(unix)] pub fn host_name_for(util_name: &str) -> Cow { // In some environments, e.g. macOS/freebsd, the GNU coreutils are prefixed with "g" // to not interfere with the BSD counterparts already in `$PATH`. #[cfg(not(target_os = "linux"))] { // make call to `host_name_for` idempotent if util_name.starts_with('g') && util_name != "groups" { util_name.into() } else { format!("g{}", util_name).into() } } #[cfg(target_os = "linux")] util_name.into() } // GNU coreutils version 8.32 is the reference version since it is the latest version and the // GNU test suite in "coreutils/.github/workflows/GnuTests.yml" runs against it. // However, here 8.30 was chosen because right now there's no ubuntu image for the github actions // CICD available with a higher version than 8.30. // GNU coreutils versions from the CICD images for comparison: // ubuntu-2004: 8.30 (latest) // ubuntu-1804: 8.28 // macos-latest: 8.32 const VERSION_MIN: &str = "8.30"; // minimum Version for the reference `coreutil` in `$PATH` const UUTILS_WARNING: &str = "uutils-tests-warning"; const UUTILS_INFO: &str = "uutils-tests-info"; /// Run `util_name --version` and return Ok if the version is >= `version_expected`. /// Returns an error if /// * `util_name` cannot run /// * the version cannot be parsed /// * the version is too low /// /// This is used by `expected_result` to check if the coreutils version is >= `VERSION_MIN`. /// It makes sense to use this manually in a test if a feature /// is tested that was introduced after `VERSION_MIN` /// /// Example: /// /// ```no_run /// use crate::common::util::*; /// const VERSION_MIN_MULTIPLE_USERS: &str = "8.31"; /// /// #[test] /// fn test_xyz() { /// unwrap_or_return!(check_coreutil_version( /// util_name!(), /// VERSION_MIN_MULTIPLE_USERS /// )); /// // proceed with the test... /// } /// ``` #[cfg(unix)] pub fn check_coreutil_version( util_name: &str, version_expected: &str, ) -> std::result::Result { // example: // $ id --version | head -n 1 // id (GNU coreutils) 8.32.162-4eda let util_name = &host_name_for(util_name); log_info("run", format!("{} --version", util_name)); let version_check = match Command::new(util_name.as_ref()) .env("LC_ALL", "C") .arg("--version") .output() { Ok(s) => s, Err(e) => return Err(format!("{}: '{}' {}", UUTILS_WARNING, util_name, e)), }; std::str::from_utf8(&version_check.stdout).unwrap() .split('\n') .collect::>() .first() .map_or_else( || Err(format!("{}: unexpected output format for reference coreutil: '{} --version'", UUTILS_WARNING, util_name)), |s| { if s.contains(&format!("(GNU coreutils) {}", version_expected)) { Ok(format!("{}: {}", UUTILS_INFO, s)) } else if s.contains("(GNU coreutils)") { let version_found = parse_coreutil_version(s); let version_expected = version_expected.parse::().unwrap_or_default(); if version_found > version_expected { Ok(format!("{}: version for the reference coreutil '{}' is higher than expected; expected: {}, found: {}", UUTILS_INFO, util_name, version_expected, version_found)) } else { Err(format!("{}: version for the reference coreutil '{}' does not match; expected: {}, found: {}", UUTILS_WARNING, util_name, version_expected, version_found)) } } else { Err(format!("{}: no coreutils version string found for reference coreutils '{} --version'", UUTILS_WARNING, util_name)) } }, ) } // simple heuristic to parse the coreutils SemVer string, e.g. "id (GNU coreutils) 8.32.263-0475" fn parse_coreutil_version(version_string: &str) -> f32 { version_string .split_whitespace() .last() .unwrap() .split('.') .take(2) .collect::>() .join(".") .parse::() .unwrap_or_default() } /// This runs the GNU coreutils `util_name` binary in `$PATH` in order to /// dynamically gather reference values on the system. /// If the `util_name` in `$PATH` doesn't include a coreutils version string, /// or the version is too low, this returns an error and the test should be skipped. /// /// Example: /// /// ```no_run /// use crate::common::util::*; /// #[test] /// fn test_xyz() { /// let ts = TestScenario::new(util_name!()); /// let result = ts.ucmd().run(); /// let exp_result = unwrap_or_return!(expected_result(&ts, &[])); /// result /// .stdout_is(exp_result.stdout_str()) /// .stderr_is(exp_result.stderr_str()) /// .code_is(exp_result.code()); /// } ///``` #[cfg(unix)] pub fn expected_result(ts: &TestScenario, args: &[&str]) -> std::result::Result { println!("{}", check_coreutil_version(&ts.util_name, VERSION_MIN)?); let util_name = &host_name_for(&ts.util_name); let result = ts .cmd_keepenv(util_name.as_ref()) .env("LC_ALL", "C") .args(args) .run(); let (stdout, stderr): (String, String) = if cfg!(target_os = "linux") { ( result.stdout_str().to_string(), result.stderr_str().to_string(), ) } else { // `host_name_for` added prefix, strip 'g' prefix from results: let from = util_name.to_string() + ":"; let to = &from[1..]; ( result.stdout_str().replace(&from, to), result.stderr_str().replace(&from, to), ) }; Ok(CmdResult::new( ts.bin_path.as_os_str().to_str().unwrap().to_string(), Some(ts.util_name.clone()), Some(result.tmpd()), Some(result.code()), result.succeeded(), stdout.as_bytes(), stderr.as_bytes(), )) } /// This is a convenience wrapper to run a ucmd with root permissions. /// It can be used to test programs when being root is needed /// This runs 'sudo -E --non-interactive target/debug/coreutils util_name args` /// This is primarily designed to run in an environment where whoami is in $path /// and where non-interactive sudo is possible. /// To check if i) non-interactive sudo is possible and ii) if sudo works, this runs: /// 'sudo -E --non-interactive whoami' first. /// /// This return an `Err()` if run inside CICD because there's no 'sudo'. /// /// Example: /// /// ```no_run /// use crate::common::util::*; /// #[test] /// fn test_xyz() { /// let ts = TestScenario::new("whoami"); /// let expected = "root\n".to_string(); /// if let Ok(result) = run_ucmd_as_root(&ts, &[]) { /// result.stdout_is(expected); /// } else { /// println!("TEST SKIPPED"); /// } /// } ///``` #[cfg(unix)] pub fn run_ucmd_as_root( ts: &TestScenario, args: &[&str], ) -> std::result::Result { if !is_ci() { // check if we can run 'sudo' log_info("run", "sudo -E --non-interactive whoami"); match Command::new("sudo") .env("LC_ALL", "C") .args(&["-E", "--non-interactive", "whoami"]) .output() { Ok(output) if String::from_utf8_lossy(&output.stdout).eq("root\n") => { // we can run sudo and we're root // run ucmd as root: Ok(ts .cmd_keepenv("sudo") .env("LC_ALL", "C") .arg("-E") .arg("--non-interactive") .arg(&ts.bin_path) .arg(&ts.util_name) .args(args) .run()) } Ok(output) if String::from_utf8_lossy(&output.stderr).eq("sudo: a password is required\n") => { Err("Cannot run non-interactive sudo".to_string()) } Ok(_output) => Err("\"sudo whoami\" didn't return \"root\"".to_string()), Err(e) => Err(format!("{}: {}", UUTILS_WARNING, e)), } } else { Err(format!("{}: {}", UUTILS_INFO, "cannot run inside CI")) } } /// Sanity checks for test utils #[cfg(test)] mod tests { // spell-checker:ignore (tests) asdfsadfa use super::*; #[test] fn test_code_is() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: Some(32), success: false, stdout: "".into(), stderr: "".into(), }; res.code_is(32); } #[test] #[should_panic] fn test_code_is_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: Some(32), success: false, stdout: "".into(), stderr: "".into(), }; res.code_is(1); } #[test] fn test_failure() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: false, stdout: "".into(), stderr: "".into(), }; res.failure(); } #[test] #[should_panic] fn test_failure_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "".into(), stderr: "".into(), }; res.failure(); } #[test] fn test_success() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "".into(), stderr: "".into(), }; res.success(); } #[test] #[should_panic] fn test_success_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: false, stdout: "".into(), stderr: "".into(), }; res.success(); } #[test] fn test_no_stderr_output() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "".into(), stderr: "".into(), }; res.no_stderr(); res.no_stdout(); } #[test] #[should_panic] fn test_no_stderr_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "".into(), stderr: "asdfsadfa".into(), }; res.no_stderr(); } #[test] #[should_panic] fn test_no_stdout_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "asdfsadfa".into(), stderr: "".into(), }; res.no_stdout(); } #[test] fn test_std_does_not_contain() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "This is a likely error message\n".into(), stderr: "This is a likely error message\n".into(), }; res.stdout_does_not_contain("unlikely"); res.stderr_does_not_contain("unlikely"); } #[test] #[should_panic] fn test_stdout_does_not_contain_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "This is a likely error message\n".into(), stderr: "".into(), }; res.stdout_does_not_contain("likely"); } #[test] #[should_panic] fn test_stderr_does_not_contain_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "".into(), stderr: "This is a likely error message\n".into(), }; res.stderr_does_not_contain("likely"); } #[test] fn test_stdout_matches() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "This is a likely error message\n".into(), stderr: "This is a likely error message\n".into(), }; let positive = regex::Regex::new(".*likely.*").unwrap(); let negative = regex::Regex::new(".*unlikely.*").unwrap(); res.stdout_matches(&positive); res.stdout_does_not_match(&negative); } #[test] #[should_panic] fn test_stdout_matches_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "This is a likely error message\n".into(), stderr: "This is a likely error message\n".into(), }; let negative = regex::Regex::new(".*unlikely.*").unwrap(); res.stdout_matches(&negative); } #[test] #[should_panic] fn test_stdout_not_matches_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "This is a likely error message\n".into(), stderr: "This is a likely error message\n".into(), }; let positive = regex::Regex::new(".*likely.*").unwrap(); res.stdout_does_not_match(&positive); } #[test] fn test_normalized_newlines_stdout_is() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "A\r\nB\nC".into(), stderr: "".into(), }; res.normalized_newlines_stdout_is("A\r\nB\nC"); res.normalized_newlines_stdout_is("A\nB\nC"); res.normalized_newlines_stdout_is("A\nB\r\nC"); } #[test] #[should_panic] fn test_normalized_newlines_stdout_is_fail() { let res = CmdResult { bin_path: "".into(), util_name: None, tmpd: None, code: None, success: true, stdout: "A\r\nB\nC".into(), stderr: "".into(), }; res.normalized_newlines_stdout_is("A\r\nB\nC\n"); } #[test] #[cfg(unix)] fn test_parse_coreutil_version() { use std::assert_eq; assert_eq!( parse_coreutil_version("id (GNU coreutils) 9.0.123-0123").to_string(), "9" ); assert_eq!( parse_coreutil_version("id (GNU coreutils) 8.32.263-0475").to_string(), "8.32" ); assert_eq!( parse_coreutil_version("id (GNU coreutils) 8.25.123-0123").to_string(), "8.25" ); assert_eq!( parse_coreutil_version("id (GNU coreutils) 9.0").to_string(), "9" ); assert_eq!( parse_coreutil_version("id (GNU coreutils) 8.32").to_string(), "8.32" ); assert_eq!( parse_coreutil_version("id (GNU coreutils) 8.25").to_string(), "8.25" ); } #[test] #[cfg(unix)] fn test_check_coreutil_version() { match check_coreutil_version("id", VERSION_MIN) { Ok(s) => assert!(s.starts_with("uutils-tests-")), Err(s) => assert!(s.starts_with("uutils-tests-warning")), }; #[cfg(target_os = "linux")] std::assert_eq!( check_coreutil_version("no test name", VERSION_MIN), Err("uutils-tests-warning: 'no test name' \ No such file or directory (os error 2)" .to_string()) ); } #[test] #[cfg(unix)] fn test_expected_result() { let ts = TestScenario::new("id"); // assert!(expected_result(&ts, &[]).is_ok()); match expected_result(&ts, &[]) { Ok(r) => assert!(r.succeeded()), Err(s) => assert!(s.starts_with("uutils-tests-warning")), } let ts = TestScenario::new("no test name"); assert!(expected_result(&ts, &[]).is_err()); } #[test] #[cfg(unix)] fn test_host_name_for() { #[cfg(target_os = "linux")] { std::assert_eq!(host_name_for("id"), "id"); std::assert_eq!(host_name_for("groups"), "groups"); std::assert_eq!(host_name_for("who"), "who"); } #[cfg(not(target_os = "linux"))] { // spell-checker:ignore (strings) ggroups gwho std::assert_eq!(host_name_for("id"), "gid"); std::assert_eq!(host_name_for("groups"), "ggroups"); std::assert_eq!(host_name_for("who"), "gwho"); std::assert_eq!(host_name_for("gid"), "gid"); std::assert_eq!(host_name_for("ggroups"), "ggroups"); std::assert_eq!(host_name_for("gwho"), "gwho"); } } #[test] #[cfg(unix)] #[cfg(feature = "whoami")] fn test_run_ucmd_as_root() { if !is_ci() { // Skip test if we can't guarantee non-interactive `sudo`, or if we're not "root" if let Ok(output) = Command::new("sudo") .env("LC_ALL", "C") .args(&["-E", "--non-interactive", "whoami"]) .output() { if output.status.success() && String::from_utf8_lossy(&output.stdout).eq("root\n") { let ts = TestScenario::new("whoami"); std::assert_eq!( run_ucmd_as_root(&ts, &[]).unwrap().stdout_str().trim(), "root" ); } else { println!("TEST SKIPPED (we're not root)"); } } else { println!("TEST SKIPPED (cannot run sudo)"); } } else { println!("TEST SKIPPED (cannot run inside CI)"); } } // This error was first detected when running tail so tail is used here but // should fail with any command that takes piped input. // See also https://github.com/uutils/coreutils/issues/3895 #[test] fn test_when_piped_input_then_no_broken_pipe() { let ts = TestScenario::new("tail"); for i in 0..10000 { dbg!(i); let test_string = "a\nb\n"; ts.ucmd() .args(&["-n", "0"]) .pipe_in(test_string) .succeeds() .no_stdout() .no_stderr(); } } }