coreutils/src/factor/numeric.rs

133 lines
3.3 KiB
Rust
Raw Normal View History

/*
* This file is part of the uutils coreutils package.
*
* (c) Wiktor Kuropatwa <wiktor.kuropatwa@gmail.com>
* (c) kwantam <kwantam@gmail.com>
* 20150507 added big_ routines to prevent overflow when num > 2^63
*
* For the full copyright and license information, please view the LICENSE file
* that was distributed with this source code.
*/
use std::u64::MAX as MAX_U64;
use std::num::Wrapping;
pub fn big_add(a: u64, b: u64, m: u64) -> u64 {
let Wrapping(msb_mod_m) = Wrapping(MAX_U64) - Wrapping(m) + Wrapping(1);
let msb_mod_m = msb_mod_m % m;
let Wrapping(res) = Wrapping(a) + Wrapping(b);
let res = if b <= MAX_U64 - a {
res
} else {
(res + msb_mod_m) % m
};
res
}
// computes (a + b) % m using the russian peasant algorithm
// CAUTION: Will overflow if m >= 2^63
pub fn sm_mul(mut a: u64, mut b: u64, m: u64) -> u64 {
let mut result = 0;
while b > 0 {
if b & 1 != 0 {
result = (result + a) % m;
}
a = (a << 1) % m;
b >>= 1;
}
result
}
// computes (a + b) % m using the russian peasant algorithm
// Only necessary when m >= 2^63; otherwise, just wastes time.
pub fn big_mul(mut a: u64, mut b: u64, m: u64) -> u64 {
// precompute 2^64 mod m, since we expect to wrap
let Wrapping(msb_mod_m) = Wrapping(MAX_U64) - Wrapping(m) + Wrapping(1);
let msb_mod_m = msb_mod_m % m;
let mut result = 0;
while b > 0 {
if b & 1 != 0 {
let Wrapping(next_res) = Wrapping(result) + Wrapping(a);
let next_res = next_res % m;
result = if result <= MAX_U64 - a {
next_res
} else {
(next_res + msb_mod_m) % m
};
}
let Wrapping(next_a) = Wrapping(a) << 1;
let next_a = next_a % m;
a = if a < 1 << 63 {
next_a
} else {
(next_a + msb_mod_m) % m
};
b >>= 1;
}
result
}
// computes a.pow(b) % m
fn pow(mut a: u64, mut b: u64, m: u64, mul: fn(u64, u64, u64) -> u64) -> u64 {
let mut result = 1;
while b > 0 {
if b & 1 != 0 {
result = mul(result, a, m);
}
a = mul(a, a, m);
b >>= 1;
}
result
}
fn witness(mut a: u64, exponent: u64, m: u64) -> bool {
if a == 0 {
return false;
}
let mul = if m < 1 << 63 {
sm_mul as fn(u64, u64, u64) -> u64
} else {
big_mul as fn(u64, u64, u64) -> u64
};
if pow(a, m-1, m, mul) != 1 {
return true;
}
a = pow(a, exponent, m, mul);
if a == 1 {
return false;
}
loop {
if a == 1 {
return true;
}
if a == m-1 {
return false;
}
a = mul(a, a, m);
}
}
// uses deterministic (i.e., fixed witness set) Miller-Rabin test
pub fn is_prime(num: u64) -> bool {
if num < 2 {
return false;
}
if num % 2 == 0 {
return num == 2;
}
let mut exponent = num - 1;
while exponent & 1 == 0 {
exponent >>= 1;
}
// These witnesses detect all composites up to at least 2^64.
// Discovered by Jim Sinclair, according to http://miller-rabin.appspot.com
let witnesses = [2, 325, 9375, 28178, 450775, 9780504, 1795265022];
! witnesses.iter().any(|&wit| witness(wit % num, exponent, num))
}