// Std use std::cmp; use std::collections::BTreeMap; use std::fmt::Display; use std::io::{self, Cursor, Read, Write}; use std::usize; // Internal use app::{App, AppSettings}; use app::parser::Parser; use args::{AnyArg, ArgSettings, DispOrder}; use errors::{Error, Result as ClapResult}; use fmt::{Format, Colorizer}; // Third Party use unicode_width::UnicodeWidthStr; #[cfg(feature = "wrap_help")] use term_size; use unicode_segmentation::UnicodeSegmentation; use vec_map::VecMap; #[cfg(not(feature = "wrap_help"))] mod term_size { pub fn dimensions() -> Option<(usize, usize)> { None } } fn str_width(s: &str) -> usize { UnicodeWidthStr::width(s) } const TAB: &'static str = " "; // These are just convenient traits to make the code easier to read. trait ArgWithDisplay<'b, 'c>: AnyArg<'b, 'c> + Display {} impl<'b, 'c, T> ArgWithDisplay<'b, 'c> for T where T: AnyArg<'b, 'c> + Display {} trait ArgWithOrder<'b, 'c>: ArgWithDisplay<'b, 'c> + DispOrder { fn as_base(&self) -> &ArgWithDisplay<'b, 'c>; } impl<'b, 'c, T> ArgWithOrder<'b, 'c> for T where T: ArgWithDisplay<'b, 'c> + DispOrder { fn as_base(&self) -> &ArgWithDisplay<'b, 'c> { self } } fn as_arg_trait<'a, 'b, T: ArgWithOrder<'a, 'b>>(x: &T) -> &ArgWithOrder<'a, 'b> { x } impl<'b, 'c> DispOrder for App<'b, 'c> { fn disp_ord(&self) -> usize { 999 } } macro_rules! color { ($_self:ident, $s:expr, $c:ident) => { if $_self.color { write!($_self.writer, "{}", $_self.cizer.$c($s)) } else { write!($_self.writer, "{}", $s) } }; ($_self:ident, $fmt_s:expr, $v:expr, $c:ident) => { if $_self.color { write!($_self.writer, "{}", $_self.cizer.$c(format!($fmt_s, $v))) } else { write!($_self.writer, $fmt_s, $v) } }; } /// `clap` Help Writer. /// /// Wraps a writer stream providing different methods to generate help for `clap` objects. pub struct Help<'a> { writer: &'a mut Write, next_line_help: bool, hide_pv: bool, term_w: usize, color: bool, cizer: Colorizer, longest: usize, force_next_line: bool, } // Public Functions impl<'a> Help<'a> { /// Create a new `Help` instance. pub fn new(w: &'a mut Write, next_line_help: bool, hide_pv: bool, color: bool, cizer: Colorizer, term_w: Option, max_w: Option) -> Self { debugln!("fn=Help::new;"); Help { writer: w, next_line_help: next_line_help, hide_pv: hide_pv, term_w: match term_w { Some(width) => if width == 0 { usize::MAX } else { width }, None => { cmp::min(term_size::dimensions().map_or(120, |(w, _)| w), match max_w { None | Some(0) => usize::MAX, Some(mw) => mw, }) } }, color: color, cizer: cizer, longest: 0, force_next_line: false, } } /// Reads help settings from an App /// and write its help to the wrapped stream. pub fn write_app_help(w: &'a mut Write, app: &App) -> ClapResult<()> { debugln!("fn=Help::write_app_help;"); Self::write_parser_help(w, &app.p) } /// Reads help settings from a Parser /// and write its help to the wrapped stream. pub fn write_parser_help(w: &'a mut Write, parser: &Parser) -> ClapResult<()> { debugln!("fn=Help::write_parser_help;"); Self::_write_parser_help(w, parser, false) } /// Reads help settings from a Parser /// and write its help to the wrapped stream which will be stderr. This method prevents /// formatting when required. pub fn write_parser_help_to_stderr(w: &'a mut Write, parser: &Parser) -> ClapResult<()> { debugln!("fn=Help::write_parser_help;"); Self::_write_parser_help(w, parser, true) } #[doc(hidden)] pub fn _write_parser_help(w: &'a mut Write, parser: &Parser, stderr: bool) -> ClapResult<()> { debugln!("fn=Help::write_parser_help;"); let nlh = parser.is_set(AppSettings::NextLineHelp); let hide_v = parser.is_set(AppSettings::HidePossibleValuesInHelp); let color = parser.is_set(AppSettings::ColoredHelp); let cizer = Colorizer { use_stderr: stderr, when: parser.color(), }; Self::new(w, nlh, hide_v, color, cizer, parser.meta.term_w, parser.meta.max_w) .write_help(parser) } /// Writes the parser help to the wrapped stream. pub fn write_help(&mut self, parser: &Parser) -> ClapResult<()> { debugln!("fn=Help::write_help;"); if let Some(h) = parser.meta.help_str { write!(self.writer, "{}", h).map_err(Error::from)?; } else if let Some(tmpl) = parser.meta.template { self.write_templated_help(&parser, tmpl)?; } else { self.write_default_help(&parser)?; } Ok(()) } } // Methods to write AnyArg help. impl<'a> Help<'a> { /// Writes help for each argument in the order they were declared to the wrapped stream. fn write_args_unsorted<'b: 'd, 'c: 'd, 'd, I: 'd>(&mut self, args: I) -> io::Result<()> where I: Iterator> { // The shortest an arg can legally be is 2 (i.e. '-x') self.longest = 2; let mut arg_v = Vec::with_capacity(10); for arg in args.filter(|arg| { !(arg.is_set(ArgSettings::Hidden)) || arg.is_set(ArgSettings::NextLineHelp) }) { if arg.longest_filter() { self.longest = cmp::max(self.longest, arg.to_string().len()); } if !arg.is_set(ArgSettings::Hidden) { arg_v.push(arg) } } let mut first = true; for arg in arg_v { if first { first = false; } else { self.writer.write(b"\n")?; } self.write_arg(arg.as_base())?; } Ok(()) } /// Sorts arguments by length and display order and write their help to the wrapped stream. fn write_args<'b: 'd, 'c: 'd, 'd, I: 'd>(&mut self, args: I) -> io::Result<()> where I: Iterator> { debugln!("fn=write_args;"); // The shortest an arg can legally be is 2 (i.e. '-x') self.longest = 2; let mut ord_m = VecMap::new(); // Determine the longest for arg in args.filter(|arg| { // If it's NextLineHelp, but we don't care to compute how long because it may be // NextLineHelp on purpose *because* it's so long and would throw off all other // args alignment !arg.is_set(ArgSettings::Hidden) || arg.is_set(ArgSettings::NextLineHelp) }) { if arg.longest_filter() { debugln!("Longest...{}", self.longest); self.longest = cmp::max(self.longest, arg.to_string().len()); debugln!("New Longest...{}", self.longest); } let btm = ord_m.entry(arg.disp_ord()).or_insert(BTreeMap::new()); btm.insert(arg.name(), arg); } let mut first = true; for btm in ord_m.values() { for arg in btm.values() { if first { first = false; } else { self.writer.write(b"\n")?; } self.write_arg(arg.as_base())?; } } Ok(()) } /// Writes help for an argument to the wrapped stream. fn write_arg<'b, 'c>(&mut self, arg: &ArgWithDisplay<'b, 'c>) -> io::Result<()> { debugln!("fn=write_arg;"); self.short(arg)?; self.long(arg)?; let spec_vals = self.val(arg)?; self.help(arg, &*spec_vals)?; Ok(()) } /// Writes argument's short command to the wrapped stream. fn short<'b, 'c>(&mut self, arg: &ArgWithDisplay<'b, 'c>) -> io::Result<()> { debugln!("fn=short;"); write!(self.writer, "{}", TAB)?; if let Some(s) = arg.short() { color!(self, "-{}", s, good) } else if arg.has_switch() { write!(self.writer, "{}", TAB) } else { Ok(()) } } /// Writes argument's long command to the wrapped stream. fn long<'b, 'c>(&mut self, arg: &ArgWithDisplay<'b, 'c>) -> io::Result<()> { debugln!("fn=long;"); if !arg.has_switch() { return Ok(()); } if arg.takes_value() { if let Some(l) = arg.long() { if arg.short().is_some() { write!(self.writer, ", ")?; } color!(self, "--{}", l, good)? } write!(self.writer, " ")?; } else if let Some(l) = arg.long() { if arg.short().is_some() { write!(self.writer, ", ")?; } color!(self, "--{}", l, good)?; } Ok(()) } /// Writes argument's possible values to the wrapped stream. fn val<'b, 'c>(&mut self, arg: &ArgWithDisplay<'b, 'c>) -> Result { debugln!("fn=val;arg={}", arg); if arg.takes_value() { if let Some(vec) = arg.val_names() { let mut it = vec.iter().peekable(); while let Some((_, val)) = it.next() { color!(self, "<{}>", val, good)?; if it.peek().is_some() { write!(self.writer, " ")?; } } let num = vec.len(); if arg.is_set(ArgSettings::Multiple) && num == 1 { color!(self, "...", good)?; } } else if let Some(num) = arg.num_vals() { let mut it = (0..num).peekable(); while let Some(_) = it.next() { color!(self, "<{}>", arg.name(), good)?; if it.peek().is_some() { write!(self.writer, " ")?; } } if arg.is_set(ArgSettings::Multiple) && num == 1 { color!(self, "...", good)?; } } else if arg.has_switch() { color!(self, "<{}>", arg.name(), good)?; if arg.is_set(ArgSettings::Multiple) { color!(self, "...", good)?; } } else { color!(self, "{}", arg, good)?; } } let spec_vals = self.spec_vals(arg); let h = arg.help().unwrap_or(""); let h_w = str_width(h) + str_width(&*spec_vals); let nlh = self.next_line_help || arg.is_set(ArgSettings::NextLineHelp); let taken = self.longest + 12; self.force_next_line = !nlh && self.term_w >= taken && (taken as f32 / self.term_w as f32) > 0.40 && h_w > (self.term_w - taken); debug!("Has switch..."); if arg.has_switch() { sdebugln!("Yes"); debugln!("force_next_line...{:?}", self.force_next_line); debugln!("nlh...{:?}", nlh); debugln!("taken...{}", taken); debugln!("help_width > (width - taken)...{} > ({} - {})", h_w, self.term_w, taken); debugln!("longest...{}", self.longest); debug!("next_line..."); if !(nlh || self.force_next_line) { sdebugln!("No"); let self_len = arg.to_string().len(); // subtract ourself let mut spcs = self.longest - self_len; // Since we're writing spaces from the tab point we first need to know if we // had a long and short, or just short if arg.long().is_some() { // Only account 4 after the val spcs += 4; } else { // Only account for ', --' + 4 after the val spcs += 8; } write_nspaces!(self.writer, spcs); } else { sdebugln!("Yes"); } } else if !(nlh || self.force_next_line) { sdebugln!("No, and not next_line"); write_nspaces!(self.writer, self.longest + 4 - (arg.to_string().len())); } else { sdebugln!("No"); } Ok(spec_vals) } fn write_before_after_help(&mut self, h: &str) -> io::Result<()> { debugln!("fn=before_help;"); let mut help = String::new(); // determine if our help fits or needs to wrap debugln!("Term width...{}", self.term_w); let too_long = str_width(h) >= self.term_w; debug!("Too long..."); if too_long || h.contains("{n}") { sdebugln!("Yes"); help.push_str(h); debugln!("help: {}", help); debugln!("help width: {}", str_width(&*help)); // Determine how many newlines we need to insert debugln!("Usable space: {}", self.term_w); let longest_w = { let mut lw = 0; for l in help.split(' ').map(|s| str_width(s)) { if l > lw { lw = l; } } lw }; help = help.replace("{n}", "\n"); wrap_help(&mut help, longest_w, self.term_w); } else { sdebugln!("No"); } let help = if !help.is_empty() { &*help } else { help.push_str(h); &*help }; if help.contains('\n') { if let Some(part) = help.lines().next() { write!(self.writer, "{}", part)?; } for part in help.lines().skip(1) { write!(self.writer, "\n{}", part)?; } } else { write!(self.writer, "{}", help)?; } Ok(()) } /// Writes argument's help to the wrapped stream. fn help<'b, 'c>(&mut self, arg: &ArgWithDisplay<'b, 'c>, spec_vals: &str) -> io::Result<()> { debugln!("fn=help;"); let mut help = String::new(); let h = arg.help().unwrap_or(""); let nlh = self.next_line_help || arg.is_set(ArgSettings::NextLineHelp); debugln!("Next Line...{:?}", nlh); let spcs = if nlh || self.force_next_line { 12 // "tab" * 3 } else { self.longest + 12 }; let too_long = spcs + str_width(h) + str_width(&*spec_vals) >= self.term_w; // Is help on next line, if so then indent if nlh || self.force_next_line { write!(self.writer, "\n{}{}{}", TAB, TAB, TAB)?; } debug!("Too long..."); if too_long && spcs <= self.term_w || h.contains("{n}") { sdebugln!("Yes"); help.push_str(h); help.push_str(&*spec_vals); debugln!("help...{}", help); debugln!("help width...{}", str_width(&*help)); // Determine how many newlines we need to insert let avail_chars = self.term_w - spcs; debugln!("Usable space...{}", avail_chars); let longest_w = { let mut lw = 0; for l in help.split(' ').map(|s| str_width(s)) { if l > lw { lw = l; } } lw }; help = help.replace("{n}", "\n"); wrap_help(&mut help, longest_w, avail_chars); } else { sdebugln!("No"); } let help = if !help.is_empty() { &*help } else if spec_vals.is_empty() { h } else { help.push_str(h); help.push_str(&*spec_vals); &*help }; if help.contains('\n') { if let Some(part) = help.lines().next() { write!(self.writer, "{}", part)?; } for part in help.lines().skip(1) { write!(self.writer, "\n")?; if nlh || self.force_next_line { write!(self.writer, "{}{}{}", TAB, TAB, TAB)?; } else if arg.has_switch() { write_nspaces!(self.writer, self.longest + 12); } else { write_nspaces!(self.writer, self.longest + 8); } write!(self.writer, "{}", part)?; } } else { write!(self.writer, "{}", help)?; } Ok(()) } fn spec_vals(&self, a: &ArgWithDisplay) -> String { debugln!("fn=spec_vals;a={}", a); let mut spec_vals = vec![]; if let Some(pv) = a.default_val() { debugln!("Found default value...[{}]", pv); spec_vals.push(format!(" [default: {}]", if self.color { self.cizer.good(pv) } else { Format::None(pv) })); } if let Some(ref aliases) = a.aliases() { debugln!("Found aliases...{:?}", aliases); spec_vals.push(format!(" [aliases: {}]", if self.color { aliases.iter() .map(|v| format!("{}", self.cizer.good(v))) .collect::>() .join(", ") } else { aliases.join(", ") })); } if !self.hide_pv && !a.is_set(ArgSettings::HidePossibleValues) { if let Some(pv) = a.possible_vals() { debugln!("Found possible vals...{:?}", pv); spec_vals.push(if self.color { format!(" [values: {}]", pv.iter() .map(|v| format!("{}", self.cizer.good(v))) .collect::>() .join(", ")) } else { format!(" [values: {}]", pv.join(", ")) }); } } spec_vals.join(" ") } } // Methods to write Parser help. impl<'a> Help<'a> { /// Writes help for all arguments (options, flags, args, subcommands) /// including titles of a Parser Object to the wrapped stream. #[cfg_attr(feature = "lints", allow(useless_let_if_seq))] pub fn write_all_args(&mut self, parser: &Parser) -> ClapResult<()> { let flags = parser.has_flags(); let pos = parser.has_positionals(); let opts = parser.has_opts(); let subcmds = parser.has_subcommands(); let unified_help = parser.is_set(AppSettings::UnifiedHelpMessage); let mut first = true; if unified_help && (flags || opts) { let opts_flags = parser.flags() .map(as_arg_trait) .chain(parser.opts().map(as_arg_trait)); color!(self, "OPTIONS:\n", warning)?; self.write_args(opts_flags)?; first = false; } else { if flags { color!(self, "FLAGS:\n", warning)?; self.write_args(parser.flags().map(as_arg_trait))?; first = false; } if opts { if !first { self.writer.write(b"\n\n")?; } color!(self, "OPTIONS:\n", warning)?; self.write_args(parser.opts().map(as_arg_trait))?; first = false; } } if pos { if !first { self.writer.write(b"\n\n")?; } color!(self, "ARGS:\n", warning)?; self.write_args_unsorted(parser.positionals().map(as_arg_trait))?; first = false; } if subcmds { if !first { self.writer.write(b"\n\n")?; } color!(self, "SUBCOMMANDS:\n", warning)?; self.write_subcommands(&parser)?; } Ok(()) } /// Writes help for subcommands of a Parser Object to the wrapped stream. fn write_subcommands(&mut self, parser: &Parser) -> io::Result<()> { debugln!("fn=write_subcommands;"); // The shortest an arg can legally be is 2 (i.e. '-x') self.longest = 2; let mut ord_m = VecMap::new(); for sc in parser.subcommands.iter().filter(|s| !s.p.is_set(AppSettings::Hidden)) { let btm = ord_m.entry(sc.p.meta.disp_ord).or_insert(BTreeMap::new()); self.longest = cmp::max(self.longest, sc.p.meta.name.len()); btm.insert(sc.p.meta.name.clone(), sc.clone()); } let mut first = true; for btm in ord_m.values() { for sc in btm.values() { if first { first = false; } else { self.writer.write(b"\n")?; } self.write_arg(sc)?; } } Ok(()) } /// Writes version of a Parser Object to the wrapped stream. fn write_version(&mut self, parser: &Parser) -> io::Result<()> { write!(self.writer, "{}", parser.meta.version.unwrap_or("".into()))?; Ok(()) } /// Writes binary name of a Parser Object to the wrapped stream. fn write_bin_name(&mut self, parser: &Parser) -> io::Result<()> { if let Some(bn) = parser.meta.bin_name.as_ref() { if bn.contains(' ') { // Incase we're dealing with subcommands i.e. git mv is translated to git-mv color!(self, bn.replace(" ", "-"), good)? } else { color!(self, &parser.meta.name[..], good)? } } else { color!(self, &parser.meta.name[..], good)? } Ok(()) } /// Writes default help for a Parser Object to the wrapped stream. pub fn write_default_help(&mut self, parser: &Parser) -> ClapResult<()> { debugln!("fn=write_default_help;"); if let Some(h) = parser.meta.pre_help { self.write_before_after_help(h)?; self.writer.write(b"\n\n")?; } // Print the version self.write_bin_name(&parser)?; self.writer.write(b" ")?; self.write_version(&parser)?; self.writer.write(b"\n")?; if let Some(author) = parser.meta.author { write!(self.writer, "{}\n", author)?; } if let Some(about) = parser.meta.about { write!(self.writer, "{}\n", about)?; } color!(self, "\nUSAGE:", warning)?; write!(self.writer, "\n{}{}\n\n", TAB, parser.create_usage_no_title(&[]))?; let flags = parser.has_flags(); let pos = parser.has_positionals(); let opts = parser.has_opts(); let subcmds = parser.has_subcommands(); if flags || opts || pos || subcmds { self.write_all_args(&parser)?; } if let Some(h) = parser.meta.more_help { if flags || opts || pos || subcmds { self.writer.write(b"\n\n")?; } self.write_before_after_help(h)?; } self.writer.flush().map_err(Error::from) } } /// Possible results for a copying function that stops when a given /// byte was found. enum CopyUntilResult { DelimiterFound(usize), DelimiterNotFound(usize), ReaderEmpty, ReadError(io::Error), WriteError(io::Error), } /// Copies the contents of a reader into a writer until a delimiter byte is found. /// On success, the total number of bytes that were /// copied from reader to writer is returned. fn copy_until(r: &mut R, w: &mut W, delimiter_byte: u8) -> CopyUntilResult { let mut count = 0; for wb in r.bytes() { match wb { Ok(b) => { if b == delimiter_byte { return CopyUntilResult::DelimiterFound(count); } match w.write(&[b]) { Ok(c) => count += c, Err(e) => return CopyUntilResult::WriteError(e), } } Err(e) => return CopyUntilResult::ReadError(e), } } if count > 0 { CopyUntilResult::DelimiterNotFound(count) } else { CopyUntilResult::ReaderEmpty } } /// Copies the contents of a reader into a writer until a {tag} is found, /// copying the tag content to a buffer and returning its size. /// In addition to errors, there are three possible outputs: /// - None: The reader was consumed. /// - Some(Ok(0)): No tag was captured but the reader still contains data. /// - Some(Ok(length>0)): a tag with `length` was captured to the tag_buffer. fn copy_and_capture(r: &mut R, w: &mut W, tag_buffer: &mut Cursor>) -> Option> { use self::CopyUntilResult::*; // Find the opening byte. match copy_until(r, w, b'{') { // The end of the reader was reached without finding the opening tag. // (either with or without having copied data to the writer) // Return None indicating that we are done. ReaderEmpty | DelimiterNotFound(_) => None, // Something went wrong. ReadError(e) | WriteError(e) => Some(Err(e)), // The opening byte was found. // (either with or without having copied data to the writer) DelimiterFound(_) => { // Lets reset the buffer first and find out how long it is. tag_buffer.set_position(0); let buffer_size = tag_buffer.get_ref().len(); // Find the closing byte,limiting the reader to the length of the buffer. let mut rb = r.take(buffer_size as u64); match copy_until(&mut rb, tag_buffer, b'}') { // We were already at the end of the reader. // Return None indicating that we are done. ReaderEmpty => None, // The closing tag was found. // Return the tag_length. DelimiterFound(tag_length) => Some(Ok(tag_length)), // The end of the reader was found without finding the closing tag. // Write the opening byte and captured text to the writer. // Return 0 indicating that nothing was caputred but the reader still contains data. DelimiterNotFound(not_tag_length) => { match w.write(b"{") { Err(e) => Some(Err(e)), _ => { match w.write(&tag_buffer.get_ref()[0..not_tag_length]) { Err(e) => Some(Err(e)), _ => Some(Ok(0)), } } } } ReadError(e) | WriteError(e) => Some(Err(e)), } } } } // Methods to write Parser help using templates. impl<'a> Help<'a> { /// Write help to stream for the parser in the format defined by the template. /// /// Tags arg given inside curly brackets: /// Valid tags are: /// * `{bin}` - Binary name. /// * `{version}` - Version number. /// * `{author}` - Author information. /// * `{usage}` - Automatically generated or given usage string. /// * `{all-args}` - Help for all arguments (options, flags, positionals arguments, /// and subcommands) including titles. /// * `{unified}` - Unified help for options and flags. /// * `{flags}` - Help for flags. /// * `{options}` - Help for options. /// * `{positionals}` - Help for positionals arguments. /// * `{subcommands}` - Help for subcommands. /// * `{after-help}` - Info to be displayed after the help message. /// * `{before-help}` - Info to be displayed before the help message. /// /// The template system is, on purpose, very simple. Therefore the tags have to writen /// in the lowercase and without spacing. fn write_templated_help(&mut self, parser: &Parser, template: &str) -> ClapResult<()> { debugln!("fn=write_templated_help;"); let mut tmplr = Cursor::new(&template); let mut tag_buf = Cursor::new(vec![0u8; 15]); // The strategy is to copy the template from the the reader to wrapped stream // until a tag is found. Depending on its value, the appropriate content is copied // to the wrapped stream. // The copy from template is then resumed, repeating this sequence until reading // the complete template. loop { let tag_length = match copy_and_capture(&mut tmplr, &mut self.writer, &mut tag_buf) { None => return Ok(()), Some(Err(e)) => return Err(Error::from(e)), Some(Ok(val)) if val > 0 => val, _ => continue, }; debugln!("iter;tag_buf={};", unsafe { String::from_utf8_unchecked(tag_buf.get_ref()[0..tag_length] .iter() .map(|&i| i) .collect::>()) }); match &tag_buf.get_ref()[0..tag_length] { b"?" => { self.writer.write(b"Could not decode tag name")?; } b"bin" => { self.write_bin_name(&parser)?; } b"version" => { write!(self.writer, "{}", parser.meta.version.unwrap_or("unknown version"))?; } b"author" => { write!(self.writer, "{}", parser.meta.author.unwrap_or("unknown author"))?; } b"about" => { write!(self.writer, "{}", parser.meta.about.unwrap_or("unknown about"))?; } b"usage" => { write!(self.writer, "{}", parser.create_usage_no_title(&[]))?; } b"all-args" => { self.write_all_args(&parser)?; } b"unified" => { let opts_flags = parser.flags() .map(as_arg_trait) .chain(parser.opts().map(as_arg_trait)); self.write_args(opts_flags)?; } b"flags" => { self.write_args(parser.flags().map(as_arg_trait))?; } b"options" => { self.write_args(parser.opts().map(as_arg_trait))?; } b"positionals" => { self.write_args(parser.positionals().map(as_arg_trait))?; } b"subcommands" => { self.write_subcommands(&parser)?; } b"after-help" => { write!(self.writer, "{}", parser.meta.more_help.unwrap_or("unknown after-help"))?; } b"before-help" => { write!(self.writer, "{}", parser.meta.pre_help.unwrap_or("unknown before-help"))?; } // Unknown tag, write it back. r => { self.writer.write(b"{")?; self.writer.write(r)?; self.writer.write(b"}")?; } } } } } fn wrap_help(help: &mut String, longest_w: usize, avail_chars: usize) { debugln!("fn=wrap_help;longest_w={},avail_chars={}", longest_w, avail_chars); debug!("Enough space to wrap..."); if longest_w < avail_chars { sdebugln!("Yes"); let mut prev_space = 0; let mut j = 0; for (idx, g) in (&*help.clone()).grapheme_indices(true) { debugln!("iter;idx={},g={}", idx, g); if g == "\n" { debugln!("Newline found..."); debugln!("Still space...{:?}", str_width(&help[j..idx]) < avail_chars); if str_width(&help[j..idx]) < avail_chars { j = idx; continue; } } else if g != " " { if idx != help.len() - 1 || str_width(&help[j..idx]) < avail_chars { continue; } debugln!("Reached the end of the line and we're over..."); } else if str_width(&help[j..idx]) < avail_chars { debugln!("Space found with room..."); prev_space = idx; continue; } debugln!("Adding Newline..."); j = prev_space; debugln!("prev_space={},j={}", prev_space, j); debugln!("removing: {}", j); debugln!("char at {}: {}", j, &help[j..j]); help.remove(j); help.insert(j, '\n'); } } else { sdebugln!("No"); } }