factor::numeric: Add a 32b Montgomery variant [WiP]

~32% faster
This commit is contained in:
nicoo 2020-06-21 16:50:11 +02:00
parent 43ee92c40f
commit e68bb192f2
2 changed files with 118 additions and 3 deletions

View file

@ -216,6 +216,114 @@ pub(crate) fn modular_inverse<T: Int>(a: T) -> T {
t
}
#[derive(Clone, Copy, Debug)]
pub(crate) struct Montgomery32 {
a: u32,
n: u32,
}
impl Montgomery32 {
/// computes x/R mod n efficiently
fn reduce(&self, x: u64) -> u32 {
debug_assert!(x < (self.n as u64) << 32);
// TODO: optimiiiiiiise
let Montgomery32 { a, n } = self;
let m = (x as u32).wrapping_mul(*a);
let nm = (*n as u64) * (m as u64);
let (xnm, overflow) = x.overflowing_add(nm); // x + n*m
debug_assert_eq!(xnm % (1 << 32), 0);
// (x + n*m) / R
// in case of overflow, this is (2¹²⁸ + xnm)/2⁶⁴ - n = xnm/2⁶⁴ + (2⁶⁴ - n)
let y = (xnm >> 32) as u32 + if !overflow { 0 } else { n.wrapping_neg() };
if y >= *n {
y - n
} else {
y
}
}
}
impl Arithmetic for Montgomery32 {
// Montgomery transform, R=2⁶⁴
// Provides fast arithmetic mod n (n odd, u64)
type I = u32;
fn new(n: u64) -> Self {
debug_assert!(n < (1 << 32));
let n = n as u32;
let a = modular_inverse(n).wrapping_neg();
debug_assert_eq!(n.wrapping_mul(a), 1_u32.wrapping_neg());
Montgomery32 { a, n }
}
fn modulus(&self) -> u64 {
self.n as u64
}
fn from_u64(&self, x: u64) -> Self::I {
assert!(x < self.n as u64);
let r = ((x << 32) % self.n as u64) as u32;
debug_assert_eq!(x, self.to_u64(r));
r
}
fn to_u64(&self, n: Self::I) -> u64 {
self.reduce(n as u64) as u64
}
fn add(&self, a: Self::I, b: Self::I) -> Self::I {
let (r, overflow) = a.overflowing_add(b);
// In case of overflow, a+b = 2⁶⁴ + r = (2⁶⁴ - n) + r (working mod n)
let r = if !overflow {
r
} else {
r + self.n.wrapping_neg()
};
// Normalise to [0; n[
let r = if r < self.n { r } else { r - self.n };
// Check that r (reduced back to the usual representation) equals
// a+b % n
#[cfg(debug_assertions)]
{
let a_r = self.to_u64(a);
let b_r = self.to_u64(b);
let r_r = self.to_u64(r);
let r_2 = (((a_r as u128) + (b_r as u128)) % (self.n as u128)) as u64;
debug_assert_eq!(
r_r, r_2,
"[{}] = {} ≠ {} = {} + {} = [{}] + [{}] mod {}; a = {}",
r, r_r, r_2, a_r, b_r, a, b, self.n, self.a
);
}
r
}
fn mul(&self, a: Self::I, b: Self::I) -> Self::I {
let r = self.reduce((a as u64) * (b as u64));
// Check that r (reduced back to the usual representation) equals
// a*b % n
#[cfg(debug_assertions)]
{
let a_r = self.to_u64(a);
let b_r = self.to_u64(b);
let r_r = self.to_u64(r);
let r_2 = (a_r * b_r) % (self.n as u64);
debug_assert_eq!(
r_r, r_2,
"[{}] = {} ≠ {} = {} * {} = [{}] * [{}] mod {}; a = {}",
r, r_r, r_2, a_r, b_r, a, b, self.n, self.a
);
}
r
}
}
#[cfg(test)]
mod tests {
use super::*;

View file

@ -51,8 +51,11 @@ fn find_divisor<A: Arithmetic>(n: A) -> u64 {
fn _factor<A: Arithmetic>(num: u64) -> Factors {
// Shadow the name, so the recursion automatically goes from “Big” arithmetic to small.
let _factor = |n| {
// TODO: Optimise with 32 and 64b versions
if n < (1 << 32) {
_factor::<Montgomery32>(n)
} else {
_factor::<A>(n)
}
};
if num == 1 {
@ -75,5 +78,9 @@ fn _factor<A: Arithmetic>(num: u64) -> Factors {
}
pub(crate) fn factor(n: u64) -> Factors {
if n < (1 << 32) {
_factor::<Montgomery32>(n)
} else {
_factor::<Montgomery>(n)
}
}